2. Sunum: Birinci ve İkinci Mertebeden Geçici Devreler

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "2. Sunum: Birinci ve İkinci Mertebeden Geçici Devreler"

Transkript

1 2. Sunum: Birinci ve İkinci Mertebeden Geçici Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS, Nobel Akademik Yayıncılık 1

2 Giriş Geçici analizden kastedilen bir anahtarın aniden açılması ya da kapanması ardından devrenin nasıl çalışacağını incelemek ve akım, gerilimleri zamanın fonksiyonu olarak elde etmektr. Devrede bir veya daha fazla enerji depolayan elaman varsa ani değişime karşı devre bir geçiş dönemi yaşar daha sonra yeni bir kalıcı durum değerine ulaşır. Geçici durum analizinde devrenin bu geçiş dönemi ele alınır. 2

3 Giriş Yalnızca bir tane enerji depolayan elaman içeren devrelerin davranışı birinci dereceden diferansiyel denklemle ile tanımlanabilirler. Bu devreler birinci mertebeden devre olarak sınıflandırılırlar. Birinci mertebeden devrelerin analizleri yapılırken devrenin diferansiyel denklemi yazılıp, bu denklem çözülebilir ya da adım adım çözüm adı verilen teknik kullanılır. 3

4 Giriş İkinci mertebeden devrelerde aynı anda hem bir kondansatör hem de bir indüktör bulunur ve devre ikinci dereceden bir diferansiyel denklemle ifade edilir. RLC devrelerinin analizleri birinci mertebeden devrelerin analizine göre daha karmaşık olsa da izlenen yol benzerdir. Burada yalnızca basit devreler ele alınacakzr. Daha karmaşık devrelerin analizi için Laplace dönüşümü tercih edilmelidir. 4

5 Tepki Denklemlerinin Genel Yapısı Birinci mertebeden devrelerin analizleri gerçekleştrilirken aşağıdaki gibi bir denklemle karşılaşılır. x(t)=x p (t) bu denklemin herhangi bir çözümü ise ve x(t)=x c (t), f(t)=0 için bu denklemin çözümü ise x(t)=x p (t)+x c (t) toplamı da bu denklemin çözümü olur. 5

6 Tepki Denklemlerinin Genel Yapısı Burada x p (t) terimi özel çözüm ya da zorlanmış tepki olarak adlandırılır. x c (t) ise tamamlayıcı çözüm, homojen çözüm ya da doğal tepki olarak adlandırılır. Şimdilik yalnızca A sabit bir sayı olmak üzere f(t)=a durumunu inceleyelim. Bu durumda diferansiyel denklemin tam çözümü için aşağıdaki denklemleri çözmek gerekir. 6

7 Tepki Denklemlerinin Genel Yapısı İlk denklem incelendiğinde bu denklemin sağlanabilmesi için x p (t) nin sabit bir sayı olması gerektği görülür. Yani x p (t)=k 1 dir. x p (t)=k 1 ifadesi ilk denklemde yerine yazılırsa K 1 =A/a elde edilir. İkinci denklem çözüldüğünde ise x c (t)=k 2 e - at çözümü elde edilir. Dolayısıyla; olur. 7

8 Tepki Denklemlerinin Genel Yapısı Bu ifadedeki K 2 sabit x(t) nin herhangi bir andaki değerinin bilinmesi ile bulunabilir. Sonuç olarak f(t)=a için birinci dereceden diferansiyel denklemin aşağıdaki gibi ifade edilir. Devre analizi dersi kapsamında K 1 kalıcı durum veya sürekli durum çözümü adını alır. τ sabit ise devrenin zaman sabitdir. Bu eşitliğe göre K 2 zamanla azalır ve t= için 0 olur. 8

9 Tepki Denklemlerinin Genel Yapısı τ>0 ise her bir τ luk zaman geçişinde K 2 başlangıçtaki değerinin %63.2 sine düşer. Sonuç olarak 5τ sürede K 2 nin sımr olduğu kabul edilir. Ayrıca dikkat edilirse büyük τ değeri yavaş değişime küçük τ değeri ise hızlı değişime karşılık gelir. 9

10 Analiz Teknikleri Diferansiyel Denklem Yaklaşımı Yukarıda çözümü anlazlan diferansiyel denklem birinci mertebeden geçici bir devrenin herhangi bir noktasındaki akımı veya gerilimi ifade etmek için kullanılabilir. Bu çözüme ulaşmak için durum değişkenleri yöntemi kullanılabilir. Kondansatörler üzerindeki gerilimler ve indüktanslar üzerinden geçen akımlar durum değişkenleri olarak adlandırılır. Devreyi tanımlamak için bu değişkenleri içeren denklemlerden yararlanılır. 10

11 Diferansiyel Denklem Yaklaşımı Örneğin yukarıdaki devreyi inceleyelim. t=0 anında anahtar kapazlmaktadır. t>0 için kondansatör gerilimini veren KAK yasası aşağıdaki gibidir. veya 11

12 Diferansiyel Denklem Yaklaşımı Daha önce belirtldiği gibi bu denklemin çözümü v(t)=k 1 +K 2 e - t/τ şeklindedir. Bu ifade denklemde yerine yazıldığında denklemi sağlamalıdır. Yani; elde edilir. Sabit ve üstel terimler kendi aralarında eşitlenerek K 1 =V s ve τ=rc olarak bulunur.burada V s kalıcı durum değeridir ve RC devrenin zaman sabitdir. 12

