10. Ders. Mahir Bilen Can. Mayıs 20, Yarıbasit bir Lie cebirinin yapısını analiz etmeye devam ediyoruz. hatırlayınız:

Benzer belgeler
9. Ders. Mahir Bilen Can. Mayıs 19, 2016

12. Ders. Mahir Bilen Can. Mayıs 24, Son dersten hatırlayacağınız üzere simetrikleştirme operasyonundan elde ettiğimiz fonksiyon.

13. Ders. Mahir Bilen Can. Mayı 25, : α nın eş-kökü

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

3. Ders. Mahir Bilen Can. Mayıs 11, Önceki Dersteki Sorular ile İlgili Açıklamalar

11. Ders. Mahir Bilen Can. Mayıs 23, 2016

7. Ders. Mahir Bilen Can. Mayıs 17, 2016

Lecture 2. Mahir Bilen Can. Mayıs 10, 2016

10. DİREKT ÇARPIMLAR

VEKTÖR UZAYLARI 1.GİRİŞ

Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

İleri Diferansiyel Denklemler

DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

ÖZDEĞERLER- ÖZVEKTÖRLER

Cebir 1. MIT Açık Ders Malzemeleri

SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X) kuvvet. kümesi veriliyor. P (X) üzerinde 0 ; A = 1 ; A

Cebir 1. MIT Açık Ders Malzemeleri

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

İleri Diferansiyel Denklemler

MATEMATİK ANABİLİM DALI

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Özdeğer ve Özvektörler

13.Konu Reel sayılar

. [ ] vektörünü S deki vektörlerin bir lineer

DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKTRUMLARI ÜZERİNE

5. Ders. 1 Notasyon. Mahir Bilen Can. Mayıs 13, Bu derste klasik basit Lie cebirlerinin kompakt reel formlarının listesini tekrarlayacağız.

Math 103 Lineer Cebir Dersi Final Sınavı

Kuantum Grupları. Orta Doğu Teknik Üniversitesi, Ankara. Münevver Çelik. Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS

10.Konu Tam sayıların inşası

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

9. İZOMORFİZMA TEOREMLERİ VE EŞLENİK ELEMANLAR. Aşağıdaki teorem Homomorfizma teoremi olarak da bilinir.

Ders 8: Konikler - Doğrularla kesişim

8.Konu Vektör uzayları, Alt Uzaylar

Math 103 Lineer Cebir Dersi Ara Sınavı

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

Normal Alt Gruplar ve Bölüm Grupları...37

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

SORU 1: X bir sonsuz küme ve A da X kümesinin tüm sonlu alt kümelerinin. A := {B P (X) : B sonlu} SORU 2: X sayılamayan bir küme

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

Grup Homomorfizmaları ve

MAT 321SOYUT CEBİR I KONU TEKRAR SORULARI. ise < A > nedir?

Soru Toplam Puanlama Alınan Puan

Soyut Cebir. Prof. Dr. Dursun TAŞCI

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

Hamel Taban ve Boyut Teoremi

1. Ders. Mahir Bilen Can. May 9, 2016

Math 103 Lineer Cebir Dersi Ara Sınavı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

xy, de iki polinom verildiğinde bunların

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= Genel: Vektörler bölümünde vektörel iç çarpım;

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR.

13. Karakteristik kökler ve özvektörler

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

Math 103 Lineer Cebir Dersi Final Sınavı

Prof.Dr.F.Nejat EKMEKCİ, Prof. Dr. Yusuf YAYLI, BAHAR

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

MAT 302 SOYUT CEBİR II SORULAR. (b) = ise =

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur.

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

CEBİR ÇÖZÜMLÜ SORU BANKASI

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

ÜNİTE 1: TEMEL KAVRAMLAR

Math 103 Lineer Cebir Dersi Final Sınavı

Lineer Bağımlılık ve Lineer Bağımsızlık

Leyla Bugay Haziran, 2012

Sayı 31, Ağustos 2013 ISSN Lie Cebirleri İçin (Ön)Çaprazlanmış Modüller Üzerine. On (Pre)crossed Modules Over Lie Algebras

Leyla Bugay Doktora Nisan, 2011

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

ÖABT Lineer Cebir KONU TESTİ Matris Cebiri

Cebir Notları. Kümeler. Gökhan DEMĐR, KÜME KAVRAMI

İleri Diferansiyel Denklemler

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

İleri Diferansiyel Denklemler

Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

Normal Altgruplar ve Bölüm Grupları

İNJEKTİF MODÜLLERE. Ali Pancar Burcu Nişancı Türkmen

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

Cebir II 2008 Bahar

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Transkript:

