Malign Melanom Oluşum ve İlerleme Sürecinde Gözlenen Bazı Moleküler Değişimler

Benzer belgeler
MALİGN MELANOM TEDAVİ SEÇİMİNDE MOLEKÜLER PATOLOJİ. Ebru Serinsöz, MD, PhD Mersin Üniversitesi Tıp Fakültesi Patoloji Anabilim Dalı

PI3K/AKT/mTOR Yolağı

SİNYAL İLETİMİ ve KANSER. Dr. Lale Doğan Hacettepe Üniversitesi Onkoloji Enstitüsü Temel Onkoloji ABD

Kanser Tedavisi: Günümüz

MESANE TÜMÖRLERİNİN DOĞAL SEYRİ

KANSER EPİDEMİYOLOJİSİ VE KARSİNOGENEZ

Melanom: Etiyoloji ve Patogenez. Prof. Dr. Tamer İrfan Kaya Mersin Ü.T.F. Dermatoloji A.D.

KHDAK da Güncel Hedef Tedaviler

KOLOREKTAL KANSERLERİN MOLEKÜLER SINIFLAMASI. Doç.Dr.Aytekin AKYOL Hacettepe Üniversitesi Tıp Fakültesi Tıbbi Patoloji Anabilim Dalı 23 Mart 2014

En Etkili Kemoterapi İlacı Seçimine Yardımcı Olan Moleküler Genetik Test

ÇOK HÜCRELİ ORGANİZMALARIN GELİŞİMİ

Küçük Hücreli Dışı Akciğer Kanserinde(KHDAK) Hedefe Yönelik Tedavi Seçenekleri

Metastatik Prostat Kanserinde Gelecekten Beklentiler

PAPİLLER TİROİD KARSİNOMLU OLGULARIMIZDA BRAF(V600E) GEN MUTASYON ANALİZİ. Klinik ve patolojik özellikler

Docosahexaenoic Acid Induces Cell Death in Human Non- Small Cell Lung Cancer Cells by Repressing mtor via AMPK Activation and PI3K/Akt Inhibition

Küçük Hücreli Dışı Akciğer Kanserinde(KHDAK) Hedefe Yönelik Tedavi Seçenekleri

TAKD olgu sunumları- 21 Kasım Dr Şebnem Batur Dr Büge ÖZ İÜ Cerrahpaşa Tıp Fakültesi Patoloji AD

JAK STAT Sinyal Yolağı

HANDAN TUNCEL. İstanbul Üniversitesi, Cerrahpaşa Tıp Fakültesi Biyofizik Anabilim Dalı

MEME KANSERİ KÖK HÜCRELERİNİN GEN EKSPRESYON PROFİLİ

BCC DE GÜNCEL Prof. Dr. Kamer GÜNDÜZ

Doksorubisin uygulanan PARP-1 geni silinmiş farelerde FOXO transkripsiyon faktörlerinin ekspresyonları spermatogenez sürecinde değişiklik gösterir

Liquid Biopsy for Precision Medicine in Mutation-Driven NSCLC

ÇOCUKLUK ÇAĞI PAPİLLER TİROİD KANSERİNDE BRAF V600E MUTASYONU İLE KLİNİKOPATOLOJİK ÖZELLİKLER ARASINDAKİ İLİŞKİ VE NÜKS ORANI ÜZERİNE ETKİSİ

Yeni Nesil Genomik Sistemler. ve Uygulamaları

PROSTAT ADENOKARSİNOMLARINDA MAMMALIAN TARGET OF RAPAMYCIN (mtor) YOLAĞININ PROGNOZA ETKİSİ

Oluşan farklı Cdk-siklin kompleksi de farklı hedef proteinlerin foforilasyonunu gerçekleştirerek döngünün ilerlemesine neden olmaktadır.

Melanomların Moleküler Patolojisi. Prof. Dr. Önder Bozdoğan Ankara Numune Eğitim ve Araştırma Hastanesi

YENİ AJANLARLA YAN ETKİ YÖNETİMİ NASIL OLMALIDIR?

Fetal Spina Bifida: Tanı ve Yaklaşım. Prof. Dr. E. Ferda Perçin Gazi Üniversitesi Tıp Fakültesi Tıbbi Genetik AD. Ankara- 2018

Yard. Doç. Dr. Ercan ARICAN. İ.Ü. FEN FAKÜLTESİ, Moleküler Biyoloji ve Genetik Bölümü

Küçük Hücreli Dışı Akciğer Karsinomlarının EGFR Mutasyon Analizinde Real-Time PCR Yöntemi ile Mutasyona Spesifik İmmünohistokimyanın Karşılaştırılması

Over Kanserinde Tedavi. Dr. M. Faruk Köse Etlik Zübeyde Hanım Kadın Hastalıkları Eğitim ve Araştırma Hastanesi

15- RADYASYONUN NÜKLEİK ASİTLER VE PROTEİNLERE ETKİLERİ

HER2 Pozitif Meme Kanseri; Sorunlar ve Direnç Mekanizmaları

KARSİNOGENEZ. Prof.Dr.Şevket Ruacan

Kanser Oluşumu ve Risk Faktörleri. Doç. Dr. Mustafa Benekli Gazi Üniversitesi Tıp Fakültesi Tıbbi Onkoloji Bilim Dalı

GLOBİN GEN REGÜLASYONU

KARSİNOGENEZ Prof.Dr.Şevket Ruacan

Over kanseri ve Endometriosis ilişkisi var mı? Yrd.Doç.Dr.H.Çağlayan ÖZCAN Gaziantep Üniversitesi Tıp Fakültesi KadınHastalıkları ve Doğum AD

İmmun sistemi baskılanmış hastalarda lenfomagenezde rol alan faktörler ve etkileşimleri. Blood Reviews (2008) 22, 261

ÜNİTE 19 KANSER VE GENETİK

DİFÜZ GLİAL TÜMÖRLER

24- HÜCRESEL RADYASYON CEVABININ GENETİK KONTROLÜ

Endometrium Kanserinin Moleküler ve Genetik Sınıflaması, Ne Değişti?