13 Diferansiyel Denklem Yaklaşımı K 2 kondansatörün başlangıç koşullarından bulunur. Kondansatör başlangıçta yüksüzse (t<0 için kondansatör gerilimi sımrsa); V(t)=V s +K 2 e - t/τ denkleminde t=0 konulur ve 0=V s +K 2 denklemi elde edilir. Buradan; K 2 =- V s bulunur. Dolayısıyla v(t) geriliminin tam çözümü aşağıdaki gibi elde edilir. 13

14 Diferansiyel Denklem Yaklaşımı Şekildeki indüktörlü devrenin analizi de benzer şekilde yapılabilir. Bu devre t>0 için KGK aşağıdaki gibi yazılır. 14

15 Diferansiyel Denklem Yaklaşımı Yukardakine benzer bir yöntemle aşağıdaki ifade elde edilir. Bu ifadede V s /R kalıcı durum akımını, L/R oranı ise devrenin zaman sabitni gösterir. Başlangıçta indüktörden akım akmıyorsa t=0 zamanı için ve olur. 15

16 Diferansiyel Denklem Yaklaşımı Dolayısıyla tam çözüm aşağıdaki gibidir. Direnç üzerindeki gerilim hesaplanmak istenirse, olur. 16

17 Diferansiyel Denklem Yaklaşımı Örnek: Şekildeki devrede anahtar uzun süre 1 konumunda kalmışzr. t=0 anında anahtar 2 konumuna getriliyor. t>0 için i(t) akımını hesaplayınız. 17

18 Diferansiyel Denklem Yaklaşımı 18

19 Diferansiyel Denklem Yaklaşımı Örnek: Şekildeki devrede anahtar uzun süre kapalı kalmışzr. t=0 anında anahtar açıldığına göre t>0 için çıkış gerilimi v 0 (t) yi hesaplayınız. 19

20 Diferansiyel Denklem Yaklaşımı 20

21 Adım Adım İlerleme Yaklaşımı Bu metora, birinci mertebeden devre çözümünün bilinmesi gerçeğinden yararlanılır ve devre analizi metotları ile K 1, K 2 ve τ katsayıları hesaplanır. Bu yaklaşım aşağıdaki alz işlem basamağının gerçekleştrilmesi ile uygulanır. 1- x(t) değişkeninin çözümünün x(t)=k 1 +K 2 e - t/τ şeklinde olduğu varsayılır. 2- Anahtarın konumu değiştrilmeden önce orijinal devrenin kalıcı duruma eriştğini varsayılır ve kondansatör açık devre veya bobin kısa devre olarak devre yeniden çizilir. Bu devrede anahtarın konumu değişmeden önceki durum için kondansatör gerilimi v c (0- ) veya indüktör akımı i L (0- ) hesaplanır. 21

22 Adım Adım İlerleme Yaklaşımı 3- Anahtarın durumu değiştkten hemen sonraki durum için devreyi tekrar çizilir. Bu devrede v c (0+)=v c (0- ) veya i L (0+)=i L (0- ) olacağı için devredeki kondansatör veya indüktör yerine ilgili değerde bir gerilim kaynağı veya akım kaynağı konur. Devre analizi yöntemleri kullanılarak ilgilenilen değişkenin x(0+) başlangıç değeri bulunur. 4- Anahtar konumunun değişmesinin üzerinden yeterince zamanın geçtği ve devrenin sürekli hale eriştği varsayılarak, t>5τ için geçerli devre, kondansatör açık devre veya indüktörü kısa devre edilerek tekrar çizilir. Bu devreden ilgilenilen değişkenin kalıcı durum değeri hesaplanır. 22

23 Adım Adım İlerleme Yaklaşımı 5- Devredeki tüm gerilimlerin zaman sabit aynıdır. Bu zaman sabitnin hesabı için tüm devre, bir gerilim kaynağı, bir direnç ve bir enerji depolama elamanından (indüktör veya kondansatör) oluşan basit bir seri devreye indirgenmelidir. Bu amaçla, enerji depolama elamanının uçları arasından bakıldığında görülen devrenin Thevenin eşdeğeri elde edilir. Kondansatörlü devre için τ=r TH C ye ve indüktörlü devre için τ=l/r TH a eşit olur. 23

24 Adım Adım İlerleme Yaklaşımı 6-3,4 ve 5 de elde edilen sonuçlar kullanılarak 1. adımdaki sabitleri aşağıdaki gibi yazabiliriz. Dolayısıyla, K 1 =x( ), K 2 =x(0+)- x( ) olur ve arana çözüm aşağıdaki gibi elde edilir. Yukarıda elde edilen çözümün sadece DC kaynaklara sahip birinci mertebeden devre için geçerli olacağı unutulmamalıdır. 24

25 Adım Adım İlerleme Yaklaşımı Örnek: Aşağıdaki devre t=0 dan önceki zamanda sürekli hale ulaşmışzr. t>0 için i(t) akımını hesaplayınız. 25

26 Adım Adım İlerleme Yaklaşımı 26

27 Adım Adım İlerleme Yaklaşımı Örnek: Aşağıdaki devre t=0 dan önceki zamanda sürekli hale ulaşmışzr. t>0 için v(t) akımını hesaplayınız. 27

