Oyun Teorisine (Kuramına) Giriş

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Oyun Teorisine (Kuramına) Giriş"

Transkript

1 Oyun Teorisi Oyun Teorisine (uramına) Giriş Şimdiye kadar, karar modellerinde bireysel kararlar ve çözüm yöntemleri ele alınmıştı. adece tek karar vericinin olduğu karar modellerinde belirsizlik ve risk durumları incelenmişti. Bazı karar problemlerinde birden fazla karar verici karşı karşıya gelmektedir. Rekabetçi karar ortamları olarak tanımlanan bu tip karar problemleri, oyun teorisi içinde değerlendirilmektedir. 1 2 Oyun Teorisi Oyun teorisi, kendi davranışlarının diğerlerinin davranışlarını etkilediğinin farkında olan iktisadi birimlerin stratejik davranışlarını modellemekte kullanılır. Birbiriyle rekabet halinde olan iki ya da daha fazla karar vericinin aynı anda birbirlerinden habersiz olarak birer hareket tarzı seçtiği ve her birinin uyguladığı hareket tarzının diğerinin kazancını doğrudan etkilediği durumları birer oyun olarak modelleyip analiz etmek maksadıyla kullanılan matematiksel bir teoridir. Bazı oyun teorisi uygulamaları Oligopol piyasaları, skeri stratejiler, iyasi faaliyetler, por müsabakaları, Reklam ve pazarlama faaliyetleri, Şans oyunları, vb. 3 4 ısa tarihçesi E. Zermelo oyun teorisiyle ilgili ilk teoremi ortaya atmıştır; satranç oyununun tamamen önceden tahminlenebileceğini söylemiştir John von Neumann minimaks teoremini kanıtlamıştır John von Neumann & Oskar Morgenstern "Theory of Games and Economic Behavior adlı eseri yazmıştır John Nash, Nash dengesini bularak Nobel ödülü kazanmıştır. Oyun nedir? Bir oyun, Bir oyuncular kümesinden Her bir oyuncu için bir stratejiler kümesinden Oyuncuların seçtiği her bir olası stratejiler listesi için her birinin kayıp-kazançlarından oluşur

2 ınıflandırma Rekabetçi karar durumları, Rakiplerin sayısına Oyunun değerine Mevcut stratejilerin sayısına göre sınıflara ayrılır. Oyuncu sayısına göre; İki oyuncu karşı karşıya gelmişse- İki kişili oyun, İkiden fazla oyuncu varsa- n-kişili oyun Oyunun değerine göre; azanç ve kayıplar toplamı sıfır ise- sıfır toplamlı oyun Değilse sıfır toplamlı olmayan oyun Mevcut stratejilerin sayısına göre; onlu stratejili oyunlar onsuz stratejili oyunlar 7 8 ıfır Toplamlı Oyunlar Tam-Eksik bilgili (Perfect vs. Imperfect information) Uzlaşmacı-Çatışmacı (Cooperative vs. conflict) rdışık-eşanlı (equential vs. imultaneous moves) Tek oyunlu-tekrarlı (ingle Play vs. Iterated) Örnekler; atranç; iki kişili sıfır toplamlı sonsuz stratejili bir oyundur. Futbol karşılaşması; n-kişili ve sonsuz sayıda stratejinin olduğu sıfır-toplamlı bir oyundur. azançların toplamı oyun sırasında sabit kalır. Oyuncular uzlaşma veya çatışma halindedir. Bilgi olması durumu oyuncuya yardım eder Matris Gösterimi Denge tipleri (ütun) Oyuncu II trateji trateji B (atır) Oyuncu I trateji (P1,P2) (P1,P2) trateji B (P1,P2) (P1,P2) Nash Dengesi Minimax Dengesi-dengeli oyunlar Üstünlük Dengesi Not: Oyuncu I in stratejisi Oyuncu 2 den farklı olabilir. Oyun sıfır toplamlıysa P2 yazılmaz. Oyunda denge yoksa, arma stratejiler uygulanır

3 İki kişili oyunlar İki oyuncunun bulunduğu oyunlar çok yaygındır. İki kişili oyunları çalışmak kolaydır, artezyen düzlemde gösterilebilir. Varsayımları Her bir oyuncu, oyun matrisinin farkındadır. ani, her biri diğer oyuncunun tüm stratejilerini ve getireceği sonuçları bilir. Oyunlar, yani stratejilerin seçimi eş zamanlı olarak yapılır. Oyuncular ve B olsun. nın iki stratejisi var: ukarı ve şağı. nin de iki stratejisi var: ola ve ağa. Toplam (olası) dört strateji kombinasyonu için her bir oyuncunun kayıp-kazançlarını gösteren tabloya ödemeler ya da kayıp-kazanç matrisi denir ukarı şağı Ödemeler matrisi nın kayıp kazançları önce, ninkiler sonra gösterilir. Bu oyunda hangi hamlelerin oynanması olasıdır? Tüm hamleleri inceleyelim. 15 Örneğin, eğer oyuncu ukarı ve B ağa oynarsa nın kazancı 1, B ninki 8 olmaktadır. 16 Örneğin, eğer oyuncu şağı ve B ağa oynarsa nın kazancı 2, B ninki 1 olmaktadır. 17 Oyunda bir hamle, (yukarı, sol) gibi bir ikilidir, burada ilk eleman nın seçtiği stratejiyi, ikinci eleman B nin seçtiği stratejiyi gösterir. 18 3

4 Bu oyunda hangi hamlenin oynanması daha olasıdır? 19 (ukarı, ağ) oynanabilir bir strateji midir? 20 B ağ a oynarsa nın en iyi yanıtı şağı oynamaktır, çünkü böylece kazancı 1 değil 2 olacaktır. yukarı oynarsa B nin en iyi yanıtı ol a oynamaktır çünkü böylece kazancı 8 değil 9 olacaktır. Dolayısıyla (ukarı, 21 ağ) oynanabilir bir strateji değildir. (şağı, ağ) oynanabilir bir strateji midir? 22 (,ağ) olası B ağa oynarsa nın en iyi yanıtı şağıdır. 23 B ağa oynarsa nın en iyi yanıtı şağıdır. şağı oynarsa B nin en iyi yanıtı ağ adır. Dolayısıyla (, ağ) oynanabilirdir. (,ağ) olası 24 4

5 İki kişilik oyun örneği (, ol) olası 25 şağı oynarsa B nin en iyi yanıtı ağ dır, dolayısıyla (, ol) oynanabilir değildir. (, ol) olası 26 (,ol) olası 27 (,ol) olası ukarı oynarsa B nin en iyi yanıtı oldur. ukarı oynarsa B nin en iyi yanıtı oldur. B ola oynarsa nın en iyi yanıtı ukarıdır. Dolayısıyla (,ol) olası bir sonuçtur. 28 Nash Dengesi Bir oyunun oynanışında her bir oyuncunun stratejisi diğerininkine en iyi yanıt ise Nash dengesi vardır. Örneğimizde iki Nash dengesi vardır; (,ol) ve (,ağ). İki kişilik oyun örneği 29 (,ol) ve (,ağ) oyunun Nash dengeleridir. 30 5