10. Ders Mahir Bilen Can Mayıs 20, 2016 1 Yarıbasit Bir Lie Cebirinin Yapısı Hakkında Yarıbasit bir Lie cebirinin yapısını analiz etmeye devam ediyoruz. hatırlayınız: Kök uzay ayrışımını g = h χ Φ g χ. (1.1) Burada h bir maksimal simitsel altcebir ve ayrışım (1.1), V = g vektör uzayının bir h-modül (h değişmeli operatörlerden oluşmakta) olarak ortak özuzay ayrışımıdır. Bir kökü χ Φ sabitleyelim. x g χ için, öyle tek bir y g χ vardır ki (x, y, [x, y]), sl(2, k) nin bir kopyası s χ yi gersin. Dahası, y i öyle bir seçelim ki [x, y] = h χ olsun, burada h χ = Yukarıda t χ, h nin karakter χ ı belirleyen elemanıdır: 2t χ B(t χ, t χ ). (1.2) χ(h) = B(t χ, h) her h h için. Bu yüzden, χ(h χ ) = 2χ(t χ )/B(t χ, t χ ) = 2 olur. Aşağıdaki iddialarda bulunuyoruz; 1

1. Her χ Φ için, kök uzayı g χ 1-boyutludur ve s χ = g χ g χ [g χ, g χ ]. 2. Eğer χ Φ ise χ ın Φ de kalan tam sayı katları sadece χ ve χ dır. 3. χ, β Φ ise β(h χ ) Z ve β β(h χ )χ Φ olur. 4. χ + β Φ ise [g χ, g β ] = g χ+β olur. 5. Eğer β, χ Φ ve q, r; β + qχ ve β rχ ın kök olduğu en büyük tam sayılar olsun, o zaman β + iχ da bir kök olur ( r i q.) 6. g bir Lie cebiri olarak kök uzayları g χ lar tarafından gerilir. Bu iddialarımızı sıradaki altbölümde ispatlıyoruz. 1.1 İspatlar M = h + c k olarak tanımlayalım. M nin, s χ üzerine bir modül olduğu barizdir. z g cχ için [h χ, z] = cχ(h χ )z = 2cz olur. sl(2, k) nın bir kopyasının tüm ağırlıkları tam sayı olduğundan, görürüz ki 2c Z olmalı. Özel olarak, c bir tam sayının yarısı olmalıdır. χ bir karakter (k ya, örten homomorfizma) olduğundan, h deki çekirdeğinin ters boyutu bir ve h = ker χ kh χ olur. Açıktır ki s χ, ker χ ya bayağı etki eder ve dolayısıyla, h s χ, M nin bir alt temsili K dır. Yarıbasit Lie cebirlerinin temsilleri tamamıyla indirgenebilir olduğundan, h s χ ın M deki tamlayanına odaklanacağız. Bu tamlayanı K ile gösterelim. Eğer K K indirgenemez bir s χ modül ise onun ağırlıkları m, m + 2,..., m 2, m şeklinde tam sayılardır. 0, K ın ağırlığı olmadığından, sayılar m,..., m 2, m den hiç biri çift değildir. Özel olarak, görürüz ki K ağırlığı çift olan bir özuzayı içeremez, dolayısıyla bir kökün iki katı K da olmaz. Özel g cχ 2

olarak, 1χ kök olamaz. Son iddia m nin tek olamayacağını da ima eder, dolayısıyla 2 K = 0 olmalıdır. Sonuç olarak, h c k g cχ = M = h s χ olur ve bu da s χ = g χ g χ [g χ, g χ ] olduğunu ima eder. Dolayısıyla dim g χ = 1 ve χ ın, Φ de kalan diğer tek skalar katı χ olur. 3 ü ispatlamak için s χ = sl(2, k) nın K = i Z g β+iχ üzerine olan etkisine bakarız, burada β, ±χ dan farklı bir kök. Dikkat ediniz ki [g ±χ, g β+iχ ] g β+iχ±1 olduğundan, K bir s χ modüldür. J, K da olan sıfırdan farklı ağırlıkların β(h χ ) + 2i 0 (i Z) çoklu kümesi olsun. Aslında J nin küme olduğu açıktır (çoklu küme değil.) Tamamıyla indirgenebilir olmanın ışığında, görüyoruz ki K ya sl(2, k) nin indirgenemez bir temsilidir ya da { m, m+2,..., 2, 0, 2,..., m} ve { n,..., 1, 1,..., n} ağırlıklarına sahip iki tane sıfırdan farklı indirgenemez temsilin, K ve K, direkt toplamıdır. Ancak, herhangi bir ağırlık β(h χ ) + 2i (i Z) şeklindedir, dolayısıyla iki ağırlığın aralarındaki fark çifttir. Özel olarak, görüyoruz ki K indirgenemezdir ve ağırlıkları J = { m, m + 2,..., m 2, m} dir, burada m tek ya da çifttir. Yine de, q ve r negatif olmayan öyle tam sayılar olsun ki β(h χ ) + 2q = m, K nin maksimal ağırlığı ve β(h χ ) 2r = m de en küçük ağırlığı olsun. Bu yüzden, (β rχ)(h χ ) = (β + qχ)(h χ ), β(h χ ) = r q Z yi verir. Dahası, eğer r i q ise β(h χ ) + 2i { m, m + 2,..., m} olur ve dolayısıyla β + iχ bir köktür. K nin indirgenemezliğinin başka bir sonucu da χ + β 0 olması halinde [g χ, g β ] = g χ+β olmasıdır. 3