28 Adım Adım İlerleme Yaklaşımı 28

29 Adım Adım İlerleme Yaklaşımı Şekildeki devrede anahtar 1 konumunda iken devre kalıcı durumuna ulaşmışzr. t=0 da anahtarın konumu 1 den 2 ye hareket eurilmiştr. t>0 için v 0 (t) yi hesaplayınız. 29

30 Adım Adım İlerleme Yaklaşımı 30

31 t>0 Zamanında Anahtar Konumunun Değişmesi Anahtar konumunun herhangi bir t 0 zamanında değiştrilmesi durumunda adım adım anahtarla sonucunda elde edilen sonuçlar aşağıdaki gibi değiştrilmelidir. 31

32 Darbe Etkisi Birim basamak fonksiyonu devre analizindeki önemli tekil fonksiyonlardan biridir. Biri basamak fonksiyonu u(t) aşağıdaki matematksel ilişki ile tanımlanır. Aşağıdaki ifadeden ve grafiğinden görüldüğü gibi t=0 için tanımsızdır. 32

33 Darbe Etkisi Birim basamak fonksiyonu birimsizdir ve gerilim veya akım ile ölçeklenerek kullanılabilir. Bu fonksiyonun t 0 saniye geciktrilmiş halinin gösterimi için matematksel ifadede t yerine t- t 0 yazılması yeterlidir. Bu durumda fonksiyonun matematksel ifadesi ve grafiği aşağı gösterildiği gibi olur. 33

34 Darbe Etkisi Basamak fonksiyonları bir yada daha fazla darbe üretmek için kullanılabilir. Örneğin aşağıdaki, t=0 da başlayan, T süreli birim darbenin matematksel ifadesi aşağıdaki gibi elde edilebilir. 34

35 Darbe Etkisi Eğer darbe t=t0 da başlıyorsa ve T genişliğinde ise ifadesi aşağıdaki gibi olmalıdır. Bu yaklaşımı kullanarak herhangi bir zamanda başlayan ve herhangi bir zamanda sonlanan bir darbe için geçerli denklemler yazılabilir. 35

36 Darbe Etkisi Örnek: Yandaki devrenin girişine şekilde gösterilen v(t) giriş fonksiyonu uygulanmaktadır. Bu devrede t>0.3s için v 0 (t) yi hesaplayalım. 36

37 Darbe Etkisi 37

38 İkinci Mertebeden Devreler Başlangıçta yüklü olabilecek indüktör ve kondansatör içeren iki temel RLC devresi aşağıda gösterilmektedir. Bu paralel RLC devresi için düğüm denklemi aşağıdaki gibi yazılır. 38

39 İkinci Mertebeden Devreler Bu seri RLC devresi için çevre denklemi ise aşağıda verilmiştr. Bu denklemlerin zamana göre türevleri alındığında aşağıdaki denklemler elde edilir. 39

40 İkinci Mertebeden Devreler Yukarıdaki ifadeler incelendiğinde çözümlerinin daha önce RL ve RC devrelerine uyguladığımız yöntemlerle gerçekleştrilebileceği görülür. Bu denklemlerin genel hali aşağıdaki gibidir. Daha önce olduğu gibi x(t)=x p (t) yukarıdaki denklemin bir çözümü ise ve x(t)=x c (t) aşağıdaki homojen denklemin çözümü ise; 40

41 İkinci Mertebeden Devreler x(t)=x p (t)+x c (t) de genel denklemin bir çözümü olmalıdır. Eğer devre yanlızca DC kaynaklardan oluşuyorsa f(t)=a yazılır ve eşitliğin çözümü aşağıdaki gibi elde edilir. x c (t), aşağıdaki homojen denklemin çözümü ile elde edilir. 41

42 İkinci Mertebeden Devreler Basitlik açısından a 1 =2ζω 0 ve a 2 =ω 0 2 eşitlikleri kullanılarak denklem aşağıdaki gibi tekrar yazılır. Bu denklemin bir çözümü olarak x(t)=ke st ifadesi kullanılarak ve bu çözüm yukarıdaki denklemde yerine yazılarak aşağıdaki ifadeler elde edilir. ve olur. 42

43 İkinci Mertebeden Devreler Bu denklem karakteristk denklem olarak adlandırılır. Bu ifadede geçen ζ sönüm katsayısı, ω 0 ise sönümsüz doğal frekans olarak adlandırılır. KarakterisTk denklemin sağlandığı değerlerde varsayımsal çözüm x(t)=ke st geçerli olur. KarakterisTk denklemin iki kökü aşağıdaki gibi hesaplanır. ve olur. 43

44 İkinci Mertebeden Devreler Genel olarak homojen denklemin tam çözümü aşağıdaki gibi elde edilir. Bu ifadedeki K 1 ve K 2 katsayıları x(0) ve dx(0)/dt başlangıç koşullarında elde edilir. Yani, ifadesinden ve olur. 44

45 İkinci Mertebeden Devreler x(0) ve dx(0)/dt için yazılan yukarıdaki denklemler çözülerek K 1 ve K 2 elde edilir. KarakterisTk denklemin s 1 ve s 2 kökleri için ζ değerinin belirleyici önemi vardır. Elde edilen sonuçları devreye sadece kondansatör ve indüktör taramndan enerji sağlandığı (kaynaklar yok iken) durum için inceleyelim. 1. ζ>1 durumu: Bu durum aşırı sönümlü olarak adlandırılır. s 1 ve s 2 doğal frekansları gerçeldir ve birbirine eşit değildir. Dolayısıyla homojen çözüm aşağıdaki gibi elde edilir. 45