6 Tutuklunun çmazı Tutuklunun çmazı Oyunun oynanışı sonucu ortaya çıkan sonucun Pareto-etkin olup olmadığını görmek için ünlü bir iki kişili oyun örneğine bakacağız: Tutuklunun açmazı. essiz kalmak onuşmak Prisoners Dilemma 31 Bu oyunun oynanmasıyla ortaya çıkabilecek olası sonuç nedir? 32 Tutuklunun çmazı Tutuklunun çmazı sessiz kalırsa ın en iyi yanıtı suçunu itiraf etmektir. itiraf ederse ın en iyi yanıtı suçunu itiraf etmektir. 33 Dolayısıyla ne oynarsa oynasın, ın en iyi yanıtı her zaman konuşmaktır. İtiraf etmek için her zaman baskın stratejidir. 34 Tutuklunun çmazı Benzer biçimde, ne oynarsa oynasın, nin en iyi yanıtı her zaman konuşmaktır. onuşmak için de baskın stratejidir. 35 Tutuklunun çmazı Burada eksik bilginin önemi ve uzlaşma olsaydı sonuç - olurdu Böylece bu oyundaki tek Nash dengesi (,) olmaktadır; (,) sonucu her ikisi için de daha iyi kazanç anlamına gelse de. Tek Nash dengesi etkin değildir. 36 6

7 Tam (af) strateji- arma trateji (,ol) ve (,ağ) oyunun Nash dengeleri idi. 37 Tam strateji- arma trateji nın ukarı ya da şağı dan birini seçmesi gerektiğini kabul etmiştik, bunların bir tür bileşimini değil; yani, tam olarak ya da yı seçmelidir. ve oyuncu nın tam stratejileridir. Benzer biçimde, ol ve ağ da oyuncu B nin tam stratejileridir. 38 Tam strateji- arma trateji (1,2) (0,4) (0,5) (3,2) Bu oyunun ise pür strateji Nash dengesi bulunmamaktadır. Bu durumda bile oyunun bir Nash dengesi olabilir, ancak karma strateji Nash dengesi adını alacaktır. 39 abit toplamlı oyunlar Oyun türleri (1,2) (-1,4) (0,3) (1,2) Tüm strateji kombinasyonları için toplam kazanç 3 birimdir. 40 Oyun türleri abit toplamlı olmayan oyunlar Tüm strateji kombinasyonları için toplam kazanç farklıdır. Tam tratejili Oyunlar arma tratejili Oyunlar Beklenen Değer HFT Mahkumların çıkmazında oyun sabit toplamlı mıdır?

Tam ve Karma Stratejili Oyunlar. İki Kişili Oyunlar için

Tam ve Karma Stratejili Oyunlar. İki Kişili Oyunlar için Tam ve Karma Stratejili Oyunlar İki Kişili Oyunlar için İki kişili-sıfır toplamlı oyunlar Sabit toplamlı oyunların bir türüdür, Sabit olan toplam 0 a eşittir. Temel Özellikleri Oyunculardan birinin kazancı

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJENİN ADI: OYUN TEORİSİ İLE İSTANBUL TRAFİĞİNİN İNCELENMESİ HAZIRLAYANLAR: ECE TUNÇKOL-BERKE OĞUZ AKIN MEV KOLEJİ ÖZEL

Detaylı

OYUN TEORİSİNE DOĞRU Yard.Doç.Dr.Deniz Giz

OYUN TEORİSİNE DOĞRU Yard.Doç.Dr.Deniz Giz OYUN TEORİSİNE DOĞRU Yard.Doç.Dr.Deniz Giz ÖZET Herhangi bir teori veya bir modelin amacı bir soruna çözüm bulmaktır. Bir oyunun çözümü oyuncuların nasıl karar vereceklerinin öngörülmesine bağlıdır. Oyuncular

Detaylı

END. İKTİSADI VE OYUN TEORİSİ (BİRİNCİ ÖDEV)

END. İKTİSADI VE OYUN TEORİSİ (BİRİNCİ ÖDEV) END. İKTİSADI VE OYUN TEORİSİ (BİRİNCİ ÖDEV) AÇIKLAMALAR Ödevlerinizin teslimi, 14 Kasim 2013 günü saat 09:30-12:30 da yapılacaktır. Sorular aynı gün örgün (13:15) ve ikinci öğretim (17:00) dersinde çözüleceği

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

KARAR TEORİSİ VE ANALİZİ. OYUN TEORİSİ Prof. Dr. İbrahim Çil

KARAR TEORİSİ VE ANALİZİ. OYUN TEORİSİ Prof. Dr. İbrahim Çil KARAR TEORİSİ VE ANALİZİ OYUN TEORİSİ Prof. Dr. İbrahim Çil Bu derste; Oyun teorisi konusu ele alınacak. Neden oyun teorisine gerek duyulduğu açıklanacak, statik oyunların yapısı ve çözüm yöntemleri üzerinde

Detaylı

Oyun Teorisi IENG 456 Karar Vermede Analitik Yaklaşımlar

Oyun Teorisi IENG 456 Karar Vermede Analitik Yaklaşımlar Oyun Teorisi IENG 456 Karar Vermede Analitik Yaklaşımlar Bu ders notlarının hazırlanmasında Doç. Dr. İbrahim Çil in ders notlarından faydalanılmıştır. Yrd. Doç. Dr. Hacer GÜNER GÖREN Pamukkale Üniversitesi

Detaylı

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ. Oyun Teorisi Yaklaşımı

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ. Oyun Teorisi Yaklaşımı Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ Oyun Teorisi Yaklaşımı Doç. Dr. İhsan KAYA Oyun Teorisi-Doç. Dr. İhsan KAYA 1 Tanım: Oyun teorisi «Birbiriyle rekabet halinde olan

Detaylı

STRATEJİK DÜŞÜNCE OYUN KURAMI

STRATEJİK DÜŞÜNCE OYUN KURAMI STRATEJİK DÜŞÜNCE OYUN KURAMI OYUN KURAMI İLE İLGİLİ TEMEL KAVRAMLAR a.oyuncular: Oyunda en az iki oyuncu veya rakip olmalı ve onların akılcı hareket ettikleri ve kazanmak için en iyisini yaptıkları varsayılır.

Detaylı

Öğrencilerde Akıllı Telefon Kullanımının Özellikleri Bakımından Oyun Teorisi ile Analiz Edilmesi

Öğrencilerde Akıllı Telefon Kullanımının Özellikleri Bakımından Oyun Teorisi ile Analiz Edilmesi Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 7(2). 67-76 2015 Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi http://iibfdergi.aksaray.edu.tr Öğrencilerde Akıllı Telefon

Detaylı

SAĞLIK KURUMLARINDA OPERASYON YÖNETİMİ

SAĞLIK KURUMLARINDA OPERASYON YÖNETİMİ DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. SAĞLIK KURUMLARINDA OPERASYON YÖNETİMİ

Detaylı

Yöneylem Araştırması Dersi OYUN TEORİSİ. Oyuncusu Stratejisi. Stratejileri. Oyuncusu Stratejisi Stratejisi Cı Cı (3 4

Yöneylem Araştırması Dersi OYUN TEORİSİ. Oyuncusu Stratejisi. Stratejileri. Oyuncusu Stratejisi Stratejisi Cı Cı (3 4 Yöneylem Araştırması Dersi OYUN TEORİSİ ÖRNEK 1- Satır oyuncusunun iki (Tı, T 2 ), sütun oyuncusunun dört (Y 1, Y 2, Y 3, Y 4 ) stratejisinin bulunduğu bir oyunun, satır oyuncusunun kazançlarına göre düzenlenen

