HOMOGEN OLMAYAN DENKLEMLER

Benzer belgeler
İkinci Mertebeden Lineer Diferansiyel Denklemler

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y

1 Lineer Diferansiyel Denklem Sistemleri

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir.

İleri Diferansiyel Denklemler

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar)

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Birinci Mertebeden Diferansiyel Denklemler Edwards and Penney, Difarensiyel denklemler ve sınır değer problemleri (çeviri: Prof. Dr.

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması.

Math 322 Diferensiyel Denklemler Ders Notları 2012

İleri Diferansiyel Denklemler

Sınav süresi 75 dakika. Student ID # / Öğrenci Numarası

Özdeğer ve Özvektörler

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

İleri Diferansiyel Denklemler

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Diferensiyel Denklemler I Uygulama Notları

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Yüksek Mertebeden Diferansiyel Denklemler. İkinci Mertebeden. İndirgenebilir Diferansiyel Denklemler

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

MATE 409 SAYILAR TEORİSİ BÖLÜM: 8. Muazzez Sofuoğlu Nebil Tamcoşar

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

İKİNCİ DERECEDEN DENKLEMLER

Lineer Bağımlılık ve Lineer Bağımsızlık

İleri Diferansiyel Denklemler

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

İleri Diferansiyel Denklemler

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

İleri Diferansiyel Denklemler

VEKTÖR UZAYLARI 1.GİRİŞ

Diferansiyel denklemler uygulama soruları

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

İleri Diferansiyel Denklemler

Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz.

13. Karakteristik kökler ve özvektörler

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

LYS MATEMATİK DENEME - 1

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır.

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İleri Diferansiyel Denklemler

Lineer Denklem Sistemleri

TÜREV VE UYGULAMALARI

Yeşilköy Anadolu Lisesi

İleri Diferansiyel Denklemler

DENKLEM DÜZENEKLERI 1

İleri Diferansiyel Denklemler

Cebirsel Fonksiyonlar

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES)

İleri Diferansiyel Denklemler

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

x 0 = A(t)x + B(t) (2.1.2)

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun

İleri Diferansiyel Denklemler

TÜREV VE UYGULAMALARI

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı

8.Konu Vektör uzayları, Alt Uzaylar

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

MAK 210 SAYISAL ANALİZ

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

MAK 210 SAYISAL ANALİZ

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 2011 Süre: 90 dakika CEVAP ANAHTARI. y = c n x n+r. (n + r) c n x n+r 1 +

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları

Kübik Spline lar/cubic Splines

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

İleri Diferansiyel Denklemler

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

Özdeşlikler, Denklemler ve Eşitsizlikler

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite

13.Konu Reel sayılar

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

Örnek 1: 2 x = 3 x = log 2 3. Örnek 2: 3 2x 1 = 2 2x 1 = log 3 2. Örnek 3: 4 x 1 = 7 x 1 = log 4 7. Örnek 4: 2 x = 3 2 x 2 = 3

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Grup Homomorfizmaları ve

MAK 210 SAYISAL ANALİZ

Ayrık zamanlı sinyaller için de ayrık zamanlı Fourier dönüşümleri kullanılmatadır.

Şeklinde çok sayıda diferansiyel denklemden oluşan denklem sistemleridir. Denklem sayısı = bağımlı değişken eşitliği sağlanmasıdır.

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

Yrd. Doç. Dr. A. Burak İNNER

Transkript:

n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = 0 (2) olduğunu biliyoruz. Öğr.Gör.Dr. A. Sevimlican 1/ 20

Teorem p i ve f fonksiyonları I açık aralığında sürekli olmak üzere yö, (1) denkleminin bir özel çözümü ve y 1, y 2,..., y n fonksiyonları (2) denkleminin I aralığı üzerindeki her x I için lineer bağımsız çözümleri ise c 1, c 2,..., c n keyfi sabitler olmak üzere y g (x) = c 1 y 1 (x) + c 2 y 2 (x) + + c n y n (x) + yö(x) (1) denkleminin genel çözümüdür. Öğr.Gör.Dr. A. Sevimlican 2/ 20