Meme Kanserinde Hormon Reseptörleri ve Direnç Mekanizmaları

HORMONLAR VE ETKİ MEKANİZMALARI

AVRASYA ÜNİVERSİTESİ

Rastgele (Stokas7k) kanser modeli - Tümör içindeki her hücre yeni bir kanseri başla5r

KANSER NEDİR? ONKOGEN VE KANSER. Hücre döngüsü. Siklin-Siklin Kinaz 1/30/2012 HÜCRE DÖNGÜSÜ. Siklin Kinaz inhibitörleri BÜYÜME FAKTÖRLERİ

b. Amaç: Gen anatomisi ile ilgili genel bilgi öğretilmesi amaçlanmıştır.

Melanomda yeni nesil biyolojik tedaviler. Prof. Dr. Oktay Avcı

ÖZGEÇMİŞ. Expression Pattern Comparison of Two Ubiquitin Specific Proteases. Functional Characterization of Two Potential Breast Cancer Related Genes

TRANSKRİPSİYON AŞAMASINDA KROMATİN YAPININ DÜZENLENMESİ

Melanomda hedefe yönelik tedavi. Prof.Dr.Emel BÜLBÜL BAŞKAN Uludağ Üniversitesi Tıp Fakültesi, Bursa

7. PROKARYOTLARDA GEN İFADESİNİN DÜZENLENMESİ

Kanser nedir? neoplasia. Kontrolsuz hücre çoğalması (neoplasm) Normal büyüme Neoplasm. Gen mutasyonları

ONKOGENLER VE TÜMÖR SUPRESSÖR GENLER

Histoloji ve Embriyoloji Anabilim Dalı, Tıp Fakültesi, Akdeniz Üniversitesi

Wnt/β-katenin Yolağı

Anahtar Kelimeler: Apoptoz, Hücre döngüsü, Kanser kök hücresi, Multiselüler tümör sferoid, Prostat,Trabectedin

KANSER TANI VE TEDAVİSİNDE BİREYSEL TIP UYGULAMALARI. Doç. Dr. Yasemin BASKIN Dokuz Eylül Üniversitesi Onkoloji Enstitüsü Temel Onkoloji AD

7. PROKARYOTLARDA GEN İFADESİNİN DÜZENLENMESİ

KHDAK hastalarının Moleküler Patoloji raporunda neler olmalı?

MELANOMDA GÜNCEL TEDAVİ PROF.DR.EMEL BÜLBÜL BAŞKAN ULUDAĞ ÜNİVERSİTESİ TIP FAKÜLTESİ, BURSA

Epidermoid Akciğer Kanseri Sistemik Tedavisinde Gelişmeler

Metastatik Kolon Kanserinde Birinci Basamak Tedavi Seçenekleri. Dr. Deniz Tural Bakırköy Dr. Sadi Konuk Eğitim ve Araştırma Hastanesi Tıbbi Onkoloji

PROKARYOTLARDA GEN EKSPRESYONU. ve REGÜLASYONU. (Genlerin Gen Ürünlerine Dönüşümünü Kontrol Eden Süreçler)

b. Amaç: Hücre zarının yapı ve fonksiyonları ile ilgili genel bilgi öğretilmesi amaçlanmıştır.

Tiroid Lezyonlarına Moleküler Yaklaşım. Dr. Gaye Güler Tezel

Biyoteknoloji ve Genetik I Hafta 13. Ökaryotlarda Gen İfadesinin Düzenlenmesi

Bu araştırma Çukurova Üniversitesi Bilimsel Araştırma Fonu tarafından TF2010LTP2 no ile desteklenmiştir.

Gen Arama Yordamı ve Nörolojik Hastalıklarla İlgili Gen Keşfi Çalışmalarına Türkiye den Örnekler

TKİ'ye Dirençli GİST Tedavisinin Zorlukları

TÜMÖR ANJiYOGENEZİ TUMOR ANGIOGENESIS. Reha Aydın. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi

Epigenetik ve Kanser. Tayfun ÖZÇELİK Bilkent Üniversitesi Moleküler Biyoloji ve Genetik Bölümü

Pediatrik Over Tümörleri Slayt Semineri

Romatoid Artrit Tedavisinde MAP Kinaz İnhibitörleri MAP Kinase Inhibitors in Rheumatoid Arthritis Prof Dr Salih Pay 12 Mart 2011

Prof. Dr. Hamdi ÖĞÜŞ Yakın Doğu Üniversitesi Tıp Fakültesi Biyokimya Anabilim Dalı, LeJoşa, KKTC

Prof. Dr. E. Gökhan KANDEMİR Memorial Ataşehir Hastanesi

2017 / 2018 EĞİTİM ÖĞRETİM YILI

Cover Page. The handle holds various files of this Leiden University dissertation

Transforming growth factor ß. Sinyal molekülleri, reseptör ve ko-reseptörler C. elegans tan insana kadar korunmuştur.

Notch/Delta Yolağı. Oldukça korunmuş ve gelişim için oldukça önemli olan bir yolak5r.