Detaylı

Toplam maliyete/gelire göre yer seçimi Faktör ağırlıklandırma Başabaş noktası analizi Oyun kuramı

Toplam maliyete/gelire göre yer seçimi Faktör ağırlıklandırma Başabaş noktası analizi Oyun kuramı Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2013-2014 Güz Dönemi Toplam maliyete/gelire göre yer seçimi Faktör ağırlıklandırma Başabaş

Detaylı

Ekonomi I. Doç.Dr.Tufan BAL. 11.Bölüm: Oligopol Piyasası. Not:Bu sunun hazırlanmasında büyük oranda Prof.Dr.Tümay ERTEK in Temel Ekonomi kitabından

Ekonomi I. Doç.Dr.Tufan BAL. 11.Bölüm: Oligopol Piyasası. Not:Bu sunun hazırlanmasında büyük oranda Prof.Dr.Tümay ERTEK in Temel Ekonomi kitabından Ekonomi I 11.Bölüm: Oligopol Piyasası Doç.Dr.Tufan BAL Not:Bu sunun hazırlanmasında büyük oranda Prof.Dr.Tümay ERTEK in Temel Ekonomi kitabından faydalanılmıştır. 2 11.1.Oligopol Piyasasının Özellikleri

Detaylı

14.12 Oyun Teorisi Ders Notları

14.12 Oyun Teorisi Ders Notları 14.12 Oyun Teorisi Ders Notları Giriş Muhamet Yıldız (Ders 1) Oyun Teorisi Çok Kişili Karar Teorisi için yanlış bir isimlendirmedir. Oyun Teorisi, birden çok ajanın bulunduǧu ve her ajanın ödülünün diǧer

Detaylı

14.12 Oyun Teorisi Ders Notları

14.12 Oyun Teorisi Ders Notları 14.1 Oyun Teorisi Ders Notları Muhamet Yıldız Ders 15-18 1 Eksik Bilgili Statik Oyunlar Şu ana kadar, herhangi bir oyuncu tarafından bilinen herhangi bir bilgi parçasının tüm oyuncular tarafından bilindiği

Detaylı

İKTİSAT BİLİMİ VE İKTİSATTAKİ TEMEL KAVRAMLAR

İKTİSAT BİLİMİ VE İKTİSATTAKİ TEMEL KAVRAMLAR İÇİNDEKİLER Önsöz BİRİNCİ BÖLÜM İKTİSAT BİLİMİ VE İKTİSATTAKİ TEMEL KAVRAMLAR 1.1.İktisat Bilimi 1.2.İktisadi Kavramlar 1.2.1.İhtiyaçlar 1.2.2.Mal ve Hizmetler 1.2.3.Üretim 1.2.4.Fayda, Değer ve Fiyat

Detaylı

Ara Sınav Yanıtları Econ 159a/MGT 522a Ben Polak Güz 2007

Ara Sınav Yanıtları Econ 159a/MGT 522a Ben Polak Güz 2007 Ara Sınav Yanıtları Econ 159a/MGT 522a Ben Polak Güz 2007 Aşağıdaki yanıtlar puanları almak için gerekenden daha fazladır. Genelde daha öz açıklamalar daha iyidir. Soru 1. (15 toplam puan). Kısa yanıtlı

Detaylı

Evrimsel ekoloji. Erol Akçay. Proximate mechanisms and the evolution of cooperation. University of Pennsylvania.

Evrimsel ekoloji. Erol Akçay. Proximate mechanisms and the evolution of cooperation. University of Pennsylvania. Evrimsel ekoloji Erol Akçay Proximate mechanisms and the evolution of cooperation University of Pennsylvania eakcay@sas.upenn.edu Matematiksel Evrim Yazokulu 9 Eylül 2013 Nesin Matematik Köyü, Şirince,

Detaylı

Karar Vermede Oyun Teorisi Tekniği Ve Bir Uygulama

Karar Vermede Oyun Teorisi Tekniği Ve Bir Uygulama 97 Karar Vermede Oyun Teorisi Tekniği Ve Bir Uygulama Bahman Alp RENÇBER * Özet Bu çalışmanın amacı, günümüzde rekabet ortamında karar verme durumunda olan sistemlerin araştırılmasıdır. Bu amaçla verileri

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

Konu 10 Oyun Teorisi: Oligopol Piyasaların İç Mahiyeti

Konu 10 Oyun Teorisi: Oligopol Piyasaların İç Mahiyeti .. Konu 10 Oyun si: Oligopol Piyasaların İç Mahiyeti Hadi Yektaş Uluslararası Antalya Üniversitesi İşletme Tezsiz Yüksek Lisans Programı 1 / 82 Hadi Yektaş Oyun si: Oligopol Piyasaların İç Mahiyeti İçerik.1.2.3.4

Detaylı

İleri Mikro İktisadi Analiz. 2. yıl Bahar /4. yarıyıl Prof. Dr. Ertuğrul Deliktaş

İleri Mikro İktisadi Analiz. 2. yıl Bahar /4. yarıyıl Prof. Dr. Ertuğrul Deliktaş Dersin Adı Dersin Kodu Dersin Türü DERS ÖĞRETİM PLANI Dersin Seviyesi Dersin AKTS Kredisi 7 Haftalık Ders Saati 3 Haftalık Uygulama Saati - Haftalık Laboratuar Saati - Dersin Verildiği Yıl Dersin Verildiği

Detaylı

TEKELC REKABET VE OLİGOPOL PİYASALAR

TEKELC REKABET VE OLİGOPOL PİYASALAR BÖLÜM 12 TEKELC REKABET VE OLİGOPOL PİYASALAR Tekelci rekabet (Monopolistic competition) Piyasya girişin serbest olduğu ve her firmanın kendi markasını (brand) üretip sattığı, ürünün farklılaştırılmış

Detaylı

OYUN TEORİSİ ÇERÇEVESİNDE EKONOMİNİN DİNAMİK OYUN MODELLERİNE UYGULANMASI

OYUN TEORİSİ ÇERÇEVESİNDE EKONOMİNİN DİNAMİK OYUN MODELLERİNE UYGULANMASI The Journal of Academic Social Science Studies International Journal of Social Science Volume 6 Issue 3, p. 747-757, March 2013 OYUN TEORİSİ ÇERÇEVESİNDE EKONOMİNİN DİNAMİK OYUN MODELLERİNE UYGULANMASI

Detaylı

KARAR PROBLEMLERİNİN ÇÖZÜMÜNDE OYUN TEORİSİ VE COĞRAFİ BİLGİ SİSTEMLERİNİN KULLANILMASI

KARAR PROBLEMLERİNİN ÇÖZÜMÜNDE OYUN TEORİSİ VE COĞRAFİ BİLGİ SİSTEMLERİNİN KULLANILMASI KARAR PROBLEMLERİNİN ÇÖZÜMÜNDE OYUN TEORİSİ VE COĞRAFİ BİLGİ SİSTEMLERİNİN KULLANILMASI ÖZET Erkan Köse 1, Mehmet Erbaş 2, Erkan Erşen 2 1 KHO, Kara Harp Okulu Savunma Bilimleri Enstitüsü, 06654 Ankara,

Detaylı

Statik Biçimde Oyunlar. Murat Donduran

Statik Biçimde Oyunlar. Murat Donduran Statik Biçimde Oyunlar Murat Donduran Mart 18, 2008 2 İçindekiler 1 Tam Bilgi İle Statik Oyunlar 5 1.1 Giriş................................ 5 1.2 Normal Biçimde Oyunlar..................... 8 1.2.1 Mahkumlar