Teorem e göre y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) diferansiyel denkleminin genel çözümü, ilgili homogen denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = 0 (2) genel çözümü y h (x) = c 1 y 1 (x) + c 2 y 2 (x) + + c n y n (x) ile (1) denkleminin bir özel çözümünün yö(x) toplamı olacağıdır. Öğr.Gör.Dr. A. Sevimlican 3/ 20

ÖRNEK y + 4y = 12x diferansiyel denklemini ele alalım. Öğr.Gör.Dr. A. Sevimlican 4/ 20

ÖRNEK y + 4y = 12x diferansiyel denklemini ele alalım. Bu denklemle ilgili homogen denklem Öğr.Gör.Dr. A. Sevimlican 4/ 20

ÖRNEK y + 4y = 12x diferansiyel denklemini ele alalım. Bu denklemle ilgili homogen denklem denklemidir y + 4y = 0 Öğr.Gör.Dr. A. Sevimlican 4/ 20

ÖRNEK y + 4y = 12x diferansiyel denklemini ele alalım. Bu denklemle ilgili homogen denklem y + 4y = 0 denklemidir ve bu homogen denklemin genel çözümü Öğr.Gör.Dr. A. Sevimlican 4/ 20

ÖRNEK y + 4y = 12x diferansiyel denklemini ele alalım. Bu denklemle ilgili homogen denklem y + 4y = 0 denklemidir ve bu homogen denklemin genel çözümü c 1 cos 2x + c 2 sin 2x olarak bulunabilir (y h (x)). Öğr.Gör.Dr. A. Sevimlican 4/ 20

ÖRNEK y + 4y = 12x diferansiyel denklemini ele alalım. Bu denklemle ilgili homogen denklem y + 4y = 0 denklemidir ve bu homogen denklemin genel çözümü c 1 cos 2x + c 2 sin 2x olarak bulunabilir (y h (x)). y = 3x fonksiyonun homogen olmayan denklemi sağladığı kolayca gösterilebilir. Öğr.Gör.Dr. A. Sevimlican 4/ 20

ÖRNEK y + 4y = 12x diferansiyel denklemini ele alalım. Bu denklemle ilgili homogen denklem y + 4y = 0 denklemidir ve bu homogen denklemin genel çözümü c 1 cos 2x + c 2 sin 2x olarak bulunabilir (y h (x)). y = 3x fonksiyonun homogen olmayan denklemi sağladığı kolayca gösterilebilir. Yani y = 3x fonksiyonu denklemimiz için bir özel çözümdür (yö(x)). Öğr.Gör.Dr. A. Sevimlican 4/ 20

ÖRNEK y + 4y = 12x diferansiyel denklemini ele alalım. Bu denklemle ilgili homogen denklem y + 4y = 0 denklemidir ve bu homogen denklemin genel çözümü c 1 cos 2x + c 2 sin 2x olarak bulunabilir (y h (x)). y = 3x fonksiyonun homogen olmayan denklemi sağladığı kolayca gösterilebilir. Yani y = 3x fonksiyonu denklemimiz için bir özel çözümdür (yö(x)). Teoreme göre homogen olmayan denklemin genel çözümü (y g (x)) y g (x) = y h (x) + yö(x) Öğr.Gör.Dr. A. Sevimlican 4/ 20

ÖRNEK y + 4y = 12x diferansiyel denklemini ele alalım. Bu denklemle ilgili homogen denklem y + 4y = 0 denklemidir ve bu homogen denklemin genel çözümü c 1 cos 2x + c 2 sin 2x olarak bulunabilir (y h (x)). y = 3x fonksiyonun homogen olmayan denklemi sağladığı kolayca gösterilebilir. Yani y = 3x fonksiyonu denklemimiz için bir özel çözümdür (yö(x)). Teoreme göre homogen olmayan denklemin genel çözümü (y g (x)) y g (x) = y h (x) + yö(x) = c 1 cos 2x + c 2 sin 2x + 3x olarak yazılabilir. Öğr.Gör.Dr. A. Sevimlican 4/ 20

