İstatistik ve Olasılık
|
|
|
- Ilker Yalaz
- 8 yıl önce
- İzleme sayısı:
Transkript
1 İstatistik ve Olasılık Ders 4: OLASILIK TEORİSİ
2 Giriş Bu bölüm sonunda öğreneceğiniz konular: Rastgele Olay Örnek Uzayı Olasılık Aksiyomları Bağımsız ve Ayrık Olaylar Olasılık Kuralları Koşullu Olasılık Permütasyon ve Kombinasyon
3 Tanım : Matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır ve rastgele değişkenleri inceler. Rastgele Değişken: Gelecekteki bir gözlemde alacağı değer önceden kesinlikle bilinemeyen bir değişkendir. Örneğin: Bir zar atışında gelecek sayının önceden bilinememesi Herhangi bir gün gözlenecek yağış yüksekliği Makine elemanının hasara uğrama zamanı vb. Belirsizliğin Kaynağı: Daha önceden tahmin edilemeyen çok sayıda etkene bağlı olunması Doğal olaylardaki mevcut değişkenliklerin olması Bu tür olaylarda değişkenler deterministik bir yaklaşımla incelenemez Değişkenin alacağı değeri önceden kesinlikle belirleyen yasalar elde edilemez. Bunun yerine probabilistik (olasılığa dayalı) yaklaşım gerekir.
4 Tanım Belirsizliklerden hareketle elde edilen verilerden bazı sonuçlar çıkarmak ve tahmin yapabilmek istatistiğin konusudur. Bugün hava muhtemelen yağışlı ve biraz soğuk olacak, bu dersten büyük bir ihtimalle geçerim, bu ameliyatın başarı düzeyi %95 dir,... vb gibi olmak üzere günlük hayatta olasılık kavramı sık sık gündeme gelir. Aslında bu ifadeleri kullanan kişi, daha önceki bilgi ve deneyimleri vasıtasıyla bu sonuçlara varmaktadır. Elde edilen sonuçlar kesin olmamakla birlikte belirli bir güven (doğruluk payı) taşımaktadır.
5 Rastgele Olay Rastgele değişkenin alacağı değer kesin olarak belirlenemeyeceğinden ancak değişkenin belirli bir değeri alma ihtimali belirlenebilir. Bir rastgele değişkenin bir gözlem sırasında belli bir değeri almasına rastgele olay denir. Hangi rastgele olayın görüleceği önceden kesinlikle bilinememekle birlikte herhangi bir rastgele olayın görülme ihtimalini belirlemek mümkündür. Örneğin: Bir zar atışında seçilen bir sayının (tabii 1 ile 6 arasında) görülmesi bir rastgele olay olup bunun ihtimali hesaplanabilir.
6 Örnek Uzayı ve Küme Kavramı Örnek Uzayı: İlgilenen rastgele olayın alabileceği tüm değerleri içeren uzaydır. Örneğin: Bir zar atışında gelebilecek sayıların tümü Bir deneyde gözlemlenecek değerlerin tümü Olasılık teorisinde küme teorisi, rastgele olayların tanımlanması kolaylaştıran bir yaklaşımdır. Küme kesin olarak tanımlanmış elemanlardan oluşur. Kümenin adı büyük harfle, elemanları bu harfe karşılık gelen küçük harf ile gösterilir. Örneğin: Türkçedeki sesli harfler kümesi Zar atışında görülecek sayıların kümesi:
7 Küme Kavramı Bir elemanın bir kümeye ait olduğunu Bir elemanın bir kümeye ait olmadığı şeklinde gösterilir. şeklinde gösterilir. Hiçbir elemanı bulunmayan bir küme boş küme olarak adlandırılır. Bir kümenin bütün elemanları diğer bir kümenin de elemanları ise ilk küme ikinci kümenin alt kümesidir. Örnek: Herhangi iki küme A ve B için, A nın tüm elemanları B kümesinde ise: A B nin alt kümesi Veya B A yı kapsar denir.
8 Venn Diyagramı Bir küme ile alt kümeleri arasındaki ilişkileri grafiksel gösterim kullanarak kolayca tanımlamak için kullanılır.
9 Venn Diyagramı Bir A kümesi ile B kümesinin ortak elemanları yok ise yani: A B birbirinden tamamen farklı birbirini engelleyen olaylar (mutually exclusive) olarak adlandırılır.