Detaylı

OYUN KURAMI İLE SÜPER LİGİN ÜÇ BÜYÜK İSTANBUL TAKIMI İÇİN SEZONU DURUM ANALİZİ. Nehir NUMANOĞLU

OYUN KURAMI İLE SÜPER LİGİN ÜÇ BÜYÜK İSTANBUL TAKIMI İÇİN SEZONU DURUM ANALİZİ. Nehir NUMANOĞLU OYUN KURAMI İLE SÜPER LİGİN ÜÇ BÜYÜK İSTANBUL TAKIMI İÇİN 2009-2010 SEZONU DURUM ANALİZİ Nehir NUMANOĞLU YÜKSEK LİSANS TEZİ EKONOMETRİ ANA BİLİM DALI UYGULAMALI YÖNEYLEM ARAŞTIRMASI BİLİM DALI GAZİ ÜNİVERSİTESİ

Detaylı

Risk ve Belirsizlik. 1. Karar Analizleri 2. Karar Ağaçları 3. Oyun Teorisi. Karar Verme Aşamasındaki Bileşenler

Risk ve Belirsizlik. 1. Karar Analizleri 2. Karar Ağaçları 3. Oyun Teorisi. Karar Verme Aşamasındaki Bileşenler Risk ve Belirsizlik Altında Karar Verme KONU 6 1. Karar Analizleri 2. Karar Ağaçları 3. Oyun Teorisi i Karar Verme Aşamasındaki Bileşenler Gelecekte gerçekleşmesi mümkün olan olaylar Olası Durumlar şeklinde

Detaylı

Saf Stratejilerde Evrimsel Kararlılık Bilgi Notu Ben Polak, Econ 159a/MGT 522a Ekim 9, 2007

Saf Stratejilerde Evrimsel Kararlılık Bilgi Notu Ben Polak, Econ 159a/MGT 522a Ekim 9, 2007 Saf Stratejilerde Evrimsel Kararlılık Ben Polak, Econ 159a/MGT 522a Ekim 9, 2007 Diyelim ki oyunlarda stratejiler ve davranışlar akıl yürüten insanlar tarafından seçilmiyor, ama oyuncuların genleri tarafından

Detaylı

BORSA ĐŞLEMLERĐNDE OYUN TEORĐSĐ KULLANIMI

BORSA ĐŞLEMLERĐNDE OYUN TEORĐSĐ KULLANIMI T.C. SAKARYA ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ BORSA ĐŞLEMLERĐNDE OYUN TEORĐSĐ KULLANIMI YÜKSEK LĐSANS TEZĐ Mat.Öğr. Yıldıray SANCAK Enstitü Anabilim Dalı : MATEMATĐK Tez Danışmanı : Yrd. Doç. Dr.Hüseyin

Detaylı

OYUNLAR TEORİSİNİN MADEN ARAMALARINA UYGULANMASI

OYUNLAR TEORİSİNİN MADEN ARAMALARINA UYGULANMASI OYUNLAR TEORİSİNİN MADEN ARAMALARINA UYGULANMASI Hüsnü KALE Maden Tetkik ve Arama Enstitüsü, Ankara GİRİŞ İki rakip satranç masası başına oturduğu zaman, her ikisi de kendi kullandıkları taktiklere karşı,

Detaylı

MasColell Ders Notları

MasColell Ders Notları MasColell Ders Notları Murat Donduran February 20, 2009 Contents 1 İşbirliksiz Oyunların Temel Elemanları 2 1.1 Oyun Nedir?................................... 2 1.2 Genişleyen Biçimde Oyunlar..........................

Detaylı

14.12 Oyun Teorisi Ders Notları

14.12 Oyun Teorisi Ders Notları 14.12 Oyun Teorisi Ders Notları Muhamet Yıldız Ders 3-6 Bu derste, oyunları ve Nash dengesi gibi bazı çözüm yollarını tanımlayacağız ve bu çözüm yollarının arkasındaki varsayımları tartışacağız. Bir oyunu

Detaylı

KARAR TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

KARAR TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü KARAR TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü Karar Ortamları Karar Analizi, alternatiflerin en iyisini seçmek için akılcı bir sürecin kullanılması ile ilgilenir. Seçilen

Detaylı

Bülent Turgay DİZDAROĞLif. 1. P lan lam a ve Risk

Bülent Turgay DİZDAROĞLif. 1. P lan lam a ve Risk T A R IM S A L İŞ L E T M E P L A N L A M A S IN D A RİSK: BİR O Y U N T E O R İS İ D E N E M E S İ Bülent Turgay DİZDAROĞLif 1. P lan lam a ve Risk İşletme yönetiminin önemli bir unsuru olan planlama,

Detaylı

KAMU TERCİHİ PERSPEKTİFİNDEN OYUN TEORİSİ. Coşkun Can Aktan & Abdullah Burhan Bahçe

KAMU TERCİHİ PERSPEKTİFİNDEN OYUN TEORİSİ. Coşkun Can Aktan & Abdullah Burhan Bahçe C.Can Aktan ve Abdullah Burhan Bahçe, "Kamu Tercihi Perspektifinden Oyun Teorisi" içinde: C.C.Aktan & Dilek Dileyici, Modern Politik İktisat : Kamu Tercihi: Ankara: Seçkin Yayınları, 2007. KAMU TERCİHİ

Detaylı

KAMU TERCİHİ PERSPEKTİFİNDEN OYUN TEORİSİ. Coşkun Can Aktan Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi

KAMU TERCİHİ PERSPEKTİFİNDEN OYUN TEORİSİ. Coşkun Can Aktan Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi KAMU TERCİHİ PERSPEKTİFİNDEN OYUN TEORİSİ Coşkun Can Aktan Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi ccan.aktan@deu.edu.tr Abdullah Burhan Bahçe Dumlupınar Üniversitesi İktisadi ve

Detaylı

14.12 Oyun Teorisi Ders Notları

14.12 Oyun Teorisi Ders Notları 4.2 Oyun Teorisi Ders Notları Muhamet Yıldız Ders 2-3 Tekrarlı Oyunlar Bu ders notlarında, daha küçük bir oyunun tekrarlandığı ve bu tekrarlanan küçük oyunun statik oyun adını aldığı oyunları tartışacağız.