Sonuç olarak n. mertebeden homogen olmayan lineer bir diferansiyel denklemin çözümünü bulmak istiyorsak, bu denklemle ilgili n. mertebeden homogen denklemin genel çözümünü bulmamız ve homogen olmayan denklemin bir özel çözümünü elde etmemiz gerek. Öğr.Gör.Dr. A. Sevimlican 5/ 20

Sonuç olarak n. mertebeden homogen olmayan lineer bir diferansiyel denklemin çözümünü bulmak istiyorsak, bu denklemle ilgili n. mertebeden homogen denklemin genel çözümünü bulmamız ve homogen olmayan denklemin bir özel çözümünü elde etmemiz gerek. Bir önceki bölümde n. mertebeden sabit katsayılı homogen lineer denklemlerin genel çözümlerini bulmayı öğrenmiştik. Bu bölümde homogen olamayan sabit katsayılı lineer denklemlerin çözümünü inceleyeceğiz. İlgili homogen denklemin genel çözümünü bulabildiğimize göre işimiz sadece homogen olmayan denklem için özel çözüm bulmaktır. Öğr.Gör.Dr. A. Sevimlican 5/ 20

Belirsiz Katsayılar Metodu y (n) + a 1 y (n 1) + + a n 1 y + a n y = f(x) (1) (1) denklemindeki f(x) fonksiyonu yö nin genel şekli için bir tahmin yapabileceğimiz kadar basit verilmiş ise, belirsiz katsayılar metodu yö yi bulmak için bir yoldur. İlk olarak f(x) veya onun herhangi bir türevinde bulunan hiçbir terimin homogen denklemi sağlamadığını kabul edelim. Öğr.Gör.Dr. A. Sevimlican 6/ 20

f(x) fonksiyonu m. dereceden bir polinom ise, özel çözüm yö aşağıdaki gibi seçilir yö(x) = A m x m + A m 1 x m 1 +... + A 1 x + A 0 ve A m, A m 1,..., A 1, A 0 bilinmeyenleri bulunur. Öğr.Gör.Dr. A. Sevimlican 7/ 20

ÖRNEK y + 3y + 4y = 3x + 2 diferansiyel denklemin bir özel çözümünü bulalım. Öğr.Gör.Dr. A. Sevimlican 8/ 20

ÖRNEK y + 3y + 4y = 3x + 2 diferansiyel denklemin bir özel çözümünü bulalım. Burada f(x) = 3x + 2 şeklinde 1. dereceden bir polinomdur. Öğr.Gör.Dr. A. Sevimlican 8/ 20

ÖRNEK y + 3y + 4y = 3x + 2 diferansiyel denklemin bir özel çözümünü bulalım. Burada f(x) = 3x + 2 şeklinde 1. dereceden bir polinomdur. Böylece bizim özel çözümümüz dir. yö(x) = A 1 x + A 0 Öğr.Gör.Dr. A. Sevimlican 8/ 20

ÖRNEK y + 3y + 4y = 3x + 2 diferansiyel denklemin bir özel çözümünü bulalım. Burada f(x) = 3x + 2 şeklinde 1. dereceden bir polinomdur. Böylece bizim özel çözümümüz yö(x) = A 1 x + A 0 dir.diferansiyel denklemimizde yerine yazıp A 1, A 0 bilinmeyenlerini bulalım. Öğr.Gör.Dr. A. Sevimlican 8/ 20

Öğr.Gör.Dr. A. Sevimlican 9/ 20

y ö(x) Öğr.Gör.Dr. A. Sevimlican 9/ 20

y ö(x) = A 1 Öğr.Gör.Dr. A. Sevimlican 9/ 20

y ö(x) = A 1 y ö(x) Öğr.Gör.Dr. A. Sevimlican 9/ 20

y ö(x) = A 1 Yerlerine yazılırsa y ö(x) = 0 Öğr.Gör.Dr. A. Sevimlican 9/ 20

y ö(x) = A 1 Yerlerine yazılırsa y ö(x) = 0 0 Öğr.Gör.Dr. A. Sevimlican 9/ 20

y ö(x) = A 1 Yerlerine yazılırsa y ö(x) = 0 0 + 3 Öğr.Gör.Dr. A. Sevimlican 9/ 20