46 İkinci Mertebeden Devreler Bu ifadede K 1 ve K 2 başlangıç değerlerinden bulunur. 2. ζ<1 durumu: Bu durum eksik sönümlü olarak adlandırılır. s 1 ve s 2 doğal frekansları kompleks sayılardır. Bu durumda doğal tepki aşağıdaki gibi olur. Bu ifadede A 1 ve A 2, K 1 ve K 2 gibi sabitlerdir ve değerleri başlangıç değerlerinden bulunur. 3. ζ=1 durumu: Bu durum kritk olarak adlandırılır. s 1 ve s 2 doğal frekansları eşit (ve s 1 =s 2 =- ζω 0 şeklinde) olur. Bu durumda doğal tepki aşağıdaki biçimdedir. 46

47 İkinci Mertebeden Devreler Bu ifade de B 1 ve B 2 başlangıç değerlerinden hesaplanır. Bu üç durum için doğal tepki grafikleri aşağıda gösterildiği gibidir. Bu grafiklerde kritk sönümlü tepkinin aşırı sönümlü tepkiye göre hem tepe noktasına daha hızlı ulaşzğına ve daha hızlı sımr olduğuna dikkat ediniz. 47

48 İkinci Mertebeden Devreler DC gerilim kaynaklarına sahip ve sımrdan farklı başlangıç koşulları olan basit RLC devrelerinin analizi için aşağıdaki beş işlem basamağı takip edilmelidir. 1- Devreyi tanımlayan diferansiyel denklem yazılır. 2- Devrenin karakteristk denklemi s 2 +2ζω 0 s+ω 02 =0 biçiminde yazılır. 3- KarakterisTk denklemin köküne göre devrenin tepkisi tayin edilir. 4- Devrenin tepkisine göre uygun x(t) çözümü yazılır. 5- Tepki ifadelerindeki sabitler başlangıç durumlarından yararlanılarak elde edilir. Başlangıç koşulları ya doğrudan verilir ya da devre üzerinden hesaplanır. 48

49 İkinci Mertebeden Devreler Örnek: Aşağıdaki devrede R=2Ω, C=0.2F ve L=5H değerindedir. i L (0)=1A ve v c (0)=4V dur. Devrede v(t) ve i L (t) değerlerini bulunuz: 49

50 İkinci Mertebeden Devreler 50

51 İkinci Mertebeden Devreler Örnek: Aşağıdaki devrede R=6Ω, C=0.04F ve L=1H değerindedir. i L (0)=4A ve v c (0)=- 4V dur. Devrede akımının ve kondansatör geriliminin ifadesini elde ediniz. 51

52 İkinci Mertebeden Devreler 52

53 İkinci Mertebeden Devreler Örnek: Aşağıdaki devrede R 1 =10Ω, R 2 =8Ω C=0.125F ve L=2H değerindedir. i L (0)=0.5A ve v c (0)=1V dur. v(t) ve i(t) yi hesaplayınız. 53

54 İkinci Mertebeden Devreler 54

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması 10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Laplace Devre Çözümleri Aşağıdaki devrenin

Detaylı

6. Sunum: Manye-k Bağlaşımlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

6. Sunum: Manye-k Bağlaşımlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 6. Sunum: Manye-k Bağlaşımlı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Bu ders kapsamında ilgilendiğimiz bütün devre elamanlarının ideal

Detaylı

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 4. Sunum: AC Kalıcı Durum Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Aşağıdaki şekillere ve ifadelere bakalım ve daha önceki derslerimizden

Detaylı

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 11. Sunum: İki Kapılı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş İki kapılı devreler giriş akımları ve gerilimleri ve çıkış akımları

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

1. Sunum: Kapasitans ve İndüktans. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS

1. Sunum: Kapasitans ve İndüktans. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS 1. Sunum: Kapasitans ve İndüktans Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS Kapasitans ve İndüktans Kondansatörler elektrik alanlarında, indüktörler ise manyejk alanlarında

Detaylı

7. Sunum: Çok Fazlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

7. Sunum: Çok Fazlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 7. Sunum: Çok Fazlı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Üç Fazlı Devreler Üç fazlı devreler bünyesinde üç fazlı gerilim içeren devrelerdir.

Detaylı

5. Sunum: Kalıcı Durum Güç Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

5. Sunum: Kalıcı Durum Güç Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 5. Sunum: Kalıcı Durum Güç Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Bu bölümde AC devrelerde güç hesabı ele alınacakqr. Ayrıca güç

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. 3. Bölüm: Temel Devre Tepkileri

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. 3. Bölüm: Temel Devre Tepkileri Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM07 Temel ElektronikI 3. Bölüm: Temel Devre Tepkileri Doç. Dr. Hüseyin Sarı 3. Bölüm: Temel Devre Tepkileri İçerik Devre Tepkilerinin

Detaylı

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI DENEY 5 R DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMAS Amaç: Deneyin amacı yüklenmekte/boşalmakta olan bir kondansatörün ne kadar hızlı (veya ne kadar yavaş) dolmasının/boşalmasının hangi fiziksel büyüklüklere

Detaylı

Problemler: Devre Analizi-II

Problemler: Devre Analizi-II Problemler: Devre Analizi-II P.7.1 Grafiği verilen sinüsoidalin hem sinüs hem de kosinüs cinsinden ifadesini yazınız. v(t) 5 4 3 2 1 0-1 t(saniye) -2-3 -4-5 0 1 2 3 4 5 6 7 8 9 10 P.7.2 v1(t) 60Cos( 100

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

1. RC Devresi Bir RC devresinde zaman sabiti, eşdeğer kapasitörün uçlarındaki Thevenin direnci ve eşdeğer kapasitörün çarpımıdır.