MİDE KANSERİNDE APOPİTOZİSİN BİYOLOJİK BELİRTEÇLERİNİN PROGNOSTİK ÖNEMİ

BRAF Mutant Metastatik Malign Melanom Hastalarında ilk Seçim? İpilimumab olmalıdır

SİNYAL YOL AĞI D Y T. O N U R H A N Y A L A Z

TIBBĠ BĠLĠMLERE GĠRĠġ DĠLĠMĠ MĠKROBĠYOLOJĠ ANABĠLĠM DALI

Kanser Genetiğinde Temel Kavramlar

1. Sınıf Güz Dönemi I. Hafta Pazartesi Salı Çarşamba Perşembe Cuma Ders Saati

İyonize Radyasyonun Hücresel Düzeydeki Etkileri ve Moleküler Yaklaşımlar

KANSER AŞILARI. Prof. Dr. Tezer Kutluk Hacettepe Üniversitesi

DÖNEM I DERS KURULU I

Kanser Yolakları ARŞİV 2011; 20: 187

HÜCRE SĠNYAL OLAYLARI PROF. DR. FATMA SAVRAN OĞUZ

FEN EDEBİYAT FAKÜLTESİ MOLEKÜLER BİYOLOJİ VE GENETİK BÖLÜMÜ

Larenks Kanserli Hastalarımızda K-Ras Mutasyonları

MGMT PROMOTER METİLASYONU OLAN GLİOBLASTOMALI OLGULARDA CpG 1, 2, 3 ve 4 METİLASYONUNUN TEDAVİ CEVABINA ETKİSİ

Ders 11 - Protein kodlamayan RNA ların insan hastalıklarındaki rolu

Pluripotent Kök Hücreler

Transkript:

Derleme / Review Turk J Dermatol DOI: 10.4274/tdd.3000 İrem Doğan Turaçlı Malign Melanom Oluşum ve İlerleme Sürecinde Gözlenen Bazı Moleküler Değişimler Molecular Mechanisms in Formation and Progression of Malignant Melanoma Öz Melanosit hücrelerinden köken alan melanomalar, hücresel olduğu kadar moleküler düzeyde de farklanmakta ve bu durum terapi yaklaşımlarını etkilemektedir. Melanoma patogenezi genetik faktörler tarafından yürütülür. Oluşumu ve ilerlemesinde MAPK (RAS-RAF-MEK-ERK) başta olmak üzere, PI3K, CDK4/6-p16 gibi sinyal yolakları rol oynar Melanomanın iyi tanımlanmış mutasyonları BRAF, KIT ve NRAS ın onkojenik formlarının ifadesini ve PTEN, p53 ve p16ink4a gibi tümör baskılayan genlerin kaybını içerir. Bu derlemede melanoma oluşumunda ve ilerlemesinde rolü olan moleküler değişimler ve çeşitli sinyal mekanizmaları kısaca tartışılacaktır. Anahtar kelimeler: Malign melanom, sinyal yolakları, mutasyon Abstract Malignant melanomas which arise from melanocytes are differentiated in molecular level as well as cellular level and this situation affects the therapy approach. Melanoma pathogenesis is managed by genetic factors. Signaling pathways like PI3K, CDK4/6-p16 but primarily MAPK (RAS-RAF-MEK-ERK) play a role in the formation and development of the melanomas. Well defined mutations of melanoma include expressions of oncogenic forms of BRAF, KIT and NRAS, and loss of tumor suppressor genes like PTEN, p53 and p16ink4a. This review will briefly discuss about the molecular modifications and several signal mechanisms that have a role in the formation and development of melanomas. Keywords: Malignant melanoma, signaling pathways, mutation Ufuk Üniversitesi Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, Ankara, Türkiye Yazışma Adresi/ Correspondence: İrem Doğan Turaçlı, Ufuk Üniversitesi Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, Ankara, Türkiyee Tel.: +90 312 204 44 23 E-posta: doganirem@gmail.com Geliş Tarihi/Submitted: 09.05.2016 Kabul Tarihi/Accepted: 09.05.2016 Telif Hakkı 2016 Türk Dermatoloji Derneği Türk Dermatoloji Dergisi, Galenos Yayınevi tarafından basılmıştır. Giriş Melanomalar, pigment oluşturan hücrelerin (melanositler) malign transformasyonundan oluşurlar ve en agresif ve tedaviye dirençli insan kanserlerinden biridir (1). Transformasyon olasılığı düşük olmasına karşın hızlı büyüme ve sistemik yayılma özelliği gösterirler. Sınıflandırmaları, hücresel fenotiplerini, çoğalma yeteneklerini ve uygun tedavi opsiyonlarını belirleyen ayırıcı mutasyon profillerine göre yapılır. Tüm melanomaların %5-12 i penetransı yüksek, kısmen orta ve düşük riskli germline gen mutasyonları ve polimorfizmleri içerir (2). Diğer kanser türlerinde olduğu gibi, melanomlar da çeşitli protoonkogenlere ek fonksiyon kazandıran mutasyonlar ya da tümör baskılayıcı genlerin işlev kaybetmesine neden olan değişimler nedeniyle gelişir. Melanomagenezde sekil 1 de gösterildiği gibi NRAS, BRAF, KIT gibi onkogenlerinin aktivasyonları, CDKN2A, PTEN ve p53 gibi tümör baskılayıcı genlerinin inaktivasyonlarının yanı sıra, epigenetik değişimler de (tümör baskılayıcı genlerin hipermetilasyonu ya da onkogenlerin hipometilasyonu) etkili olabilmektedir. mikrornaların ifadelerinin artışı ya da azalması ile tümör baskılayıcı genler ya da onkogenlerin ifadeleri değişebilmekte, bu durum da melanom gelişimine katkı sağlayabilmektedir (3). Malign melanomu ailesel geçiş gösteren ve göstermeyen olarak sınıflandırdığımızda, yaklaşık %10 kadarının kalıtsal olduğu ortaya çıkmaktadır. Genom analiz çalışmaları ile hangi kromozom ve gen bozukluklarının melanoma neden olduğunu ve bu hatalara sahip bireylerin melanoma yakalanma riskleri öngörebilmektedir (4-6). Aile çalışmalarında bağlantı analizi sonuçlarına göre, 1p36 (7) ve 9p21 (8) bölgelerindeki genetik değişimler melanoma kalıtsallığı ile ilişkilendirilmiştir.