y ö(x) = A 1 Yerlerine yazılırsa y ö(x) = 0 0 + 3A 1 Öğr.Gör.Dr. A. Sevimlican 9/ 20

y ö(x) = A 1 Yerlerine yazılırsa y ö(x) = 0 0 + 3A 1 + 4 Öğr.Gör.Dr. A. Sevimlican 9/ 20

y ö(x) = A 1 Yerlerine yazılırsa y ö(x) = 0 0 + 3A 1 + 4(A 1 x + A 0 ) Öğr.Gör.Dr. A. Sevimlican 9/ 20

y ö(x) = A 1 Yerlerine yazılırsa y ö(x) = 0 0 + 3A 1 + 4(A 1 x + A 0 ) = 3x + 2 Öğr.Gör.Dr. A. Sevimlican 9/ 20

y ö(x) = A 1 Yerlerine yazılırsa y ö(x) = 0 0 + 3A 1 + 4(A 1 x + A 0 ) = 3x + 2 Düzenlersek; 4A 1 x + 3A 1 + 4A 0 = 3x + 2 Öğr.Gör.Dr. A. Sevimlican 9/ 20

y ö(x) = A 1 Yerlerine yazılırsa y ö(x) = 0 Düzenlersek; 0 + 3A 1 + 4(A 1 x + A 0 ) = 3x + 2 4A 1 x + 3A 1 + 4A 0 = 3x + 2 Polinomların eşitliğini kullanarak A 1 = 3 4 ve A 0 = 1 16 bulunur. Öğr.Gör.Dr. A. Sevimlican 9/ 20

y ö(x) = A 1 Yerlerine yazılırsa y ö(x) = 0 Düzenlersek; 0 + 3A 1 + 4(A 1 x + A 0 ) = 3x + 2 4A 1 x + 3A 1 + 4A 0 = 3x + 2 Polinomların eşitliğini kullanarak A 1 = 3 4 ve A 0 = 1 16 bulunur.böylece özel çözümümüz olarak bulunur. yö(x) = 3 4 x 1 16 Öğr.Gör.Dr. A. Sevimlican 9/ 20

f(x) = a cos kx + b sin kx, şeklinde ise, özel çözüm yö aşağıdaki gibi seçilir yö(x) = A cos kx + B sin kx ve A, B bilinmeyenleri bulunur. Öğr.Gör.Dr. A. Sevimlican 10/ 20

ÖRNEK y + y 2y = 2 cos x diferansiyel denklemin bir özel çözümünü bulalım. Öğr.Gör.Dr. A. Sevimlican 11/ 20

ÖRNEK y + y 2y = 2 cos x diferansiyel denklemin bir özel çözümünü bulalım. Burada f(x) = 2 cos x. Öğr.Gör.Dr. A. Sevimlican 11/ 20

ÖRNEK y + y 2y = 2 cos x diferansiyel denklemin bir özel çözümünü bulalım. Burada f(x) = 2 cos x. Böylece bizim özel çözümümüz dir. yö(x) = A cos x + B sin x Öğr.Gör.Dr. A. Sevimlican 11/ 20

ÖRNEK y + y 2y = 2 cos x diferansiyel denklemin bir özel çözümünü bulalım. Burada f(x) = 2 cos x. Böylece bizim özel çözümümüz yö(x) = A cos x + B sin x dir.diferansiyel denklemimizde yerine yazıp A, B bilinmeyenlerini bulalım. Öğr.Gör.Dr. A. Sevimlican 11/ 20