1. RC Devresi Bir RC devresinde zaman sabiti, eşdeğer kapasitörün uçlarındaki Thevenin direnci ve eşdeğer kapasitörün çarpımıdır. DENEY 1: RC DEVRESİ GEÇİCİ HAL DURUMU Deneyin Amaçları RC devresini geçici hal durumunu incelemek Kondansatörün geçici hal eğrilerini (şarj ve deşarj) elde etmek, Zaman sabitini kavramını gerçek devrede

Detaylı

DENEY 9- DOĞRU AKIM DA RC DEVRE ANALİZİ

DENEY 9- DOĞRU AKIM DA RC DEVRE ANALİZİ 9.1. DENEYİN AMAÇLARI DENEY 9- DOĞRU AKIM DA RC DEVRE ANALİZİ RC devresinde kondansatörün şarj ve deşarj eğrilerini elde etmek Zaman sabiti kavramını öğrenmek Seri RC devresinin geçici cevaplarını incelemek

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ 8. ATENATİF AKIM E SEİ DEESİ AMAÇA 1. Alternatif akım ve gerilim ölçmeyi öğrenmek. Direnç, kondansatör ve indüktans oluşan seri bir alternatif akım devresini analiz etmek AAÇA oltmetre, ampermetre, kondansatör

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method)

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Konular Düğüm Gerilimleri Yöntemi o Temel Kavramlar o Yönteme Giriş o Yöntemin Uygulanışı o Yöntemin Uygulanması o Örnekler

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

Elektrik Müh. Temelleri

Elektrik Müh. Temelleri Elektrik Müh. Temelleri ELK184 4 @ysevim61 https://www.facebook.com/groups/ktuemt/ Elektrik Mühendisliğinin TemelleriYrd. Doç. Dr. Yusuf SEVİM 1 Thevenin (Gerilim) ve Norton (kım) Eşdeğeri macı : Devreyi

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

3.4. ÇEVRE AKIMLAR YÖNTEMİ

3.4. ÇEVRE AKIMLAR YÖNTEMİ 3.4. ÇEVRE AKIMLAR YÖNTEMİ 3.4. ÇEVRE AKıMLAR YÖNTEMI (Ç.A.Y): Bu yöntemde düğümlerdeki akımlar yerine, çevredeki akımlar ele alınarak devrenin analizi yapılır. Yöntemin temel prensibi her bir bağımsız

Detaylı

Devre Analizi I (EE 209) Ders Detayları

Devre Analizi I (EE 209) Ders Detayları Devre Analizi I (EE 209) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Devre Analizi I EE 209 Güz 3 2 2 4 8.5 Ön Koşul Ders(ler)i MATH 157 Dersin Dili Dersin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Düzenlenirse: 9I1 5I2 = 1 108I1 60I2 = 12 7I1 + 12I2 = 4 35I1 60I2 = I1 = 8 I 1

Düzenlenirse: 9I1 5I2 = 1 108I1 60I2 = 12 7I1 + 12I2 = 4 35I1 60I2 = I1 = 8 I 1 ELEKTRİK-ELEKTRONİK DERSİ FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ Şekiller üzerindeki renkli işaretlemeler soruya değil çözüme aittir: Maviler ilk aşamada asgari bağımsız denklem çözmek için yapılan tanımları,

Detaylı

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ 14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ Sinüsoidal Akımda Direncin Ölçülmesi Sinüsoidal akımda, direnç üzerindeki gerilim ve akım dalga şekilleri ve fazörleri aşağıdaki

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü GEÇİCİ OLAYLARIN İNCELENMESİ

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü GEÇİCİ OLAYLARIN İNCELENMESİ KARAENİZ TEKNİK ÜNİVERSİTESİ ELK008 EVRELER II LABORATUARI HAZIRLIK ÇALIŞMALARI GEÇİİ OLAYLARIN İNELENMESİ. Geçici olay ve Sürekli olay nedir? Kısaca açıklayınız.. Kondansatör ve Endüktans elemanlarına

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için

Detaylı

Doğru Akım Devreleri

Doğru Akım Devreleri Doğru Akım Devreleri ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için elektromotor kuvvet (emk) adı verilen bir enerji kaynağına ihtiyaç duyulmaktadır. Şekilde devreye elektromotor

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir.