Hücre Döngüsü Düzenleyicileri Hücre döngüsünü düzenleyen proteinler her kanserde olduğu gibi malign melanomda da ilgi odağıdır. CDKN2A geninin fonksiyon kaybıyla ilişkilendirilen germline ve sporadik mutasyonları ailesel melanomda sıklıkla gözlenir (Halaban 1999). 9p21 de yer alan CDKN2A proteini hücre döngüsünün negatif düzenleyicilerinden biridir. Bu protein düzgün çalışmadığında hücre döngüsünün pozitif düzenleyicileri aktifleşir (9, 10). CDKN2A lokusu dört ekzondan oluşan ve alternatif ekzon kesip-birleştirme işlemi nedeniyle p16ink4a ve p14arf olmak üzere iki farklı protein kodlayan bir gen bölgesidir. Her iki proteinin de tümör baskılama, hücre döngüsünü yavaşlatma ve apoptozis sürecinde rolleri vardır. P16INK4a, CDK4/6 ya bağlanarak, inhibe eder. Böylece RB1 tümör baskılayıcı proteini CDK4/6 kompleksi tarafından forforile olamaz. Normalde RB nin hiperfosforilasyonu, hücre döngüsünde bir S faz pozitif düzenleyicisi olan E2F1 in serbest hale geçmesine neden olur. Ancak, RB fosforillenmezse, E2F1 e bağlı kalacak, bu durumda da E2F1 G1-S geçişini sağlayan genlerin transkripsiyonunda görev alamayacaktır. P16INK4a kaybı hücre döngüsünün kontrolden çıkmasını sağladığından, tümör gelişimini pozitif yönde etkileyecektir. P16INK4A ifadesinin ortadan kalkması epigenetik olarak CDKN2A nın metilasyonuyla da gerçekleşebilir (11). Diğer taraftan p14arf, p53 ün negatif düzenleyicisi olan MDM2 proteinine bağlanıp, parçalanmasını kolaylaştırmaktadır. Yani p14arf olmadığında, p53 destabilizasyonu gelişmektedir (12, 13). p14arf delesyonu nedeniyle MDM2 aktivasyonu p53 proteininin downregülasyonu ile sonuçlanmaktadır. Ayrıca CDKN2A lokusu olmayan farelerde, HRAS, NRAS gibi genleri aktifleştirici mutasyonlar gelişebilmektedir (14). Yaptığımız bir çalışmada p16ink4a lokusu olmayan B16F10 hücre hattında ve bu hücrelerle oluşturulan C57BL6 fare allograft modelinde proliferasyon CDK inhibitörü flavopiridol ile engellenmiş ve hücreler apoptozise yönlendirilmiştir (15). Bu germ hücre mutasyonlarına ilaveten melanomlarda MDM2, CDK4 ve CCND1 amplifikasyonları da gözlenmiştir (16, 17). CDK4 amplifikasyonları akral ve mukozal melanomda, CCND1 amplifikasyonları ise akral, mukozal ve CSD (chronically Şekil 1. Malign melanom oluşumunda ve ilerlemesinde aktivitesi değişebilen bazı sinyal iletim yolakları sun-damaged) melanomda RB yolağını etkilemektedir (18). DNA onarım mekanizması, apoptosis, hücre döngüsü kontrolü gibi görevleri olan p53 geninin mutasyonları tüm diğer tümörlerin aksine, melanomda nadirdir. p14arf ya da p16ink4a aktivitesinin olmaması, p53 aktivitesinin de ortadan kalkmasına neden olmaktadır. Gen mutasyonları gözlenmese de, p53 protein inaktivasyonu melanomda önemli bir basamaktır (19). c-kit Gen Düzensizlikleri Akral, mukozal ve CSD melanomlarda c-kit mutasyonları ya da amplifikasyonları gözlenebilmektedir. c-kit, MAPK ve PI3K- AKT sinyal yolaklarını aktifleştiren, kök hücrelerde ifadelenen reseptör tirozin kinazlardan biridir. Melanosit farklılaşmasında ve göçünde görev aldığı düşünülen c-kit, hücre çoğalmasında rol oynamaktadır. Melanomda 4q11 de yeralan KIT lokusunun mutasyonlarına sıklıkla rastlanılmaktadır, ancak mutant protein tirozin kinaz inhibisyonuna cevap vermekte, MAPK, PI3K-AKT ve STAT sinyallerini inhibe etmekte ve hücreyi apoptozise yönlendirmektedir (20). Bununla birlikte c-kit amplifikasyonu ya da mutasyonu akral (%36), mukozal (%28) ya da CSD (%28) alt tiplerine göre de değişebilmektedir (21). Farklı toplumlardan elde edilen KIT mutasyon analizi verileri, populasyonlara göre mutasyon oranının değişken olduğunu göstermektedir (22). MAPK Sinyal Yolağı ve BRAF Mutasyonları MAPK yolağı temelde, RAS, RAF, mitogen-activated protein kinase kinase (MEK) ve extracellular signal regulated kinase (ERK) proteinlerinin görev aldığı bir sinyal yolağıdır ve pekçok tümörde RAS ya da RAF ailesi mutasyonları nedeniyle aktiftir. RAF kinaz ailesi üyelerinden biri olan BRAF (v-raf murine sarcoma viral oncogene homolog B) mutasyonlarının keşfi melanom araştırmalarının ilerlemesine çok büyük katkı sağlamış ve genellikle erken evre melanomlarla ilişkilendirilmiştir (23). 7q34 de lokalize olan BRAF geninin genellikle 15. ekzonunda görülen mutasyonlar, insan melanom tümörlerinin yaklaşık %50 sinde, kutanöz melanomdan türetilmiş hücre hatlarının ise yaklaşık %80 inde görülmüştür (24). BRAF mutasyonları genellikle kronik güneş hasarına bağlı olmayan melanomlarda gözlenmektedir. En sık rastlanılan mutasyon ise BRAF proteininin 600. kodonunda valinin glutamik asite (V600E) dönüşümüdür. Bunun dışında yine 600. kodonda valinin lizin, aspartik asit ya da arjinine dönüşümü de gözlenmiştir. Normalde KRAS tarafından kontrol edilen BRAF bu moleküler değişimlerle kontrolden çıkar ve KRAS dan uyarı gelmeden de aktif durumda kalır. Bu mutasyonlar BRAF ın kinaz aktivitesinin yaklaşık 200-400 kat artmasına ve RAS-RAF-MEK-ERK yolağının sürekli aktif kalmasına neden olmaktadır (25). Bununla birlikte BRAF mutasyonları melanositik nevilerde de yüksek sıklıkla gözlenmiştir (26-28). Bu BRAF ın erken melanomagenezdeki rolünü açık bir şekilde göstermektedir (29). BRAF mutant melanomda seçici BRAF inhibitörlerinin (SBİ) başarısına rağmen, bu inhibitörlere karşı pekçok moleküler direnç mekanizması gelişebilmektedir. Bu direncin nedeni BRAF geninde oluşan ikincil mutasyonlar, RAS aracılı MAPK ya da reseptör tirozin kinaz aracılı alternatif sağ-kalım yolaklarının