Detaylı

14.12 Oyun Teorisi. 3. Geriye doğru tümevarım. Yol haritası. 1. Maliyetli aramalı Bertrand rekabeti. 2. Ufak sınav. 4.

14.12 Oyun Teorisi. 3. Geriye doğru tümevarım. Yol haritası. 1. Maliyetli aramalı Bertrand rekabeti. 2. Ufak sınav. 4. 14.12 Oyun Teorisi Muhamet Yıldız Güz 2005 Ders 8: Geriye Doğru tümevarım Yol haritası 1. Maliyetli aramalı Bertrand rekabeti 2. Ufak sınav 3. Geriye doğru tümevarım 4. Ajanda seçimi 5. Stackelberg rekabeti

Detaylı

Birkaç Oyun Daha Ali Nesin

Birkaç Oyun Daha Ali Nesin Birkaç Oyun Daha Ali Nesin B irinci Oyun. İki oyuncu şu oyunu oynuyorlar: Her ikisi de, birbirinden habersiz, toplamı 9 olan üç doğal sayı seçiyor. En büyük sayılar, ortanca sayılar ve en küçük sayılar

Detaylı

Yrd. Doç. Dr. Çiğdem ÖZARI Dr. Kemal Kağan TURAN Prof. Dr. Veysel ULUSOY

Yrd. Doç. Dr. Çiğdem ÖZARI Dr. Kemal Kağan TURAN Prof. Dr. Veysel ULUSOY Yrd. Doç. Dr. Çiğdem ÖZARI Dr. Kemal Kağan TURAN Prof. Dr. Veysel ULUSOY OYUN TEORİSİ (İŞLETME, EKONOMİ VE FİNANS ÖĞRENCİLERİ İÇİN ) Yrd. Doç. Dr. Çiğdem ÖZARI Dr. Kemal Kağan TURAN Prof. Dr. Veysel ULUSOY

Detaylı

J ~ -. - özleşmelerin biçimini incele el davranışları ve bunlar aı üme vs.) ile ilgili temel soruı

J ~ -. - özleşmelerin biçimini incele el davranışları ve bunlar aı üme vs.) ile ilgili temel soruı J ~ -. - özleşmelerin biçimini incele el davranışları ve bunlar aı üme vs.) ile ilgili temel soruı ıkro ekonomiyi kişisel dav risine yönelmişlerdir Böyle niştir. Neoklasik teori ile O elin bir çözüme sahip

Detaylı

DEÜ SBE İKTİSAT ve PARA-BANKA YL MİKRO İKTİSADİ ANALİZ II

DEÜ SBE İKTİSAT ve PARA-BANKA YL MİKRO İKTİSADİ ANALİZ II DEÜ SBE İKTİSAT ve PARA-BANKA YL MİKRO İKTİSADİ ANALİZ II SORULAR 1. Anlaşmasız oligopol modeline konu olan Cournot, Bertrand, Edgeworth, Chamberlin, Stackelberg modellerinin birbirlerinden farkını varsayımlarına

Detaylı

OYUN TEORİSİ 2 1. GİRİŞ 2 2. NORMAL BİÇİMDE OYUNLAR

OYUN TEORİSİ 2 1. GİRİŞ 2 2. NORMAL BİÇİMDE OYUNLAR OYUN TEORİSİ. GİRİŞ. NORMAL BİÇİMDE OYUNLAR.. ÖRNEK 3.. KESİNLİKLE MAHKUM STRATEJİLERİN ELENMESİ (KDES) İLE ÇÖZÜM 5.3. NASH DENGESİ 6.4. ÖRNEK 7.5. KARMA STRATEJİLERE GİRİŞ 9.6. DENGENİN VARLIĞI 3.6..

Detaylı

UYGULAMALARI. Dr. Sanlı ATEŞ

UYGULAMALARI. Dr. Sanlı ATEŞ OYUN TEORİSİ VE UYGULAMALARI Dr. Sanlı ATEŞ Bu dersin amacı, oyun teorisini teknik olarak tanıtıp, başta ekonomi alanı olmak üzere değişik alanlara nasıl uygulanabileceğini tartışmaktır. Günümüzde bireylerden

Detaylı

Final Sınavı. Güz 2005

Final Sınavı. Güz 2005 Econ 159a/MGT 522a Ben Polak Güz 2005 Bu defter kitap kapalı bir sınavdır. Sınav süresi 120 dakikadır (artı 60 dakika okuma süresi) Toplamda 120 puan vardır (artı 5 ekstra kredi). Sınavda 4 soru ve 6 sayfa

Detaylı

Hesaplanabilir Genel Denge Modelleri

Hesaplanabilir Genel Denge Modelleri Dersin Adı Dersin Kodu Dersin Türü DERS ÖĞRETİM PLANI Dersin Seviyesi Dersin AKTS Kredisi 5 Haftalık Ders Saati 3 Haftalık Uygulama Saati - Haftalık Laboratuar Saati - Hesaplanabilir Genel Denge Modelleri

Detaylı

THE DEVELOPMENT OF GAME THEORY AND ITS EFFECTS ON THE FORMATION OF TODAY'S PARADIGM OF ECONOMICS

THE DEVELOPMENT OF GAME THEORY AND ITS EFFECTS ON THE FORMATION OF TODAY'S PARADIGM OF ECONOMICS OYUN TEORİSİNİN GELİŞİMİ VE GÜNÜMÜZ İKTİSAT PARADİGMASININ OLUŞUMUNA ETKİLERİ Serçin ŞAHİN Yıldız Teknik Üniversitesi, İktisat Bölümü Dr. E-posta: sercinsahin@hotmail.com Ercan EREN Yıldız Teknik Üniversitesi,

Detaylı

14.12 Oyun Teorisi. Bob A M E Alice P a b c G b a c

14.12 Oyun Teorisi. Bob A M E Alice P a b c G b a c 4.2 Oyun Teorisi Muhamet Yıldız Güz 2005 Ödev Çözümleri. Problemin çözümü a) (on puan) Önce Alice için uygun kazançları bulalım. Soruda verilen bilgiler ışığında kazançlar alttaki tablodaki gibi olacaktır.

Detaylı

Oyun Teorisinin İnternet Ortamında Saldırı Tespit Sistemlerinde Kullanılması Üzerine Bir Araştırma

Oyun Teorisinin İnternet Ortamında Saldırı Tespit Sistemlerinde Kullanılması Üzerine Bir Araştırma Oyun Teorisinin İnternet Ortamında Saldırı Tespit Sistemlerinde Kullanılması Üzerine Bir Araştırma Serap ERGÜN, Tuncay AYDOĞAN, Sırma Zeynep ALPARSLAN GÖK SDÜ, Elektronik Haberleşme Mühendisliği Bölümü,

Detaylı

Dokuz Eylül Üniversitesi Yayın Geliş Tarihi: 20.11.2012

Dokuz Eylül Üniversitesi Yayın Geliş Tarihi: 20.11.2012 Dokuz Eylül Üniversitesi Yayın Geliş Tarihi: 20.11.2012 Sosyal Bilimler Enstitüsü Dergisi Yayına Kabul Tarihi: 21.03.2014 Cilt: 16, Sayı: 1, Yıl: 2014, Sayfa: 159-178 Online Yayın Tarihi: 29.04.2014 ISSN:

Detaylı

Dr. Y. İlker TOPCU. Dr. Özgür KABAK web.itu.edu.tr/kabak/

Dr. Y. İlker TOPCU. Dr. Özgür KABAK web.itu.edu.tr/kabak/ Dr. Y. İlker TOPCU www.ilkertopcu.net www.ilkertopcu.org www.ilkertopcu.info facebook.com/yitopcu twitter.com/yitopcu instagram.com/yitopcu Dr. Özgür KABAK web.itu.edu.tr/kabak/ GİRİŞ Tek boyutlu (tek

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

14.12 Oyun Teorisi Ders Notları Seçim Teorisi

14.12 Oyun Teorisi Ders Notları Seçim Teorisi 14.12 Oyun Teorisi Ders Notları Seçim Teorisi Muhamet Yıldız (Ders 2) 1 Temel Seçim Teorisi X kümesi alternatifler kümesi olsun. Alternatifler birbirini dışlayan olsunlar, yani bir kişi aynı anda iki farklı