10 Olasılık Kavramı Bir deneme farklı N sonucu ortaya koyuyor ve bunlardan n tanesinde A olayı meydan geliyorsa, A olayının ortaya çıkma olasılığı, P( A) n N Rastgele değişkeni büyük harfle (X), rastgele değişkenin bir gözlem sırasında aldığı değeri bu harfe karşılık gelen küçük harfle (x) ile gösterirsek X=xi rastgele olayın olasılığı:
11 Olasılık Aksiyomları Aksiyom 1: Herhangi bir E rastgele olayının ihtimal 0 PE ( ) 1 P(E): E rastgele olayının ihtimalini gösterir. Aksiyom 2: Eğer örnek uzayı S ise PS ( ) 1 yani örnek uzayındaki olayların olasılıklarının toplamı 1 e eşittir. Aksiyom 3: Eğer E1, E2, E3,..., En birbirlerini engelleyen (mutually exclusive) olaylar ise n n P Ei P( Ei) i 1 i 1 Bu aksiyomdan hareketle aşağıdaki özellikler belirlenebilir:
12 Farklı Bağımsız olaylar İstatistikte olayların bağımsızlığı, bir olay hakkındaki bilgi başka bir olaya bağlı değilse bu olay istatistiksel olarak bağımsızdır (independent events). Karşılıklı olarak birbirini engelleyen olaylar (mutually exculsive events) ise bir olayın olması durumunda diğer başka bir olayın gerçekleşme ihtimalinin sıfır olmasıdır. Bağımsız olaylar asla birbirlerini engelleyen olaylar (mutually exculsive events) olmazlar. Örneğin: 52 lik bir desteden çekilen bir kağıdın kalp olması ve sinek olması farklı olaylardır, zira sinek çekilmiş ise bunun kalp olma ihtimali yoktur. Fakat çekilen kartın kalp olması ve kırmız olması birbirlerini engelleyen olaylar değildir zira bu iki durumun aynı anda olma ihtimali vardır.
13 Olasılık hesaplamaları Örnek 1: Bir torbada 5 kırmızı, 7 siyah ve 3 beyaz bilye bulunmaktadır. Bu torbadan rastgele çekilecek bir bilyenin kırmızı gelme olasılığı nedir? Örnek 1 Çözüm: P ( n A ) N
14 Olasılık hesaplamaları Örnek 2: Bir önceki örnekteki bilgileri kullanarak; a) Herhangi bir renkte bilye gelme olasılığını hesaplayınız. b) Mavi renkte bilye gelme olasılığını hesaplayınız. c) Siyah renkte bilye gelme olasılığını hesaplayınız Örnek 2 Çözüm:
15 Olasılık Kuralları Olasılık olayları: birbirini tamamıyla engelleyen birlikte meydana gelebilen olaylar olmak üzere iki gruba ayrılmaktadır. Ayrımın özelliğine göre kullanılacak olasılık kuralları da farklı olmaktadır. TOPLAMA KURALI Karşılıklı olarak birbirini engelleyen olaylardan (mutually exclusive) birinin veya diğerinin ortaya çıkma olasılığı, bu olayların ayrı ayrı ortaya çıkma olasılıkları toplamına eşittir. A ve B gibi birbirini engelleyen (ayrık) iki olaydan herhangi birisinin meydana gelme olasılığı: zira
16 Olasılık Kuralları Örnek 3: Kusursuz bir tavla zarı atıldığında 2 veya 3 gelmesi olasılığı nedir? Örnek 3 Çözüm: Bu olay birbirini engelleyen özellikte olup, herhangi bir anda sadece tek yüz ile karşılaşılacağından toplama kuralı kullanılmalıdır.
17 Olasılık Kuralları ÇARPMA KURALI Birbirinden bağımsız ve aynı zamanda meydana gelebilen olayların olasılığı, bu olayların ayrı ayrı ortaya çıkma olasılıkları çarpımına eşittir. Örnek 4: Kusursuz bir tavla zarı ve madeni para birlikte atıldığında, paranın yazı ve zarın 5 gelmesi olasılığı nedir? Örnek 4 Çözüm: Bu olaylar birlikte meydana gelebilen özellikte olup, birbirini engellemez. Bu nedenle çarpma kuralı kullanılmalıdır.