aktivasyonu olabilmektedir (30). Örneğin melanom hücresinde NRAS ya da MEK1 gibi yeni mutasyonların gelişmesi, PDGFRb ya da IGFR upregülasyonu SBİ ye direnç gelişimini ve MAPK sinyalleşmesinin aktifleşmesini sağlamaktadır (30, 31). MAPK yolağının bir üyesi olan MEK proteininin inhibisyonu BRAF V600E mutant melanomda alternatif bir tedavi yöntemi olabilmektedir (32). Melanom hücre hatlarında MAP3K5, MAP3K9 gibi genlerin protein kodlayan bölgelerinde de mutasyonlar belirlenmiştir. Bu proteinlerin kinaz bölgesindeki mutasyonlar aktivite ve fonksiyon kaybına neden olabileceği gibi, bazı mutasyonlar da ilaç direncinin gelişimine katkı sağlayabilmektedir (33). MEK1 ve MEK2 serintreonin kinazlar RAF proteininden aldıkları sinyalleri hücre içi hedeflerine iletmekle görevlidirler. Kutanöz melanomların yaklaşık %6 sında MEK1/2 mutasyonları gözlenmektedir. Bu mutasyonlar nedeniyle BRAF ve MEK inhibitörlerine direnç gelişebilmektedir (34-36). RAS Ailesi Küçük G proteinleri olan RAS ailesi (HRAS, KRAS ve NRAS), hücre dışı büyüme faktörlerinden aldıkları sinyalleri hücre içi hedef moleküllere iletirler (37). Solid tümörlerde görülenin aksine, melanomlarda KRAS mutaysonları daha az sıklıkla gözlenmektedir. RAS genleri arasında, melanomda en sık mutasyonuna rastanılan NRAS dır. NRAS mutasyonları, kutanöz melanomun %20 sinde, akral melanomun %10 unda, mukozal melanomun yaklaşık %5-10 unda görülmektedir (38). NRAS hedeflenmesi zor bir protein olduğundan, mutasyon nedeniyle gelişen aktivasyonu azaltmak için protein sentez sonrası modifikasyonlarını değiştirerek, zara yerleşimi engellenmeye çalışılmış ancak klinikte başarılı olunamamıştır (39). NRAS mutasyonları proteinin G12, G13 ve Q61 aminoasitlerinde olmaktadır ve BRAF mutasyonu ile birlikte görülmemektedir (40). HRAS aktivasyonu ile birlikte CDKN2A ve/veya p53 mutasyonu olduğunda, farede metastatik olmayan melanom gelişmektedir (41, 42). Öte yandan NRAS aktivasyonu ve CDKN2A mutasyonu birlikteliğinde ise yüksek metastaz özelliği olan melanom gelişmektedir (43). BRAF ve NRAS mutasyonu olmayan hücre hatlarında yapılan bir başka çalışmada ise, NF1 (nörofibramatozis 1 ) protein aktivasyonunun kaybolduğu gözlenmiştir. NF1, RAS-GTPaz aktivitesi olan bir proteindir ve Ras sinyalini kapatarak tümör baskılayıcı rol oynamaktadır (44). Bazı malign melanom hücre hatlarında NF1 mutasyonlarına rastlanmıştır (45). Ülkemizde Ege Bölgesi nde 106 hastada yapılan bir çalışmada ise BRAF (%42.5), NRAS (%15.1), ve CDKN2A (%13.2) mutasyonları belirlenmiştir (46). PI3K/AKT Sinyal Yolağı Düzensizlikleri Alternatif sağ-kalım yolaklarından biri olan PI3K yolağının melanomda düzensiz çalıştığı bilinmektedir. PI3K/AKT yolağı sağ kalımın yanı sıra, hücre büyümesi, çoğalması, farklılaşması, hareketliliği gibi pekçok fonksiyonu olan bir sinyal mekanizmasıdır. Phosphatase and tensin homolog (PTEN) tümör baskılayıcı geni, PI3K/AKT yolağı aracılığıyla hücre büyümesi, adhezyon ve sağkalımını düzenleyen bir fosfataz proteini kodlar. PTEN proteini; fosfatidilinozitol (3,4,5)- 3 fosfatı (PIP3), fosfatidilinozitol (4,5)-2 fosfata (PIP2) çevirerek, PI3K ın tersi yönde çalışır. Reseptör tirozin kinazların aktivasyonu sonrası, hücre yüzeyinde bulunan büyüme faktörleri hücre içi PIP3 düzeyinin artmasını sağlar. PIP3 artışı ise PDK1 aracılığı ile bir serin/treonin kinaz olan AKT nin fosforilasyonuna neden olur. AKT; pekçok kanserde hücre büyümesi ve canlılığını düzenleyen bir onkogendir (47). Primer ve metastatik melanom ve displastik nevuslerde de AKT aktivasyonunun arttığı ve p-akt ifadelenme derecesinin melanom invazyon ve progresyonuyla ilişkili olduğu gözlenmiştir (48). Öte yandan PI3K ın p110 alfa katalitik alt ünitesini kodlayan PIK3CA mutasyonlarına kutanöz melanomda nadiren (%2-4) rastlanmaktadır (49). PI3K/AKT yolağının sürekli aktif kalmasını sağlayan PTEN kaybı ise, melanomlarda yaklaşık %10-30 sıklıkla görülmektedir (50). NRAS ve BRAF mutasyonları ile de birlikte görülebilen PTEN kaybı, melanom hücre hatlarında inhibitörlere direnç gelişimini sağlamaktadır (51). Malign melanomda insanda 10q da lokalize olan PTEN lokusununda nokta mutasyonlarının aksine, genellikle heterozigosite kaybı (LOH-Loss of Heterozygosity) %20-30 oranında gözlenmektedir (52-54). Bununla birlikte epigenetik değişimlerle PTEN promotorunun kapatılmasıyla, PTEN geninin ifadelenmediği gözlenmiştir (55). PTEN kaybı olan melanom hücrelerinde PTEN ifadesi sağlanarak, AKT nin aktifleşmesi, hücre büyümesi ve pekçok onkojenik sinyal engellenmiştir (54). İnsan melanom hücre hatlarıyla yapılmış bir çalışmada PTEN delesyonu ve NRAS mutasyonu birlikteliğine de rastlanılmazken, PTEN delesyonu ve BRAF mutasyonu birlikteliği gözlenebilmektedir (56, 57). MITF Aktivasyonu MEK-ERK den aktivasyon sinyalini alan MITF (microphthalmiaassociated transcription factor) geni melanosit faklılaşması ve pigment hücrelerinde melanogenez enzimlerinin ifadelenmesinden sorumlu bir transkripsiyon faktörü kodlar (58). Melanomda soy bağımlı bir onkogen örneğidir ve HIF1A, melastanin, AIM1, VMD2, c-met, prostaglandin D2 gibi pekçok farklı proteinin transkripsiyonunda görev alır (29). Aynı zamanda melanom kök (öncül) hücrelerinin gelişimi ve sağkalımında rol oynadığı düşünülmektedir MITF amplifikasyonunun, BRAF mutasyonu, p16ink4a kaybı ve metastatik melanomla ilişkili olduğu ve hasta sağkalımını düşürdüğü bilinmektedir (59). Primer ve metastatik melanomlarda MITF somatik nokta mutasyonlarına sık rastlanmamaktadır (60). GNAQ ve GNA11 Mutasyonları Uveal melanomlarda gözlenen GNAQ ve GNA11 mutasyonları farede hiperpigmentasyon ve dermal melanositoz ile ilişkilendirilmiştir. GNAQ varyantları protein kinaz C ve MAPK yolağını aktifleştirmekte ve hücreyi MEK inhibisyonuna duyarlı hale getirmektedir (61-63). Bu mutasyonların aktifleştirdiği MAPK yolağının inaktif hale getirilmesi hücre çoğalmasını azaltırken, hücre ölümünü arttırmaktadır (64). Sonuç Malign melanomun oluşumu ve ilerlemesinin temelinde yatan moleküler değişimlerin iyi anlaşılması, erken tanıda ve bu hastalığa karşı geliştirilen tedavi yaklaşımlarının etkinliğinde çok önemlidir. Bu derlemede bahsedilen