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. Küçük Sinyal Analizi Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. 1. Karma (hibrid) model 2. r e model Üretici firmalar bilgi sayfalarında belirli bir çalışma

Detaylı

DOĞRU AKIM DA RC DEVRE ANALİZİ

DOĞRU AKIM DA RC DEVRE ANALİZİ DENEYİN AMAÇLARI DOĞRU AKIM DA RC DEVRE ANALİZİ RC devresinde kondansatörün şarj ve deşarj eğrilerini elde etmek Zaman sabiti kavramını öğrenmek Seri RC devresinin geçici cevaplarını incelemek Deney Malzemeleri:

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı

BAHAR YARIYILI FİZİK 2 DERSİ. Yrd. Doç. Dr. Hakan YAKUT. Fizik Bölümü

BAHAR YARIYILI FİZİK 2 DERSİ. Yrd. Doç. Dr. Hakan YAKUT. Fizik Bölümü 2015-2016 BAHAR YARIYILI FİZİK 2 DERSİ Yrd. Doç. Dr. Hakan YAKUT SAÜ Fen Edebiyat Fakültesi Fizik Bölümü Ofis: FEF A Blok, 3. Kat, Oda No: 812, İş tel.: 6092 (+90 264 295 6092) BÖLÜM 6 DOĞRU AKIM DEVRELERİ

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

MIT 8.02, Bahar 2002 Ödev # 6 Çözümler

MIT 8.02, Bahar 2002 Ödev # 6 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 6 Çözümler 5 Nisan 2002 Problem 6.1 Dönen Bobin.(Giancoli 29-62) Bobin, yüzü manyetik alana dik olarak başlar (daha bilimsel konuşmak gerekirse,

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 3 Deney Adı: Seri ve Paralel RLC Devreleri Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN

Detaylı

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT DENEY 3 SERİ VE PARALEL RLC DEVRELERİ Malzeme Listesi: 1 adet 100mH, 1 adet 1.5 mh, 1 adet 100mH ve 1 adet 100 uh Bobin 1 adet 820nF, 1 adet 200 nf, 1 adet 100pF ve 1 adet 100 nf Kondansatör 1 adet 100

Detaylı

7. DİRENÇ SIĞA (RC) DEVRELERİ AMAÇ

7. DİRENÇ SIĞA (RC) DEVRELERİ AMAÇ 7. DİENÇ SIĞA (C) DEELEİ AMAÇ Seri bağlı direnç ve kondansatörden oluşan bir devrenin davranışını inceleyerek kondansatörün durulma ve yarı ömür zamanını bulmak. AAÇLA DC Güç kaynağı, kondansatör, direnç,

Detaylı

Adı Soyadı: Öğrenci No: DENEY 3 ÖN HAZIRLIK SORULARI. 1) Aşağıdaki verilen devrenin A-B uçlarındaki Thevenin eşdeğerini elde ediniz.

Adı Soyadı: Öğrenci No: DENEY 3 ÖN HAZIRLIK SORULARI. 1) Aşağıdaki verilen devrenin A-B uçlarındaki Thevenin eşdeğerini elde ediniz. dı Soyadı: Öğrenci No: DENEY 3 ÖN HZIRLIK SORULRI 1) şağıdaki verilen devrenin - uçlarındaki Thevenin eşdeğerini elde ediniz. 3 10 Ω 16 Ω 10 Ω 24 V 5 Ω 2) şağıda verilen devrenin Norton eşdeğerini bulunuz.

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 3. TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) 1 PROBLEM 2.5 v 1 ve v 2

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER ALTERNATİF AKIM DEVRELERİ A. DEVRE ELEMANLARI VE TEMEL DEVRELER Alternatif akım devrelerinde akımın geçişine karşı üç çeşit direnç (zorluk) gösterilir. Devre elamanları dediğimiz bu dirençler: () R omik

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Elektrik Akımı, Direnç ve Ohm Yasası

Elektrik Akımı, Direnç ve Ohm Yasası 1. Akım Şiddeti Elektrik akımı, elektrik yüklerinin hareketi sonucu oluşur. Ancak her hareketli yük akım yaratmaz. Belirli bir bölge ya da yüzeyden net bir elektrik yük akışı olduğu durumda elektrik akımından

Detaylı

DC DC DÖNÜŞTÜRÜCÜLER

DC DC DÖNÜŞTÜRÜCÜLER 1. DENEYİN AMACI KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) DC DC DÖNÜŞTÜRÜCÜLER DC-DC gerilim azaltan

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

Elektrik Devre Temelleri 5

Elektrik Devre Temelleri 5 Elektrik Devre Temelleri 5 ANALİZ YÖNTEMLERİ-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi 3.4. Çevre Akımları Yöntemi (ÇAY) Bu yöntemde düğümlerdeki akımlar yerine,

Detaylı

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders #2 Otomatik Kontrol Laplas Dönüşümü Prof.Dr.Galip Cansever Pierre-Simon Laplace, 1749-1827 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ

Detaylı

Dijital Kontrol Sistemleri Prof.Dr. Ayhan Özdemir. Dengede bulunan kütle-yay sistemine uygulanan kuvvetin zamana göre değişimi aşağıda verilmiştir.

Dijital Kontrol Sistemleri Prof.Dr. Ayhan Özdemir. Dengede bulunan kütle-yay sistemine uygulanan kuvvetin zamana göre değişimi aşağıda verilmiştir. Dengede bulunan kütle-yay sistemine uygulanan kuvvetin zamana göre değişimi aşağıda verilmiştir. u(t):kuvvet u(t) F yay F sönm Yay k:yay sabiti m kütle Sönümlirici b:ösnümlirme sabiti y(t):konum 1 1 3

Detaylı

12. DC KÖPRÜLERİ ve UYGULAMALARI

12. DC KÖPRÜLERİ ve UYGULAMALARI Wheatstone Köprüsü ile Direnç Ölçümü 12. DC KÖPRÜLERİ ve UYGULAMALARI Orta değerli dirençlerin (0.1Ω

Detaylı

* DC polarma, transistörün uçları arasında uygun DC çalışma gerilimlerinin veya öngerilimlerin sağlanmasıdır.