18 Olasılık Kuralları Bazı olaylarda ise hem birlikte ortaya çıkma ve hem de birbirlerini engelleme söz konusu olabilir. Bu gibi olaylarda çarpma ve toplama kuralı birlikte kullanılır. Çarpma ve toplama kuralının birlikte kullanıldığı olay sayısı 2 ise (A ve B) formül Olay sayısı 3 (A,B ve C) olduğunda P( A. veya. B. veya. C) P( A) P( B) P( C) P( A. ve. B) P( A. ve. C) P( B. ve. C) P( A. ve. B. ve. C)
19 Olasılık Kuralları Örnek 5: Bir torbada 1 den 5 e kadar numaralanmış 5 beyaz, 6 dan 12 ye kadar numaralanmış 7 tane siyah bilye vardır. Bu torbadan yapılacak bir çekilişte çıkacak bilyenin beyaz veya tek numaralı olması olasılığını hesaplayınız. Örnek 5 Çözüm: B : beyaz bilye T : tek sayılı bilye olmak üzere olayı Venn diyagramında gösterelim. iki olayın elemanlarından bazıları birbirlerini engelleyen özellikte iken bazıları da birlikte ortaya çıkma özelliğindedir. Sözgelimi, çift sayılı beyaz bir bilyenin gelmesi halinde tek sayılı beyaz bir bilye gelemez, oysa hem beyaz, hem de tek sayılı gelince iki olay birlikte ortaya çıkmış olmaktadır. Buna göre beyaz veya tek sayılı bilye gelme olasılığı
20 Koşullu Olasılık Bir olayın ortaya çıkma olasılığı, daha önce ortaya çıkan başka bir olaya göre değişiyorsa sözü edilen olaylar arasında bağımlılık vardır ve koşullu olasılık kuralı uygulanır. A olayının meydana gelmesi koşulu ile B olayının ortaya çıkma olasılığı P(B/A) şeklinde gösterilir ve aşağıdaki formül yardımıyla hesaplanır. P( B / A) P( A ve B) P( A).. P( A B) P( A) Yukarıdaki ifade düzenlenirse:
21 Koşullu Olasılık Bayes Teoremi: E1,E2,..., En ayrık olaylar olsun ve hep birlikte şekilde verildiği gibi S örnek uzayını oluştursun. A olayı bu örnek uzayında bir olay ise
22 Koşullu Olasılık Bayes Teoreminin uygulandığı durumlar: Örnek uzayının E 1,E2,..., En şeklinde ayrık olaylara bölündüğü Bu örnek uzayında, P(B)>0 şartını sağlayan bir B rastgele olayın varlığında P(E k B) olasılığının hesaplanması istendiğinde Aşağıda tanımlanan ihtimallerden en az birinin bilindiği durumlarda Tüm E Tüm k E k için P(E için P(E k k B) ) ve P(B E k )
23 Koşullu Olasılık Örnek 6: Bir torbada 3 mavi, 4 beyaz ve 7 kırmızı bilye bulunmaktadır. Üst üste yapılacak iki çekilişten birincisinde mavi, ikincisinde beyaz bilye gelme olasılığını hesaplayınız Örnek 6 Çözüm: M :mavi bilye B :beyaz bilye yi göstersin. Bu problemin çözümünde bilyelerin torbadan çekiliş durumuna bağlı olarak iki farklı yol izlenebilir:
24 Koşullu Olasılık Örnek 7: Kusursuz bir tavla zarı atıldığında sonucun çift bir sayı olduğu biliniyor. Bu sayının 4 çıkma olasılığını hesaplayınız. Örnek 7 Çözüm:
25 Koşullu Olasılık Örnek 8: Bir bölgede seçmenlerin %40 ı A partisine %60 ise B partisine oy vermişlerdir. Bir kamuoyu yoklamasında A partisine oy verenlerin %30 ile B partisine oy verenlerin %70 i Avrupa Birliğine girmeyi desteklemektedirler. Bu bölgeden rastgele seçilen birinin Avrupa Birliğini desteklediği bilindiğine göre B partisinde olma ihtimali nedir? Örnek 8 Çözüm:
26 Koşullu Olasılık Örnek 8: Elektrik ampulü üreten bir fabrikanın üretiminin %20 si A tipi, %80 ide B tipi ampullerden oluşmaktadır. Hatalı üretim oranı A tipi ampullerde %36, B tipi ampullerde ise %18 dir. Rasgele seçilen bir ampulün hatalı olduğu bilindiğine göre bu ampulün A tipi olma olasılığı nedir? Örnek 8 Çözüm: C : hatalı üretim oranını göstersin istenen olasılık P(A/C)=? dır P( A / C) P( A C) P( C) ancak bu formülün payındaki ifadenin değeri bilinmiyor.
27 Uygulama Soruları Uygulama Sorusu 1: Şekilde verilen 7 elemanlı yapıda i elemanın hasarı F i olarak, i elemanın hasara uğrama ihtimali ise P(F i ) olarak tanımlanmaktadır. Yapıdaki elemanlarının hasara uğraması birbirinden bağımsızdır. Yapıdaki herhangi bir elemanın hasara uğraması ile yapının yıkılacağı varsayılmıştır. P( F1 ) P( F3 ) P( F5 ) P( F7 ) 0.02 P( F2) P( F6) 0.01 PF ( 4) 0.03 ise yapının hasara uğrama ihtimalini hesaplayınız.
28 Uygulama Soruları Uygulama Sorusu 2: 2 hilesiz zarın atılmasında gelen rakamların toplamı 7 ise, zarlardan birisinin 1 gelme olasılığı nedir? ÖDEV 3: Bir makine parçasının montajında kullanılan 23 cıvatadan 20 tanesi emniyet açısından uygun 3 tanesi ise uygun olmadığı tespit edilmiştir. Bu cıvata kutusundan makine parçasını monte etmek için bir seferde 3 cıvata alınmaktadır. a)montajın hatasız cıvatalardan yapılma olasılığını belirleyiniz. b)en azından bir hatalı cıvata kullanılmış olma olasılığını hesaplayınız.