onkogen ve tümör baskılayıcı genlerdeki düzensizlikler hücre döngüsünü ve sinyal yolaklarını etkilemekte, bu durumda melanom oluşumuna ve ilerlemesine katkı sağlamaktadır. Bununla birlikte sadece mutasyonlar değil, epigenetik değişimlerde göz ardı edilmemesi gereken diğer bir yaklaşımdır. Günümüzde bu değişimlerin sadece birini hedeflemektense birkaç yolağı hedefleyerek melanoma hücresinin proliferasyonunu durdurmak daha akılcıl bir seçenek haline gelmiştir. Kaynaklar 1. Maio M., Melanoma as a model tumour for immuno-oncology. Annals of Oncology, 2012. 23: p. 10-14. 2. Goldstein A.M., Familial melanoma, pancreatic cancer and germline CDKN2A mutations. Hum Mutat, 2004. 23(6): p. 630. 3. Haluska F.G., Tsao H., Wu H., ve ark., Genetic alterations in signaling pathways in melanoma. Clin Cancer Res, 2006. 12(7 Pt 2): p. 2301s-2307s. 4. Stacey S.N., Gudbjartsson D.F., Sulem P., ve ark., Common variants on 1p36 and 1q42 are associated with cutaneous basal cell carcinoma but not with melanoma or pigmentation traits. Nat Genet, 2008. 40(11): p. 1313-8. 5. Brown K.M., Macgregor S., Montgomery G.W., ve ark., Common sequence variants on 20q11.22 confer melanoma susceptibility. Nat Genet, 2008. 40(7): p. 838-40. 6. Gandini S., Sera F., Cattaruzza M.S., ve ark., Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur J Cancer, 2005. 41(14): p. 2040-59. 7. Bale S.J., Dracopoli N.C., Tucker M.A., ve ark., Mapping the gene for hereditary cutaneous malignant melanoma-dysplastic nevus to chromosome 1p. N Engl J Med, 1989. 320(21): p. 1367-72. 8. Cannon-Albright L.A., Goldgar D.E., Meyer L.J., ve ark., Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. Science, 1992. 258(5085): p. 1148-52. 9. Hussussian C.J., Struewing J.P., Goldstein A.M., ve ark., Germline p16 mutations in familial melanoma. Nat Genet, 1994. 8(1): p. 15-21. 10. Soufir N., Avril M.F., Chompret A., ve ark., Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Human Molecular Genetics, 1998. 7(2): p. 209-16. 11. Jonsson A., Tuominen R., Grafstrom E., ve ark., High frequency of p16(ink4a) promoter methylation in NRAS-mutated cutaneous melanoma. J Invest Dermatol, 2010. 130(12): p. 2809-17. 12. Kamijo T., Weber J.D., Zambetti G., ve ark., Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci U S A, 1998. 95(14): p. 8292-7. 13. Stott F.J., Bates S., James M.C., ve ark., The alternative product from the human CDKN2A locus, p14(arf), participates in a regulatory feedback loop with p53 and MDM2. EMBO J, 1998. 17(17): p. 5001-14. 14. Chin L., Pomerantz J., Polsky D., ve ark., Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev, 1997. 11(21): p. 2822-34. 15. Gokce O., Dogan Turacli I., Ilke Onen H., ve ark., Flavopiridol Induces Apoptosis via Mitochondrial Pathway in B16F10 Murine Melanoma Cells and a Subcutaneous Melanoma Tumor Model. Acta Dermatovenerol Croat, 2016. 24(1): p. 2-12. 16. Muthusamy V., Hobbs C., Nogueira C., ve ark., Amplification of CDK4 and MDM2 in malignant melanoma. Genes Chromosomes Cancer, 2006. 45(5): p. 447-54. 17. Walker G.J., Flores J.F., Glendening J.M., ve ark., Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets. Genes Chromosomes Cancer, 1998. 22(2): p. 157-63. 18. Bastian B.C., The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol, 2014. 9: p. 239-71. 19. Houben R., Hesbacher S., Schmid C.P., ve ark., High-level expression of wildtype p53 in melanoma cells is frequently associated with inactivity in p53 reporter gene assays. PLoS One, 2011. 6(7): p. e22096. 20. Jiang X., Zhou J., Yuen N.K., ve ark., Imatinib targeting of KIT-mutant oncoprotein in melanoma. Clin Cancer Res, 2008. 14(23): p. 7726-32. 21. Curtin J.A., Busam K., Pinkel D., ve ark., Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol, 2006. 24(26): p. 4340-6. 