* DC polarma, transistörün uçları arasında uygun DC çalışma gerilimlerinin veya öngerilimlerin sağlanmasıdır. Elektronik Devreler 1. Transistörlü Devreler 1.1 Transistör DC Polarma Devreleri 1.1.1 Gerilim Bölücülü Polarma Devresi 1.2 Transistörlü Yükselteç Devreleri 1.2.1 Gerilim Bölücülü Yükselteç Devresi Konunun

Detaylı

Uçlarındaki gerilim U volt ve içinden t saniye süresince Q coulomb luk elektrik yükü geçen bir alıcıda görülen iş:

Uçlarındaki gerilim U volt ve içinden t saniye süresince Q coulomb luk elektrik yükü geçen bir alıcıda görülen iş: Etrafımızda oluşan değişmeleri iş, bu işi oluşturan yetenekleri de enerji olarak tanımlarız. Örneğin bir elektrik motorunun dönmesi ile bir iş yapılır ve bu işi yaparken de motor bir enerji kullanır. Mekanikte

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK DEVRELERİ I LABORATUVARI DENEY RAPORU. Deney No: 6 GEÇİCİ DURUM ANALİZİ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK DEVRELERİ I LABORATUVARI DENEY RAPORU. Deney No: 6 GEÇİCİ DURUM ANALİZİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK DEVRELERİ I LABORATUVARI DENEY RAPORU Deney No: 6 GEÇİCİ DURUM ANALİZİ Yrd. Doç. Dr. Canan ORAL Arş. Gör. Ayşe AYDIN YURDUSEV Öğrenci: Adı

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Bölüm 2 DC Devreler. DENEY 2-1 Seri-Paralel Ağ ve Kirchhoff Yasası

Bölüm 2 DC Devreler. DENEY 2-1 Seri-Paralel Ağ ve Kirchhoff Yasası Bölüm 2 DC Devreler DENEY 2-1 Seri-Paralel Ağ ve Kirchhoff Yasası DENEYİN AMACI 1. Seri, paralel ve seri-paralel ağları tanımak. 2. Kirchhoff yasalarının uygulamaları ile ilgili bilgi edinmek. GENEL BİLGİLER

Detaylı

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri İşaret ve Sistemler Ders 11: Laplace Dönüşümleri Laplace Dönüşüm Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) yada L[f(t)] olarak gösterilir. Burada tanımlanan s: İşaret ve Sistemler

Detaylı

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. Bölüm 3 AC Devreler DENEY 3-1 AC RC Devresi DENEYİN AMACI 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. GENEL BİLGİLER Saf

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Elektrik Devre Temelleri 3

Elektrik Devre Temelleri 3 Elektrik Devre Temelleri 3 TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) PROBLEM 2.5 v 1 ve v 2 gerilimlerini

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları Bölüm Elektriksel Büyüklükler ve Elektrik Devre Elemanları. Temel Elektriksel Büyüklükler: Akım, Gerilim, Güç, Enerji. Güç Polaritesi.3 Akım ve Gerilim Kaynakları F.Ü. Teknoloji Fak. EEM M.G. .. Temel

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYİN ADI : DENEY TARİHİ : DENEYİ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

LAPLACE DÖNÜŞÜMÜNÜN DEVRE ANALİZİNE UYGULANMASI

LAPLACE DÖNÜŞÜMÜNÜN DEVRE ANALİZİNE UYGULANMASI LAPLACE DÖNÜŞÜMÜNÜN DERE ANALİZİNE UYGULANMAS ÖĞRENME HEDEFLERİ Laplace ile devre çözümleri Laplace dönüşümünün kullanışlılığını göerme Devre Elemanı Mdelleri Devrelerin Laplace düzlemine dönüşürülmei

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

ÖLÇME VE DEVRE LABORATUVARI DENEY: 6. --Thevenin Eşdeğer Devresi--

ÖLÇME VE DEVRE LABORATUVARI DENEY: 6. --Thevenin Eşdeğer Devresi-- ÖLÇME VE DEVRE LABORATUVARI DENEY: 6 --Thevenin Eşdeğer Devresi-- DENEYİN AMACI Deneyin amacı iki terminal arasındaki gerilim ve akım ölçümlerini yaparak, Thevenin eşdeğer devresini elde etmektir. GEREKLİ

Detaylı

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES)

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES) BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES) Lagrange ve Neville yöntemlerinin bazı olumsuz yanları vardır: İşlem sayısı çok fazladır (bazı başka yöntemlere kıyasla) Data setinde bir nokta ilavesi veya çıkartılması

Detaylı

8. Sunum: Değişken Frekanslı Devrelerin Performansı. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

8. Sunum: Değişken Frekanslı Devrelerin Performansı. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 8. Sunum: Değişken Frekanslı Devrelerin Performansı Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Değişken Frekans Tepki Analizi Bu bölümde direnç,