29 Permütasyon ve Kombinasyon Olasılık hesaplarının yapılmasında en önemli husus, olayın meydana gelebileceği yolların sayısı (N) ile istenen olayın meydana gelebileceği yolların sayısını (n) belirlemektir. Bu iki sayı belirlendikten sonra olasılık formülleri vasıtasıyla hesaplama kolayca yapılabilir. Olayların meydana gelebileceği sayısı belirlenirken permütasyon ve kombinasyon işlemleri uygulanabilir
30 Permütasyon (Dizilem) İncelenen n bireyden her defasında r adedi alınarak, sıra gözetilmek kaydıyla, kaç farklı dizi oluşturulabileceği npr n! ( n r)! şeklindeki permütasyon formülü ile hesaplanır.
31 Permütasyon (Dizilem) Örnek 9: 20 kişilik genel kurul toplantısında başkan, başkan yardımcısı ve sekreter olmak üzere 3 kişilik idare heyeti seçilecektir. Buna göre, a) İdare heyeti için kaç farklı heyet oluşturulabilir? b) Bilinen 3 kişiden A nın başkan, B nin başkan yardımcısı ve C nin de sekreter seçilmesi olasılığı nedir? Örnek 9 Çözüm: 3 pozisyon için yapılacak seçimde sıra gözetileceğinden (yani oluşturulan bir ABC heyetinde A başkan, B yardımcı, C sekreter iken, BAC heyetinde B başkan, A yardımcı ve C sekreterdir) permutasyon formülü kullanılır.
32 Kombinasyon (Bileşim) İncelenen n bireyden her defasında r adedi alınmak ve sıra gözetilmemek kaydıyla oluşturulabilecek kombinasyon sayısı ncr n! ( n r)! r!. Örnek 10: 10 profesörün bulunduğu bir gruptan seçilecek 3 kişilik jürinin istenen şahıslardan meydana gelme olasılığı nedir? Örnek 10 Çözüm: 3 pozisyon için yapılacak seçimde sıra gözetilmeyeceğinden (yani oluşturulan bir XYZ jürisinde heyetinde X jüri üyesi, Y jüri üyesi, Z jüri üyesi iken, YXZ jürisinde de Y jüri üyesi, X jüri üyesi, Z jüri üyesidir) kombinasyon formülü kullanılır.
33 Kombinasyon Örnek 11: 4 tarih, 3 felsefe ve 3 matematik kitabı olmak üzere toplam 10 kitap rafta kaç değişik şekilde sıralanabilir? Örnek 11 Çözüm:
34 Gelecek dersin konusu Rastgele Değişkenlerin Dağılımları.
Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü
Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 GİRİŞ Olasılık Teorisi: Matematiğin belirsizlik taşıyan
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 4: OLASILIK TEORİSİ Prof. Dr. İrfan KAYMAZ Giriş Bu bölüm sonunda öğreneceğiniz konular: Rastgele Olay Örnek Uzayı Olasılık Aksiyomları Bağımsız ve Ayrık Olaylar Olasılık Kuralları
kişi biri 4 kişilik, üçü ikişer kişilik 4 takıma kaç farklı şekilde ayrılabilir? (3150)
PERMÜTASYON KOMBİNASYON. A = {,,,,5} kümesinin alt kümelerinin kaç tanesinde 5 elemanı bulunur? (). 7 elemanlı bir kümenin en az 5 elemanlı kaç tane alt kümesi vardır? (9). A { a, b, c, d, e, f, g, h}
Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir.
5.SUNUM Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. Günlük hayatta sıklıkla kullanılmakta olan olasılık bir olayın ortaya
Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler.
Bölüm 2 OLASILIK TEORİSİ Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler. Rasgele değişken, gelecekteki bir gözlemde alacağı
Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:
OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi
Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü
Olasılık Kavramı Mühendislikte İstatistik Metotlar Çukurova Üniversitesi İnşaat Mühendisliği ölümü OLSILIK KVRMI KÜME KVRMI irlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere
Dr. Mehmet AKSARAYLI OLASILIK. Ders 3 / 1
Dr. Mehmet AKSARAYLI OLASILIK Ders 3 / 1 1 0 Kesin İmkansız OLASILIK; Bir olayın gerçekleşme şansının sayısal değeridir. N adet denemede s adet başarı söz konusu ise, da başarının nisbi frekansı lim (s/n)
Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:
OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi
ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması
OLASILIĞA GİRİŞ P( )= =
OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması olasılığı %85 dir. Olasılık modelleri; Sıvı içindeki moleküllerin davranışlarını
İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY
İstatistik 1 Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları Bu Bölümde İşlenecek Konular Temel Olasılık Teorisi Örnek uzayı ve olaylar, basit olasılık, birleşik olasılık Koşullu Olasılık İstatistiksel
ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık
ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni
Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar
Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Küme Kavramı Küme İşlemleri Deney, Örnek Uzay, Örnek Nokta ve Olay Kavramları Örnek Noktaları Sayma Permütasyonlar Kombinasyonlar Parçalanmalar
Olasılık Kuramı ve İstatistik. Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları
Olasılık Kuramı ve İstatistik Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları OLASILIK Olasılık teorisi, raslantı ya da kesin olmayan olaylarla ilgilenir. Raslantı
BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH
BİYOİSTTİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. slı SUNER KRKÜLH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim D. Web: www.biyoistatistik.med.ege.edu.tr 1 OLSILIK Olasılık; Tablo
BAYES KURAMI. Dr. Cahit Karakuş
BAYES KURAMI Dr. Cahit Karakuş Deney, Olay, Sonuç Küme Klasik olasılık Bayes teoremi Permütasyon, Kombinasyon Rasgele Değişken; Sürekli olasılık dağılımı Kesikli - Süreksiz olasılık dağılımı Stokastik
Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:
OLSILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi
Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2
Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S
Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız.