22. Handolias D., Salemi R., Murray W., ve ark., Mutations in KIT occur at low frequency in melanomas arising from anatomical sites associated with chronic and intermittent sun exposure. Pigment Cell Melanoma Res, 2010. 23(2): p. 210-5. 23. Abildgaard C. ve Guldberg P., Molecular drivers of cellular metabolic reprogramming in melanoma. Trends Mol Med, 2015. 21(3): p. 164-71. 24. Hocker T. ve Tsao H., Ultraviolet radiation and melanoma: a systematic review and analysis of reported sequence variants. Hum Mutat, 2007. 28(6): p. 578-88. 25. Wan P.T., Garnett M.J., Roe S.M., ve ark., Mechanism of activation of the RAF- ERK signaling pathway by oncogenic mutations of B-RAF. Cell, 2004. 116(6): p. 855-67. 26. Davies H., Bignell G.R., Cox C., ve ark., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-54. 27. Pollock P.M., Harper U.L., Hansen K.S., ve ark., High frequency of BRAF mutations in nevi. Nat Genet, 2003. 33(1): p. 19-20. 28. Kumar R., Angelini S., Snellman E., ve ark., BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol, 2004. 122(2): p. 342-8. 29. Tsao H., Chin L., Garraway L.A., ve ark., Melanoma: from mutations to medicine. Genes Dev, 2012. 26(11): p. 1131-55. 30. Nazarian R., Shi H., Wang Q., ve ark., Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 2010. 468(7326): p. 973-7. 31. Villanueva J., Vultur A., Lee J.T., ve ark., Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell, 2010. 18(6): p. 683-95. 32. Solit D.B., Garraway L.A., Pratilas C.A., ve ark., BRAF mutation predicts sensitivity to MEK inhibition. Nature, 2006. 439(7074): p. 358-62. 33. Stark M.S., Woods S.L., Gartside M.G., ve ark., Frequent somatic mutations in MAP3K5 and MAP3K9 in metastatic melanoma identified by exome sequencing. Nat Genet, 2012. 44(2): p. 165-9. 34. Hodis E., Watson I.R., Kryukov G.V., ve ark., A landscape of driver mutations in melanoma. Cell, 2012. 150(2): p. 251-63. 35. Nikolaev S.I., Rimoldi D., Iseli C., ve ark., Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet, 2012. 44(2): p. 133-9. 36. Emery C.M., Vijayendran K.G., Zipser M.C., ve ark., MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci U S A, 2009. 106(48): p. 20411-6. 37. Ji Z., Flaherty K.T. vetsao H., Targeting the RAS pathway in melanoma. Trends in Molecular Medicine, 2012. 18(1): p. 27-35. 38. Curtin J.A., Fridlyand J., Kageshita T., ve ark., Distinct sets of genetic alterations in melanoma. N Engl J Med, 2005. 353(20): p. 2135-47. 39. Gajewski T.F., Salama A.K., Niedzwiecki D., ve ark., Phase II study of the farnesyltransferase inhibitor R115777 in advanced melanoma (CALGB 500104). J Transl Med, 2012. 10: p. 246. 40. Bennett D.C., Ultraviolet wavebands and melanoma initiation. Pigment Cell Melanoma Res, 2008. 21(5): p. 520-4. 41. Sharpless N.E., Kannan K., Xu J., ve ark., Both products of the mouse Ink4a/ Arf locus suppress melanoma formation in vivo. Oncogene, 2003. 22(32): p. 5055-9. 42. Bardeesy N., Bastian B.C., Hezel A., ve ark., Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol Cell Biol, 2001. 21(6): p. 2144-53. 43. Ackermann J., Frutschi M., Kaloulis K., ve ark., Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4adeficient background. Cancer Res, 2005. 65(10): p. 4005-11. 44. Nissan M.H., Pratilas C.A., Jones A.M., ve ark., Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence. Cancer Res, 2014. 74(8): p. 2340-50. 45. Andersen L.B., Fountain J.W., Gutmann D.H., ve ark., Mutations in the neurofibromatosis 1 gene in sporadic malignant melanoma cell lines. Nat Genet, 1993. 3(2): p. 118-21. 46. Yaman B., Akalin T. vekandiloglu G., Clinicopathological characteristics and mutation profiling in primary cutaneous melanoma. Am J Dermatopathol, 2015. 37(5): p. 389-97. 47. Hollander M.C., Blumenthal G.M. vedennis P.A., PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer, 2011. 11(4): p. 289-301. 48. Dai D.L., Martinka M. veli G., Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J Clin Oncol, 2005. 23(7): p. 1473-82.