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI THEVENIN VE NORTON TEOREMLERİNİN UYGULANMASI DENEY SORUMLUSU Arş. Gör. Sertaç SAVAŞ MART

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

THEVENIN VE NORTON TEOREMLERİ. Bu teoremler en güçlü analiz tekniklerindendir EBE-215, Ö.F.BAY 1

THEVENIN VE NORTON TEOREMLERİ. Bu teoremler en güçlü analiz tekniklerindendir EBE-215, Ö.F.BAY 1 THEVENIN VE NORTON TEOREMLERİ Bu teoremler en güçlü analiz tekniklerindendir EBE-25, Ö.F.BAY THEVENIN EŞDEĞER TEOREMİ DOĞRUSAL DEVRE Bağımsız ve bağımlı kaynaklar içerebilir DEVRE A v O _ a + i Bağımsız

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. Sümeyye

Detaylı

9V 1 R 3 2. b)aşağıda sağdan sola olarak renkleri sırasıyla verilen dirençlerin değerlerini (toleransları ile) yazınız.

9V 1 R 3 2. b)aşağıda sağdan sola olarak renkleri sırasıyla verilen dirençlerin değerlerini (toleransları ile) yazınız. Adı Soyadı: Öğrenci No: DENEY 6 ÖN HAZIRLIK RAPORU 1. a) Şekildeki devreyi aşağıdaki breadboard üzerine kurulumunu çizerek gösteriniz.(kaynağın kırmızı ucu + kutbu, siyah ucu - kutbu temsil eder.) 9V 1

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AC AKIM, GERİLİM VE GÜÇ DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ : TESLİM

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME Deney No:1 Amaç: Osiloskop kullanarak AC gerilimin genlik periyot ve frekans değerlerinin ölçmesi Gerekli Ekipmanlar: AC Güç Kaynağı, Osiloskop, 2 tane 1k

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN)

DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN) DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN) A. DENEYİN AMACI : Bu deneyin amacı, pasif elemanların (direnç, bobin ve sığaç) AC tepkilerini incelemek ve pasif elemanlar üzerindeki faz farkını

Detaylı

Elektrik Devre Temelleri 5

Elektrik Devre Temelleri 5 Elektrik Devre Temelleri 5 ANALİZ YÖNTEMLERİ-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi 3.4. Çevre Akımları Yöntemi (ÇAY) Bu yöntemde düğümlerdeki akımlar yerine,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM M.Ali Akcayol Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü (Yüksek Lisans Tezinden Bir Bölüm) Şekil 1'

Detaylı

ELE 201 DEVRE ANALİZİ I ARA SINAV 1 11 Ekim 2011, Salı,

ELE 201 DEVRE ANALİZİ I ARA SINAV 1 11 Ekim 2011, Salı, ELE 201 DEVRE ANALİZİ I ARA SINAV 1 11 Ekim 2011, Salı, 1230-1420 SOYADI: ADI: ÖĞRENCĠ #: ĠMZA: AÇIKLAMALAR Bu sınav toplam 17 sayfadan oluģmaktadır. Lütfen, bütün sayfaların elinizde olduğunu kontrol

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları HEDEFLER İÇİNDEKİLER TÜREV VE TÜREV ALMA KURALLARI Türev Türev Alma Kuralları MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu üniteyi çalıştıktan sonra Burada türevin tanımı verilecek, Geometride bir eğrinin bir noktadaki

Detaylı

SÜPER POZİSYON TEOREMİ

SÜPER POZİSYON TEOREMİ SÜPER POZİSYON TEOREMİ Süper pozisyon yöntemi birden fazla kaynak içeren devrelerde uygulanır. Herhangi bir elemana ilişkin akım değeri bulunmak istendiğinde, devredeki bir kaynak korunup diğer tüm kaynaklar

Detaylı

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir.

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir. 3. Yüksek Mertebeden Adi Diferansiyel Denklemler Geçmiş konularda şu ana kadar ele alınan 1.mertebe-1.dereceden adi diferensiyel denklemler ancak 1.mertebe seviyesindeki belirli problemleri ifade edebilmektedir.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM)

DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM) DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM) A. DENEYİN AMACI : Ohm ve Kirchoff Kanunları nın geçerliliğinin deneysel olarak gözlemlenmesi. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Multimetre

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ Dersin Adı Öğretim Dili DERS BİLGİ PAKETİ Elektrik Devre Temelleri Türkçe Dersin Verildiği Düzey Ön Lisans ( ) Lisans (X) Yüksek Lisans ( ) Doktora ( ) Eğitim Öğretim Sistemi Örgün Öğretim (X) Uzaktan

Detaylı

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular Kaynak: Fundamentals of Microelectronics, Behzad Razavi, Wiley; 2nd edition (April 8, 2013), Manuel Solutions. Bölüm 5 Seçme Sorular ve Çözümleri

Detaylı

R 1 R 2 R L R 3 R 4. Şekil 1

R 1 R 2 R L R 3 R 4. Şekil 1 DENEY #4 THEVENİN TEOREMİNİN İNCELENMESİ ve MAKSİMUM GÜÇ TRANSFERİ Deneyin Amacı : Thevenin teoreminin geçerliliğinin deneysel olarak gözlemlenmesi Kullanılan Alet ve Malzemeler: 1) DC Güç Kaynağı 2) Avometre

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Matematikte veya hidrolik, dinamik, mekanik, elektrik

Detaylı