OLASILIK (İHTİMALLER HESABI) Olasılık kavram ı ilk önceleri şans oyunları ile başlamıştır. Örneğin bir oyunda kazanıp kazanmama, bir paranın atılmasıyla tura gelip gelmemesi gibi. Bu gün bu kavramın birçok
Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür.
1 Olasılık Örnekler 1. Bir çantada 4 beyaz 8 siyah top vardır. Bir siyah top çekilmesi olasılığı nedir? Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür. 2.
PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:
SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=
OLASILIK. P(A) = şeklinde ifade edilir.
OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya
Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı
LYS Matematik Olasılık Tanım: Bir deneyde çıkabilecek tüm sonuçların kümesine örnek uzay denir ve E ile gösterilir. Örnek uzayın herhangi bir elemanına da örnek nokta denir. Örnek: Bir zarın atılması deneyinde
Temel Olasılık {\} /\ Suhap SAHIN
Temel Olasılık 0 {\} /\ Suhap SAHIN Olasılık P(E) : E nin olma olasılıgı n: Deneme sayısı n(e): Denemelerden kaçı E ile sonuçlandı Deneme sayısı sonsuza( ) yaklasırsa P(E) = limn n(e) n Örnek Uzay S: Bir
Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, [email protected]. www.matematikclub.com, 2006
MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, [email protected] Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı
8. SINIF MATEMATiK OLASILIK. Murat ÇAVDAR OLASILIK. Olasılık: Sonucu önceden kesin olarak bilinmeyen rastlantıya bağlı olaylara olasılık denir.
04 8. SINIF MATEMATiK OLASILIK OLASILIK Olasılık: Sonucu önceden kesin olarak bilinmeyen rastlantıya bağlı olaylara olasılık denir. Bir zarın atılması, bir torbadan top çekilmesi, bir paranın yazı veya
Olasılık Föyü KAZANIMLAR
Olasılık Föyü KAZANIMLAR Bir olaya ait olası durumları belirler. Daha fazla, eşit, daha az olasılıklı olayları ayırt eder, örnek verir. Eşit şansa sahip olan olaylarda her bir çıktının olasılık değerinin
OLASILIK LASILIK ve İSTATİSTİK Olasılık
1-1 Click To Edit Master Title Style OLASILIK ve İSTATİSTİK Olasılık Yrd.Doç.Dr Doç.Dr.. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü 1-2 GİRİŞ Olasılık,
Tesadüfi Değişken. w ( )
1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere
YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK
YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel
( B) ( ) PERMÜTASYON KOMBİNASYON BİNOM OLASILIK
PERMÜTASYON KOMBİNASYON BİNOM OLASILIK.... n = n! olmak üzere, ( n + )! = 0 n! + n! ise, n kaçtır? (A) ( ) A)0 B) C) D) E). ( n +,) = 6 C olduğuna göre, n kaçtır? (B) A) B)6 C) D)8 E)9. ( n, ). C( n,)
Şartlı Olasılık. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK
Şartlı Olasılık Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK [email protected] Şartlı Olasılık ir olayın olasılığından söz edebilmek için bir alt kümeyle temsil edilen bu olayın içinde bulunduğu örnek uzayının
Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir.
OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi
TEMEL SAYMA KURALLARI
TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin
İstatistik ve Olasılık
İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk
Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur
Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli
OLASILIK (İHTİMAL) TEORİSİ. DENEY (experiment),sonuç (outcome), OLAY (event) DENEY:Bir aktivitenin gözlemlenmesi ve ölçüm yapma şekilleridir.
OLASILIK (İHTİMAL) TEORİSİ 1 DENEY (experiment),sonuç (outcome), OLAY (event) DENEY:Bir aktivitenin gözlemlenmesi ve ölçüm yapma şekilleridir. SONUÇ:Deneylerin tamamlanması ile elde edilen verilerdir.
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.