49. Omholt K., Krockel D., Ringborg U., ve ark., Mutations of PIK3CA are rare in cutaneous melanoma. Melanoma Res, 2006. 16(2): p. 197-200. 50. Aguissa-Toure A.H. ve Li G., Genetic alterations of PTEN in human melanoma. Cell Mol Life Sci, 2012. 69(9): p. 1475-91. 51. Deng W., Gopal Y.N., Scott A., ve ark., Role and therapeutic potential of PI3K-mTOR signaling in de novo resistance to BRAF inhibition. Pigment Cell Melanoma Res, 2012. 25(2): p. 248-58. 52. Bastian B.C., Understanding the progression of melanocytic neoplasia using genomic analysis: from fields to cancer. Oncogene, 2003. 22(20): p. 3081-6. 53. Pollock P.M., Walker G.J., Glendening J.M., ve ark., PTEN inactivation is rare in melanoma tumours but occurs frequently in melanoma cell lines. Melanoma Res, 2002. 12(6): p. 565-75. 54. Stahl J.M., Cheung M., Sharma A., ve ark., Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res, 2003. 63(11): p. 2881-90. 55. Mirmohammadsadegh A., Marini A., Nambiar S., ve ark., Epigenetic silencing of the PTEN gene in melanoma. Cancer Res, 2006. 66(13): p. 6546-52. 56. Lin W.M., Baker A.C., Beroukhim R., ve ark., Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res, 2008. 68(3): p. 664-73. 57. Goel V.K., Lazar A.J., Warneke C.L., ve ark., Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Invest Dermatol, 2006. 126(1): p. 154-60. 58. Primot A., Mogha A., Corre S., ve ark., ERK-regulated differential expression of the Mitf 6a/b splicing isoforms in melanoma. Pigment Cell Melanoma Res, 2010. 23(1): p. 93-102. 59. Garraway L.A., Widlund H.R., Rubin M.A., ve ark., Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 2005. 436(7047): p. 117-22. 60. Cronin J.C., Wunderlich J., Loftus S.K., ve ark., Frequent mutations in the MITF pathway in melanoma. Pigment Cell Melanoma Res, 2009. 22(4): p. 435-44. 61. Van Raamsdonk C.D., Bezrookove V., Green G., ve ark., Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature, 2009. 457(7229): p. 599-602. 62. Van Raamsdonk C.D., Griewank K.G., Crosby M.B., ve ark., Mutations in GNA11 in uveal melanoma. N Engl J Med, 2010. 363(23): p. 2191-9. 63. Shoushtari A.N. ve Carvajal R.D., GNAQ and GNA11 mutations in uveal melanoma. Melanoma Res, 2014. 24(6): p. 525-34. 64. Ambrosini G., Pratilas C.A., Qin L.X., ve ark., Identification of unique MEKdependent genes in GNAQ mutant uveal melanoma involved in cell growth, tumor cell invasion, and MEK resistance. Clin Cancer Res, 2012. 18(13): p. 3552-61.