Son olarak 6 yı ispatlıyoruz: Önceki dersten biliyoruz ki Φ, h i gerer, denk olarak, {h χ h : χ Φ}, h yi gerer. [g χ, g χ ], h χ ile gerildiğinden, görürüz ki {g χ : χ Φ}, g yi bir Lie cebir olarak gerer. 2 Kök Sistemleri Φ nin temel özelliklerini (bir kez daha) listeliyoruz: 1. Φ sıfırdan farklı vektörlerin sonlu bir kümesidir. 2. h, Φ ile gerilir. 3. Eğer χ Φ ise, χ ın Φ de kalan tam sayı katları sadece χ ve χ dır. 4 (v.0). Eğer χ, β Φ ise β(h χ ) Z ve β β(h χ )χ Φ olur. Son madde (4) ü öyle bir değiştireceğiz ki g ye bağlı gibi gözükmesin. Bunu yapmak için, h in Φ ile gerilen altuzayını E ile gösterelim; E = χ Φ Rχ. E üzerinde doğal bir iç çarpım tanımlayacağız. Hatırlayınız ki Killing formu B, h üzerinde dejenere değildi. Bu yüzden E ye taşımak için iyi bir adayımız var. h daki iki keyfi vektör χ, β için, (χ, β) := B(t χ, t β ) olarak tanımlayalım, burada t χ, h nin χ(h) = B(t χ, h) (h h) ile tanımlanan tek elemanı (Bu mümkün çünkü Killing formu dejenere değil). üzerinde bir iç çarpım olduğunu ispatlamak direkt hesaplama ile mümkündür. Ayrıca, ( ) 2tχ β(h χ ) = β B(t χ, t χ ) olduğunu kontrol etmek de kolaydır. = 2 B(t β, t χ ) B(t χ, t χ ) = 2(β, χ) (χ, χ) (, ) ın E Ancak temel lineer cebirden biliyoruz ki (β,χ) χ, β nın χ tarafından gerilen doğruya izdüşümüdür. (χ,χ) Dolayısıyla, normal vektörü χ olan hiperdüzleme göre yansıma operatörü s χ : E E, ile verilir. (β, χ) s χ (β) = β 2 (χ, χ) χ Dördüncü maddeyi tekrar ifade etmek için hazırız: 4

4 (v.1). Eğer χ, β Φ ise 2 (β,χ) (χ,χ) Z ve s χ(β) = β 2 (β,χ) (χ,χ) χ Φ olur. Bir Öklid uzayındaki yukarıdaki özellikleri (1 3 ve 4(v.1)) sağlayan bir vektörler kümesine kök sistemi denir. Son koşul 4 (v.1), bir kök sistemine 4. katı yapısal özelliği getirir. Φ deki vektörlerin arasında mümkün olan açılara önemli bir kısıtlama getirir. (Hatırlayınız iki vektörün arasındaki açı θ, χ β cos θ = (χ, β) ile hesaplanabilir.) Notasyonu kolaylaştırmak için, 2 (β,χ) yı, β, χ ile gösterelim. (Dolayısıyla, β, χ = (χ,χ) β(h χ ) olur.) Bu yüzden, β, χ χ, β = 4(β, χ)2 (β, β)(χ, χ) = 4(β, χ)2 β 2 χ 2 = 4 cos2 θ olur. Bu sayı bir tam sayı olduğundan ancak asağıdaki olasılıklar mümkündür: Açı χ, β β, χ π/2 0 0 π/3 1 1 2π/3-1 -1 π/4 1 2 3π/4-1 -2 π/6 1 3 5π/6-1 -3 Tablodan ve s χ ın tanımından görebiliriz ki iki tane birbiriyle orantılı olmayan kök χ, β Φ için, eğer (χ, β) < 0 ise χ + β Φ olur; eğer (χ, β) > 0 ise χ β Φ olur. Tablo bize ayrıca der ki, eğer χ sabitse, o zaman her β Φ için 3 β, χ 3 olur. Buradan da görebiliriz ki eğer χ ve β sabitlenmişse, β + iχ şeklinde görülen vektörlerden en fazla 4 tanesi Φ de kalır. (4, G 2 kök sistemi tarafından sağlanır. Bu kök sistemini yakında vereceğiz.) 5

3 Weyl Grupları Φ bir kök sistemi olsun. Yansıma operatörleri s χ, χ Φ ile gerilen sonlu gruba Φ nin (ve g nin) Weyl grubu denir. Weyl grupları daha genel olan Coxeter gruplarının özel halleridir. Kabaca ifade etmek gerekirse, bir grup W, kıvrılmalardan (derecesi 2 olan elemanlardan) oluşan bir alt kümesi S W tarafından üretiliyorsa W ya Coxeter grubu denir. Daha açık bir şekilde, W nun gösterimi s 2 = id her s S için, ve (ss ) m ss = id, burada W = s S : m ss {2, 3,..., } her birbirinden farklı s, s S için şeklindeyse, Coxeter grubu olarak adlandırılır. Coxeter gruplarıyla ilgili bir ek bölüm İngilizce olarak hazırdır. Bu dersin geri kalanı o notlarda bulunmaktadır. References [1] Humphreys, J. Introduction to Lie Algebras and Representation Theory 6