OLASILIK. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)
OLASILIK 46 0 86 48 [email protected] www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları Ocak 20 0. Teorik Olasılık 0.. Deney ve Çıktı 4. Bir zar ile
BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,,
BİNOM AÇILIMI Binom Açılımı n doğal sayı olmak üzere, (x+y) n ifadesinin açılımını pascal üçgeni yardımıyla öğrenmiştik. Pascal üçgenindeki katsayılar; (x+y) n ifadesi 1. Sütun: (x+y) n açılımındaki katsayılar
SAÜ BÖLÜM 11. OLASILIK. Prof. Dr. Mustafa AKAL
SAÜ BÖLÜM. OLASILIK Prof. Dr. Mustafa AKAL 0 İÇİNDEKİLER.KAVRAMLAR.. Rassal Deney, Örneklem Uzayı ve Olay.. Olayların Biçimlenmesi.3. Olasılık Tanımı.PERMÜTASYON VE KOMBİNASYON..Permütasyon... Sıralı Permütasyon...
ALIŞTIRMALAR. Sayısal Bilginin Özetlenmesi:
İSTATİSTİK I ALIŞTIRMALAR Y.Doç.Dr. Hüseyin Taştan AÇIKLAMA: N: P. Newbold, İşletme ve İktisat için İstatistik, 4. basımdan çeviri. Çift sayılı alıştırmalar için kitabın arkasındaki çözümlere bakabilirsiniz.
Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir.
BÖLÜM 1 KÜMELER CEBİRİ Küme, iyi tanımlanmış ve farklı olan nesneler topluluğudur. Yani küme, belli bir kurala göre verilmiş nesnelerin listesidir. Nesneler reel veya kavramsal olabilir. Kümede bulunan
İstatistik ve Olasılık
İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı
Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1
1 Rastgele bir denemede ortaya çıkması olası sonuçların tamamıdır Örnek: bir zar bir kez yuvarlandığında S= Yukarıdaki sonuçlardan biri elde edilecektir. Sonuçların her biri basit olaydır Örnek: Bir deste
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar
BİYOİSTATİSTİK OLASILIK
BİYOİSTATİSTİK OLASILIK B Doç. Dr. Mahmut AKBOLAT *Küme Kavramı: Küme, tek bir isim altında toplanabilen ve benzer özellik gösteren birimlerin meydana getirdiği topluluk olarak tanımlanabilir. Küme içinde
Kosullu Olasılık & Bayes Teoremi
Kosullu Olasılık & Bayes Teoremi 0 {\} /\ Suhap SAHIN Olasılık Deneyi Olasılık problemlerinde gerçeklestirilen eylemler Zar atılması Para atılması Top Çekme Bir zar atıldıgında üst yüze çift gelme ihtimali
KESİKLİ DÜZGÜN DAĞILIM
KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen
Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları
Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenlerinin Olasılık Fonksiyonları X, şans değişkeni ve, 2,.., n ise bu tesadüfi değişkenin
Ders 4: Olasılık Aksiyomları ve Bazı Olasılık Kuralları
Ders 4: Olasılık Aksiyomları ve Bazı Olasılık Kuralları Olasılık aksiyomları Bazı olasılık kuralları Bağımsız olaylar Koşullu olasılık Bayes theoremi Bir olayın gerçekleşme ihtimalinin sayısal değerine
1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir?
1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 9. 4 çocuklu bir aile yan yana poz verecektir. Çocukların soldan sağa doğru boy sırasında olduğu kaç durum
Rastgelelik, Rastgele Sinyaller ve Sistemler Rastgelelik Nedir?
Rastgelelik, Rastgele Sinyaller ve Sistemler Rastgelelik Nedir? Rastgelelik en basit anlamda kesin olarak bilinememektir. Rastgele olmayan deterministiktir (belirli). Bazı rastgele olgu örnekleri şöyle
3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir?