Detaylı

İKTİSADİ GELİŞME MALİ DESTEK PROGRAMI-3

İKTİSADİ GELİŞME MALİ DESTEK PROGRAMI-3 T.C. SERHAT KALKINMA AJANSI İKTİSADİ GELİŞME MALİ DESTEK PROGRAMI-3 2013 YILI PROJE TEKLİF ÇAĞRISI İŞ PLANI EK - E Referans No: TRA2-13-İGMD03/TRA2-13-İGMD03G I MEVCUT DURUM ANALİZİ 1. İŞLETMENİN TARİHÇESİ

Detaylı

ÖZDEĞERLER- ÖZVEKTÖRLER

ÖZDEĞERLER- ÖZVEKTÖRLER ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler

Detaylı

14.12 Oyun Teorisi. Ders 18-20: Eksik Bilgi Dinamik Oyunlar. Yol haritası. 2. Ardaşık Rasyonelite. 3. Mükemmel Bayesyen Nash Dengesi

14.12 Oyun Teorisi. Ders 18-20: Eksik Bilgi Dinamik Oyunlar. Yol haritası. 2. Ardaşık Rasyonelite. 3. Mükemmel Bayesyen Nash Dengesi 4. Oyun eorisi Muhamet Yıldız Güz 5 Ders 8-: Eksik Bilgi Dinamik Oyunlar Yol haritası. Çifte İhale. Ardaşık asyonelite 3. Mükemmel Bayesyen Nash Dengesi 4. Ekonomik Uygulamalar (a) Eksik bilgili ardaşık

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Sequence Oyununun Minimaks Algoritması Kullanılarak Tasarlanması ve Geliştirilmesi

Sequence Oyununun Minimaks Algoritması Kullanılarak Tasarlanması ve Geliştirilmesi Sequence Oyununun Minimaks Algoritması Kullanılarak Tasarlanması ve Geliştirilmesi Yavuz Kömeçoğlu Çetin Oktay Nilgün İncereis Levent Yıldız Yrd. Doç. Dr. Aslı Uyar Özkaya XoX Oyunu Puanlama Sistemi Sequence

Detaylı

INDIVIDUAL COURSE DESCRIPTION

INDIVIDUAL COURSE DESCRIPTION Course Unit Title Course Unit Code ECO 811 Type of Course Unit (Compulsory, Optional) Level of Course Unit (Short Cyle, First Cycle, Second Cycle, Third Cycle) Number of ECTS Credits Allocated Theoretical

Detaylı

EKONOMi BiLiMi DALlNDA 1994 NOBEL ÖDÜLÜ JOHN F. NASH, JOHN C. HARSANYI VE REINHARD SEL TEN'E VERiLDi.

EKONOMi BiLiMi DALlNDA 1994 NOBEL ÖDÜLÜ JOHN F. NASH, JOHN C. HARSANYI VE REINHARD SEL TEN'E VERiLDi. EKONOMIK Y AKLAŞIM EKONOMi BiLiMi DALlNDA 1994 NOBEL ÖDÜLÜ JOHN F. NASH, JOHN C. HARSANYI VE REINHARD SEL TEN'E VERiLDi. ı5ı Gerhard llling Çeviren: Nejla Gültekin 1994 yılında, john von Neumann ve Oskar

Detaylı

Bölüm 1. Para, Banka ve Finansal Piyasaları Neden Öğrenmeliyiz?

Bölüm 1. Para, Banka ve Finansal Piyasaları Neden Öğrenmeliyiz? Bölüm 1 Para, Banka ve Finansal Piyasaları Neden Öğrenmeliyiz? DR. HÜLYA ÜNLÜ 1-2 Sunumlar bilgi amaçlıdır. Tek başına yeterli değildir. Sunumlarda kullanılan Birincil Kaynak Mishkin in Kitabıdır. Finansal

Detaylı

Bölüm 8. Üst Yönetim Stratejileri : Kurumsal Stratejiler Kurumsal Stratejiler (Corporate Level)

Bölüm 8. Üst Yönetim Stratejileri : Kurumsal Stratejiler Kurumsal Stratejiler (Corporate Level) Bölüm 8 Üst Yönetim Stratejileri : Kurumsal Stratejiler Temel stratejiler, işletmelerin her yönetim düzeyinde uygulanır. Ama değişik yönetim düzeylerinde uygulanan temel stratejilerde amaç, alan ve bakış

Detaylı

INDIVIDUAL COURSE DESCRIPTION

INDIVIDUAL COURSE DESCRIPTION Course Unit Title Course Unit Code ECO 811 Type of Course Unit (Compulsory, Optional) Level of Course Unit (Short Cyle, First Cycle, Second Cycle, Third Cycle) Number of ECTS Credits Allocated Theoretical

Detaylı

Bölüm 8. Üst Yönetim Stratejileri : Kurumsal Stratejiler

Bölüm 8. Üst Yönetim Stratejileri : Kurumsal Stratejiler Bölüm 8 Üst Yönetim Stratejileri : Kurumsal Stratejiler Temel stratejiler, işletmelerin her yönetim düzeyinde uygulanır. Ama değişik yönetim düzeylerinde uygulanan temel stratejilerde amaç, alan ve bakış

Detaylı

Oyun Teorisi (KAM 425) Ders Detayları

Oyun Teorisi (KAM 425) Ders Detayları Oyun Teorisi (KAM 425) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Oyun Teorisi KAM 425 Her İkisi 3 0 0 3 6 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü

Detaylı

01.01.2013. Üst Yönetim Stratejileri : Kurumsal Stratejiler. Üst Düzey / Kurumsal Stratejiler. Kurumsal Stratejiler (Corporate Level)

01.01.2013. Üst Yönetim Stratejileri : Kurumsal Stratejiler. Üst Düzey / Kurumsal Stratejiler. Kurumsal Stratejiler (Corporate Level) Temel stratejiler, işletmelerin her yönetim düzeyinde uygulanır. Ama değişik yönetim düzeylerinde uygulanan temel stratejilerde amaç, alan ve bakış açıları farklı olabilir. Kurumsal Stratejiler (Corporate

Detaylı

(1a) Palm Pilotları. Bir periyodda karlı olmaz: talep üzerinde SR gelir etkisi 8% büyüme.

(1a) Palm Pilotları. Bir periyodda karlı olmaz: talep üzerinde SR gelir etkisi 8% büyüme. Sloan Yönetim Okulu 15.010/ 15.011 Massachusetts Teknoloji Enstitüsü Đş Kararları için Đktisadi Analiz Profesör McAdams, Montero, Stoker ve van den Steen 1999 Final Sınavı Cevapları: Asistanların Notlandırması

Detaylı

DERS BİLGİLERİ ULUSLARARASI İKTİSAT TPB 215 3 2+ 0 2 4

DERS BİLGİLERİ ULUSLARARASI İKTİSAT TPB 215 3 2+ 0 2 4 DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS ULUSLARARASI İKTİSAT TPB 215 3 2+ 0 2 4 Dersin Dili Türkçe Dersin Seviyesi Önlisans Dersin Türü Zorunlu Dersin Koordinatörü Öğretim Görevlisi Serkan

Detaylı

Finansal Araçların Oyun Teorisi ile Analiz Edilmesi

Finansal Araçların Oyun Teorisi ile Analiz Edilmesi Finansal Araçların Oyun Teorisi ile Analiz Edilmesi Muhammet YAVUZ Kırıkkale Üniversitesi Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü muhammetyavuzhan@gmail.com Doç. Dr. Tamer EREN Kırıkkale Üniversitesi