İSTATİSTİK SORU VE CEVAPLARI 1)Tabloda 500 kişinin sahip oldukları akıllı telefon markalarını gösteren bilgiler verilmiştir.bu tabloda ki bilgileri yansıtan daire grafiği aşağıdakilerden hangisidir? TELEFON
A { x 3 x 9, x } kümesinin eleman sayısı A { x : x 1 3,x } kümesinin eleman sayısı KÜMELER
KÜMELER Küme, nesnelerin iyi tanımlanmış bir listesidir. Kümeyi oluşturan nesnelerin her birine kümenin elemanı denir. Kümeler genellikle A, B, C,... gibi büyük harflerle gösterilir. x nesnesi A kümesinin
Ders 3: Olasılık Aksiyomları ve Bazı Olasılık Kuralları
Ders 3: Olasılık Aksiyomları ve Bazı Olasılık Kuralları Olasılık aksiyomları Bazı olasılık kuralları Bağımsız olaylar Koşullu olasılık Bayes theoremi Bir olayın gerçekleşme ihtimalinin sayısal değerine
AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI
ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm TEMEL SAYMA KLURALLARI AÇIK UÇLU SORULAR. A = {0,,, 3, 4, } kümesindeki rakamlar kullanılarak 3 basamaklı rakamları farklı kaç farklı tek sayı yazılabilir? 48. A = {0,,
2. Klasik Kümeler-Bulanık Kümeler
2. Klasik Kümeler-Bulanık Kümeler Klasik Küme Teorisi Klasik kümelerde bir nesnenin bir kümeye üye olması ve üye olmaması söz konusudur. Bu yaklaşıma göre istediğimiz özelliğe sahip olan bir birey, eleman
6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar,
1. 9 2 x 2 ifadesinin açılımında sabit x terim kaç olur? A) 672 B) 84 C) 1 D) -84.E) -672 6. Ali her gün cebinde kalan parasının %20 sini harcamaktadır. Pazartesi sabahı haftalığını alan Ali ni Salı günü
a. Aynı sırada çekilen herhangi iki kartın aynı d. 4. çekişte iki torbadan da 4 numaralı kartların e. 2. ve 4. çekişte aynı numaralı kartların
Örnek Problem - Sinemada, yan yana koltukta oturan arkadaş, ara verildiğinde kalkıyorlar. Dönüşte, aynı koltuğa rastgele oturduklarına göre; hiçbirinin ilk yerine oturmaması olasılığı Örnek Problem - 4
Ders 6 OLASILIK KURAMI. Örnek Uzaylar, Örnek Noktalar ve Olaylar. Örnek Uzaylar, Örnek Noktalar ve Olaylar
Ders 6 Olasılık Teorisi Permutasyonlar ve Kombinasyonlar OLASILIK KURAMI Geçtiğimiz 5 hafta boyunca serilerin temel özelliklerini gösteren grafiklerin neler olduğunu ve Serilerin temel özelliklerini anlamada
2. (x 1 + x 2 + x 3 + x 4 + x 5 ) 10 ifadesinin açılımında kaç terim vardır?
Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız. Sınavın ilk 30 dakikasında sınıftan çıkılmayacaktır.
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli
SÜREKLİ OLASILIK DAĞILIŞLARI
SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla
Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ RANDOM DEĞİŞKEN
SÜREKSİZ (DISCRETE) OLASILIK DAĞILIMLARI 1 RANDOM DEĞİŞKEN Nümerik olarak ifade edilebilen bir deneyin sonuçlarına rassal (random) değişken denir. Temelde iki çeşit random değişken vardır. ##süreksiz(discrete)
Şartlı Olasılık. Pr[A A ] Pr A A Pr[A ] Bir olayın (A 1 ) olma olsılığı, başka bir olayın (A 2 ) gerçekleştiğinin bilinmesine bağlıysa;
Şartlı Olasılık Bir olayın (A ) olma olsılığı, başka bir olayın (A 2 ) gerçekleştiğinin bilinmesine bağlıysa; Pr[A A 2 Pr A A Pr A A = Pr[A A 2 2 2 Pr[A Pr[A 2 2 A A 2 S Pr[A A 2 A 2 verildiğinde (gerçekleştiğinde)
Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674
kapak sayfası İÇİNDEKİLER. ÜNİTE SAYMA Sıralama ve Seçme... 4 Toplama Yolu ile Sayma... 4 Çarpma Yolu ile Sayma... 4 Permütasyon (Sıralama)... 5 Konu Testleri - -... 9 Kombinasyon (Seçme)... 4 Konu Testleri
ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR
ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR 1- İlaçla tedavi edilen 7 hastanın ortalama iyileşme süresi 22.6 gün ve standart sapması.360 gündür. Ameliyatla tedavi edilen 9 hasta için
İçindekiler. Ön Söz... xiii
İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1
İstatistik ve Olasılık
İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi
İstenen Durum Olasılık Tüm Durum 12
OLASILIK ÇIKMIŞ SORULAR 1.SORU İçinde top bulunan iki torbadan birincisinde beyaz, siyah ve ikincisinde beyaz, 5 siyah top vardır. Birinci torbadan bir top çekilip rengine bakılmadan ikinci torbaya atılıyor.
ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT
PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK ve İSTATİSTİK ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT Permütasyon. Kazanım : Eşleme, toplama ve çarpma yoluyla sayma yöntemlerini açıklar. 2. Kazanım : n elemanlı
Rassal Değişken. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK
Rassal Değişken Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK [email protected] S örnek uzayı içindeki her bir basit olayı yalnız bir gerçel (reel) değere dönüştüren fonksiyona rassal değişken adı verilir. O halde
8. SINIF GENEL AÇIKLAMA
8. SINIF GENEL AÇIKLAMA Bu kitapçık bölümden oluşmaktadır. 1. bölümde yer alan 5 sorunun her biri 1, puan değerindedir.. bölümde yer alan 15 sorunun her biri,4 puan değerindedir.. bölümde yer alan 10 sorunun
dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır.