Detaylı

Sloan Yönetim Okulu 15.010/15.011 Massachusetts Teknoloji Enstitüsü Güzl 2004 Professors Berndt, Chapman, Doyle ve Stoker

Sloan Yönetim Okulu 15.010/15.011 Massachusetts Teknoloji Enstitüsü Güzl 2004 Professors Berndt, Chapman, Doyle ve Stoker Sloan Yönetim Okulu 15.010/15.011 Massachusetts Teknoloji Enstitüsü Güzl 2004 Professors Berndt, Chapman, Doyle ve Stoker ÖDEV #5 ÇÖZÜMLER 1. a. Oyun Analizi i. Nash Dengesi Bir çift hamle Nash dengesidir

Detaylı

Oyun Teorisinin İnternet Ortamında Saldırı Tespit Sistemlerinde Kullanılması Üzerine Bir Araştırma

Oyun Teorisinin İnternet Ortamında Saldırı Tespit Sistemlerinde Kullanılması Üzerine Bir Araştırma inet-tr 14 - XIX. Türkiye'de İnternet Konferansı Bildirileri 27-29 Kasım 2014 Yaşar Üniversitesi, İzmir Oyun Teorisinin İnternet Ortamında Saldırı Tespit Sistemlerinde Kullanılması Üzerine Bir Araştırma

Detaylı

OLİGOPOL PİYASALAR: OYUN TEORİK YAKLAŞIM MATEMATİKSEL İKTİSAT DERSİ ÖĞRETİM YILI GÜZ DÖNEMİ

OLİGOPOL PİYASALAR: OYUN TEORİK YAKLAŞIM MATEMATİKSEL İKTİSAT DERSİ ÖĞRETİM YILI GÜZ DÖNEMİ OLİGOPOL PİYASALAR: OYUN TEORİK YAKLAŞIM MATEMATİKSEL İKTİSAT DERSİ 2010-2011 ÖĞRETİM YILI GÜZ DÖNEMİ İÇERİK Oligopol Piyasasının Tanımı ve Çeşitleri Saf Oligopol Piyasası Rekabet Çözümü Cournot Çözümü

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

14.12 Oyun Teorisi. Ders 16: Eksik Bilgi Statik Durum. Yol haritası. 1. Bayesyen nash Dengesi. 2. Örnekler. 3. Cournot Duopolü. 4.

14.12 Oyun Teorisi. Ders 16: Eksik Bilgi Statik Durum. Yol haritası. 1. Bayesyen nash Dengesi. 2. Örnekler. 3. Cournot Duopolü. 4. 14.1 Oyun Teorisi Muhamet Yıldız Güz 005 Ders 16: Eksik Bilgi Statik Durum Yol haritası 1. Bayesyen nash Dengesi. Örnekler 3. Cournot Duopolü 4. Ufak sınav 5. Karma stratejiler 1 Bayesyen Oyun (Normal

Detaylı

Özet: Oyun Teorisi ve Rekabetçi Strateji I

Özet: Oyun Teorisi ve Rekabetçi Strateji I Özet: Oyun Teorisi ve Rekabetçi Strateji I Küçük Rakamlar ve Stratejik Davranış Düopol örneğiyle eğlence ve oyunlar Aynı anda arka arkaya (sırayla) seçim Tek bir kere oynanan- Tekrarlanan oyun Üretim miktarı

Detaylı

Adı Soyadı: No: 05.04.2010 Saat: 08:30

Adı Soyadı: No: 05.04.2010 Saat: 08:30 Adı Soyadı: No: 05.04.2010 Saat: 08:30 ID: Z Mikro 2 Ara 2010 Çoktan Seçmeli Sorular Cümleyi en iyi biçimde tamamlayan veya sorunun yanıtı olan seçeneği yanıt anahtarına işaretleyiniz. 1. Çapraz satış

Detaylı

Karar Verme ve Oyun Teorisi

Karar Verme ve Oyun Teorisi Karar Problemlerinin Modellenmesinde Kullanılan raçlar Karar Verme ve Oyun Teorisi Karar Problemlerinin Modellenmesinde Kullanılan raçlar Karmaşık karar problemlerinin anlaşılmasını kolaylaştırmak amacıyla,

Detaylı

TARIM ÜRÜNLERİ TİCARETİNİN ULUSLARARASI BOYUTU

TARIM ÜRÜNLERİ TİCARETİNİN ULUSLARARASI BOYUTU TARIM ÜRÜNLERİ TİCARETİNİN ULUSLARARASI BOYUTU Dış ticaretin amacı piyasadaki ihtiyacın karşılanmasıdır. Temel neden uluslararası mal hareketliliği değil, ülkenin denge arayışıdır. Ülkedeki ürün yetersizliği

Detaylı

Yrd. Doç. Dr. Çiğdem ÖZARI Yrd. Doç. Dr. Kemal Kağan TURAN Prof. Dr. Veysel ULUSOY

Yrd. Doç. Dr. Çiğdem ÖZARI Yrd. Doç. Dr. Kemal Kağan TURAN Prof. Dr. Veysel ULUSOY Yrd. Doç. Dr. Çiğdem ÖZARI Yrd. Doç. Dr. Kemal Kağan TURAN Prof. Dr. Veysel ULUSOY 2. Baskı Yrd. Doç. Dr. Çiğdem ÖZARI Yrd. Doç. Dr. Kemal Kağan TURAN Prof. Dr. Veysel ULUSOY Karikatürler: Pelin BİLİT

Detaylı

KiTAP. ve ISLETME POLITIKASi. Prof. Dr. Erol EREN. Ars.Grv. Fatih SEMERCIöZ Lü. Isletme Fakültesi. Yönetim, Yil 9, Sayi 29, Ocak - 1998,5.

KiTAP. ve ISLETME POLITIKASi. Prof. Dr. Erol EREN. Ars.Grv. Fatih SEMERCIöZ Lü. Isletme Fakültesi. Yönetim, Yil 9, Sayi 29, Ocak - 1998,5. Yönetim, Yil 9, Sayi 29, Ocak - 1998,5.52-54 KiTAP ISLETMELERDE.. STRATEJIK. YÖNETIM ve ISLETME POLITIKASi Prof. Dr. Erol EREN Istanbul, DER Yayinlari, 1997 Hazirlayan: Ars.Grv. Fatih SEMERCIöZ Lü. Isletme

Detaylı

Takım Maçı ve IMP Skorlaması

Takım Maçı ve IMP Skorlaması Takım Maçı ve IMP Skorlaması Takım maçının tanımı? 4 lü takım maçı, 6 oyuncudan kurulu iki takımın, birer çiftleri ile 2 masada karşılaşarak, aynı anda 4 oyuncusu ile, oynayan ya da oynamayan bir kaptanın

Detaylı

14.12 Oyun Teorisi. Ders 13: Sonsuz Tekrarlı Oyunlar I. Yol haritası. 1. Tek-sapma prensibi. 2. Sonsuz tekrarlı Girişimden caydırma oyunu

14.12 Oyun Teorisi. Ders 13: Sonsuz Tekrarlı Oyunlar I. Yol haritası. 1. Tek-sapma prensibi. 2. Sonsuz tekrarlı Girişimden caydırma oyunu 14.12 Oyun Teorisi Muhamet Yıldız Güz 2005 Ders 13: Sonsuz Tekrarlı Oyunlar I Yol haritası 1. Tek-sapma prensibi 2. Sonsuz tekrarlı Girişimden caydırma oyunu 3. Sonsuz tekrarlı Tutuklular ikilemi 4. Folk