BÖLÜM 3 OLASILIK HESABI 3.. Br Olayın Olasılığı Tanım 3... Br olayın brbrnden ayrık ve ortaya çıkma şansı eşt n mümkün sonucundan m tanes br A olayına uygun se, A olayının P(A) le gösterlen olasılığı P(A)
ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan Oktay İÇİNDEKİLER HEDEFLER İHTİMAL TEORİSİ
HEDEFLER İÇİNDEKİLER İHTİMAL TEORİSİ Temel Kavramlar Toplama Kuralı Çarpma Kuralı İhtimal Dağılım Tablosu Beklenen Değer İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan Oktay Bu üniteyi çalıştıktan sonra; İhtimal (olasılık)
Mühendislikte İstatistiksel Yöntemler
Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.
10SINIF MATEMATİK. Sayma ve Olasılık Fonksiyonlar
0SINIF MATEMATİK Sayma ve Olasılık Fonksiyonlar YAYIN KOORDİNATÖRÜ Oğuz GÜMÜŞ EDİTÖR Hazal ÖZNAR - Uğurcan AYDIN DİZGİ Muhammed KARATAŞ SAYFA TASARIM - KAPAK F. Özgür OFLAZ Eğer bir gün sözlerim bilim
2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur?
Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız. Sınavın ilk 30 dakikasında sınıftan çıkılmayacaktır.
OLASILIK PROBLEMLERİ I (BAĞIMSIZ OLAYLAR, KOLMOGOROV BELİTLERİ VE KOŞULLU OLASILIK)
İST65-0-02-OLASILIK I (BAĞIMSIZ OLAYLAR, KOLMOGOROV BELİTLERİ VE KOŞULLU OLASILIK). A ve B olayları ayrık olaylar ve olasılıkları sıfırdan farklı ise, bu olayların bağımlı olduklarını tanıtlayınız. A ve
MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik
6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında
Deney Dizaynı ve Veri Analizi Ders Notları
Deney Dizaynı ve Veri Analizi Ders Notları Binom dağılım fonksiyonu: Süreksiz olaylarda, sonuçların az sayıda seçenekten oluştuğu durumlarda kullanılır. Bir para atıldığında yazı veya tura gelme olasılığı
Olasılık: Klasik Yaklaşım
Olasılık Teorisi Olasılık: Klasik Yaklaşım Olasılık Bir olayın meydana gelme şansına olasılık denir. Örnek Türkiye nin kazanma olasılığı Hava durumu Loto Olayların Olasılığını Belirleme Rastsal (gelişigüzel)
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar
Olasılık Kavramı. Mühendislikte İstatistik Yöntemler
Olasılık Kavramı Mühendislikte İstatistik Yöntemler KÜME KAVRAMI Birlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere de eleman, öğe veya üye denir. Kümenin elemanlerı (öğeleri,
10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları
10. Sınıf Matemat k Ders İşleme Defter OLASILIK Altın Kalem Yayınları KOŞULLU OLASILIK Bas t olayların olma olasılıklarını 9. sınıf matemat k konularında şlem şt k. Ş md yapacağımız se daha karmaşık olayların
Biyoistatistik V. HAFTA
Biyoistatistik V. HAFTA Olasılık Olasılık: Bir olayın gerçekleşme ihtimalinin matematiksel değeridir. p= Başarı sayısı / olanaklı durumlar Yazı gelmesi ihtimali p=1/2=0.5 Olasılığın özellikleri: Daima
Normal Alt Gruplar ve Bölüm Grupları...37
İÇİNDEKİLER Ön Söz...2 Gruplar...3 Alt Gruplar...9 Simetrik Gruplar...13 Devirli Alt Gruplar...23 Sol ve Sağ Yan Kümeler (Kosetler)...32 Normal Alt Gruplar ve Bölüm Grupları...37 Grup Homomorfizmaları...41
Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN
Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,
Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir.
OLSILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi
Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir.
BÖLÜM 3. OLASILIK ve OLASILIK DAĞILIMLARI Rasgele Sonuçlu Deney: Sonuçlarının kümesi belli olan, ancak hangi sonucun ortaya çıkacağı önceden söylenemeyen bir işleme Rasgele Sonuçlu Deney veya kısaca Deney
İSTATİSTİK DERS NOTLARI
Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü [email protected] İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi Balıkesir Üniversitesi İnşaat
Rastgele değişken nedir?
Rastgele değişken nedir? Şİmdiye kadar hep, kümelerden ve bu kümelerin alt kümelerinden (yani olaylar)dan bahsettik Bu kümelerin elemanları sayısal olmak zorunda değildi. Örneğin, yazı tura, kız erkek
Dr. Mehmet AKSARAYLI
Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü END 2303 İstatistik-I Bölüm 1: İstatistiğe Giriş: Temel kavramlar ve Olasılık Teorisi Dr. Öğr. Üyesi Kemal SUBULAN http://kisi.deu.edu.tr/kemal.subulan/