Detaylı

16. TEKİLLİK KURALI YAKUP BAROUH M.A.

16. TEKİLLİK KURALI YAKUP BAROUH M.A. 16. TEKİLLİK KURALI Her durum için, başarıyı getirecek sadece bir tane hamle söz konusudur. Tarih, pazarlamada başarılı olmanın yolunun tek bir cesur hamleden geçtiğini göstermiştir. Başarılı generaller

Detaylı

MARKOV ZİNCİRLERİNDE DURUMLARIN SINIFLANDIRILMASI

MARKOV ZİNCİRLERİNDE DURUMLARIN SINIFLANDIRILMASI SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİNDE DURUMLARIN SINIFLANDIRILMASI DERS NOTLARI 1 Önceki derslerimizde pek çok geçişten sonra n-adım geçiş olasılıklarının

Detaylı

ADİL YARGILANMA HAKKI OYUN TEORİSİ ve HUKUK EĞİTİMİNDE AKTİF ÖĞRENİM

ADİL YARGILANMA HAKKI OYUN TEORİSİ ve HUKUK EĞİTİMİNDE AKTİF ÖĞRENİM ADİL YARGILANMA HAKKI OYUN TEORİSİ ve HUKUK EĞİTİMİNDE AKTİF ÖĞRENİM Doç. Dr. Muhammet ÖZEKES D.E.Ü. HUKUK FAKÜLTESİ Son yüzyılın yargılama alanındaki şüphesiz en önemli kavramı adil yargılanma hakkıdır.

Detaylı

INDIVIDUAL COURSE DESCRIPTION

INDIVIDUAL COURSE DESCRIPTION Course Unit Title Course Unit Code Eco 7 Type of Course Unit (Compulsory, Optional) Level of Course Unit (Short Cyle, First Cycle, Second Cycle, Third Cycle) Number of ECTS Credits Allocated Theoretical

Detaylı

İŞLEM OYUNUNUN YAPAY ZEKÂ DESTEKLİ SİMÜLASYONU

İŞLEM OYUNUNUN YAPAY ZEKÂ DESTEKLİ SİMÜLASYONU ECHİNACEA PALLİDA NIN KÖKLERİNDEKİ BİLEŞİKLERİN İZOLASYONU YAPI TAYİNİ ve AKTİVİTE TESTLERİ Bayram AKDULUM Yüksek Lisans Semineri Kimya Anabilim Dalı Doç. Dr. Ramazan ERENLER 2010 İŞLEM OYUNUNUN YAPAY

Detaylı

TARIM ÜRÜNLERİ TİCARETİNİN ULUSLARARASI BOYUTU

TARIM ÜRÜNLERİ TİCARETİNİN ULUSLARARASI BOYUTU TARIM ÜRÜNLERİ TİCARETİNİN ULUSLARARASI BOYUTU Dış ticaretin amacı piyasadaki ihtiyacın karşılanmasıdır. Temel neden uluslararası mal hareketliliği değil, ülkenin denge arayışıdır. Ülkedeki ürün yetersizliği

Detaylı

Kümelenme ile İlgili Kavramlar

Kümelenme ile İlgili Kavramlar Program 25 Ağustos 2014 Kümelenme Kümelenme İle İlgili kavramlar Türkiye de kümelenme politikaları Başarılı küme örnekleri Ostim Savunma ve Havacılık Kümelenmesi İnegöl Mobilya Kümelenmesi Yalova Saksılı

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

2005 Final Sınavına Kısmi Yanıtlar. Güz 2007

2005 Final Sınavına Kısmi Yanıtlar. Güz 2007 2005 Final Sınavına Kısmi Yanıtlar Econ 159a/MGT 522a Ben Polak Güz 2007 LÜTFEN NOT EDİN: BUNLAR TASLAK YANITLARDIR. BUNLARI ÇOK HIZLI YAZDIM BU YÜZDEN DOĞRU OLDUKLARINA SÖZ VEREMEM! BAZEN İHTİYACINIZ

Detaylı

İŞ PLANI İÇİNDEKİLER. I. Özet. Mevcut Durum Analizi. Yatırım Teklifi Analizi. Beklenen Proje Çıktıları, Sonuçları ve Etkileri

İŞ PLANI İÇİNDEKİLER. I. Özet. Mevcut Durum Analizi. Yatırım Teklifi Analizi. Beklenen Proje Çıktıları, Sonuçları ve Etkileri İÇİNDEKİLER I. Özet II. Mevcut Durum Analizi III. Yatırım Teklifi Analizi IV. Beklenen Proje Çıktıları, Sonuçları ve Etkileri V. Proje İçin Pazarlama Stratejisi VI. Ekonomik Varsayımlar ve Riskler 1 I.

Detaylı

iddaa da Sistem ile Kazanmanın Yolları May 2015

iddaa da Sistem ile Kazanmanın Yolları May 2015 iddaa da Sistem ile Kazanmanın Yolları May 2015 Sistem ne işe yarar? 1.Kazanma şansını artırır! 2.Daha yüksek ikramiye kazandırır! 3.Banko ile ödenen kupon bedelini azaltır! Nasıl Çalışır? Tahminde bulunduğunuz

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Bölüm 1. Stratejik Yönetim İlgili Terim ve Kavramlar. İşletme Yönetimi. Yönetim ve Stratejik Yönetim. Yönetim, bir işletmenin ve örgütün amaçlarını

Bölüm 1. Stratejik Yönetim İlgili Terim ve Kavramlar. İşletme Yönetimi. Yönetim ve Stratejik Yönetim. Yönetim, bir işletmenin ve örgütün amaçlarını Bölüm 1 Stratejik Yönetim İlgili Terim ve Kavramlar Ülgen & Mirze 2004 Yönetim ve Stratejik Yönetim İşletme Yönetimi Örgüt İki veya daha fazla bireyin amaçlarını gerçekleştirmek için bir araya gelerek

Detaylı

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ. Markov Analizi

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ. Markov Analizi Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ Doç. Dr. İhsan KAYA Markov Analizi Markov analizi, bugün çalışan bir makinenin ertesi gün arızalanma olasılığının

Detaylı

Birkaç Oyun Daha Birinci Oyun.

Birkaç Oyun Daha Birinci Oyun. Birkaç Oyun Daha B irinci Oyun. ki oyuncu flu oyunu oynuyorlar: Her ikisi de, birbirinden habersiz, toplam 9 olan üç do al say seçiyor. En büyük say lar, ortanca say lar ve en küçük say lar karfl laflt

Detaylı

Tedarik Zinciri Yönetimi -Bileşenler, Katılımcılar, Kararlar- Yrd. Doç. Dr. Mert TOPOYAN

Tedarik Zinciri Yönetimi -Bileşenler, Katılımcılar, Kararlar- Yrd. Doç. Dr. Mert TOPOYAN Tedarik Zinciri Yönetimi -Bileşenler, Katılımcılar, Kararlar- Yrd. Doç. Dr. Mert TOPOYAN Tedarik Zinciri Bileşenleri Tedarik zincirlerinde üç temel bileșenden söz edilebilir: Aktörler: Tedarik zinciri

Detaylı