Öğr.Gör.Dr. A. Sevimlican 12/ 20

y ö(x) Öğr.Gör.Dr. A. Sevimlican 12/ 20

y ö(x) = A sin x + B cos x Öğr.Gör.Dr. A. Sevimlican 12/ 20

y ö(x) = A sin x + B cos x y ö(x) Öğr.Gör.Dr. A. Sevimlican 12/ 20

y ö(x) = A sin x + B cos x Yerlerine yazılırsa y ö(x) = A cos x B sin x Öğr.Gör.Dr. A. Sevimlican 12/ 20

y ö(x) = A sin x + B cos x Yerlerine yazılırsa y ö(x) = A cos x B sin x ( A cos x B sin x) Öğr.Gör.Dr. A. Sevimlican 12/ 20

y ö(x) = A sin x + B cos x Yerlerine yazılırsa y ö(x) = A cos x B sin x ( A cos x B sin x)+ Öğr.Gör.Dr. A. Sevimlican 12/ 20

y ö(x) = A sin x + B cos x Yerlerine yazılırsa y ö(x) = A cos x B sin x ( A cos x B sin x)+( A sin x+b cos x) Öğr.Gör.Dr. A. Sevimlican 12/ 20

y ö(x) = A sin x + B cos x Yerlerine yazılırsa y ö(x) = A cos x B sin x ( A cos x B sin x)+( A sin x+b cos x) 2 Öğr.Gör.Dr. A. Sevimlican 12/ 20

y ö(x) = A sin x + B cos x Yerlerine yazılırsa y ö(x) = A cos x B sin x ( A cos x B sin x)+( A sin x+b cos x) 2(A cos x+b sin x) Öğr.Gör.Dr. A. Sevimlican 12/ 20

y ö(x) = A sin x + B cos x Yerlerine yazılırsa y ö(x) = A cos x B sin x ( A cos x B sin x)+( A sin x+b cos x) 2(A cos x+b sin x) = 2 cos x Öğr.Gör.Dr. A. Sevimlican 12/ 20

y ö(x) = A sin x + B cos x Yerlerine yazılırsa y ö(x) = A cos x B sin x ( A cos x B sin x)+( A sin x+b cos x) 2(A cos x+b sin x) = 2 cos x Düzenlersek; (B 3A) cos x + ( A 3B) sin x = 2 cos x Öğr.Gör.Dr. A. Sevimlican 12/ 20

y ö(x) = A sin x + B cos x Yerlerine yazılırsa y ö(x) = A cos x B sin x ( A cos x B sin x)+( A sin x+b cos x) 2(A cos x+b sin x) = 2 cos x Düzenlersek; (B 3A) cos x + ( A 3B) sin x = 2 cos x Yine katsayılar eşitliğini kullanarak A = 3 5 ve B = 1 5 bulunur. Öğr.Gör.Dr. A. Sevimlican 12/ 20

y ö(x) = A sin x + B cos x Yerlerine yazılırsa y ö(x) = A cos x B sin x ( A cos x B sin x)+( A sin x+b cos x) 2(A cos x+b sin x) = 2 cos x Düzenlersek; (B 3A) cos x + ( A 3B) sin x = 2 cos x Yine katsayılar eşitliğini kullanarak A = 3 5 ve B = 1 5 bulunur.böylece özel çözümümüz olarak bulunur. yö(x) = 3 5 cos x + 1 5 sin x Öğr.Gör.Dr. A. Sevimlican 12/ 20

f(x) = e kx, şeklinde ise, özel çözüm yö aşağıdaki gibi seçilir ve A bilinmeyeni bulunur. yö(x) = Ae kx Öğr.Gör.Dr. A. Sevimlican 13/ 20

ÖRNEK y 4y = 2e 3x diferansiyel denklemin bir özel çözümünü bulalım. Öğr.Gör.Dr. A. Sevimlican 14/ 20

ÖRNEK y 4y = 2e 3x diferansiyel denklemin bir özel çözümünü bulalım. Burada f(x) = 2e 3x. Öğr.Gör.Dr. A. Sevimlican 14/ 20

ÖRNEK y 4y = 2e 3x diferansiyel denklemin bir özel çözümünü bulalım. Burada f(x) = 2e 3x. Böylece bizim özel çözümümüz yö(x) = Ae 3x dir. Öğr.Gör.Dr. A. Sevimlican 14/ 20

ÖRNEK y 4y = 2e 3x diferansiyel denklemin bir özel çözümünü bulalım. Burada f(x) = 2e 3x. Böylece bizim özel çözümümüz yö(x) = Ae 3x dir.diferansiyel denklemimizde yerine yazıp A bilinmeyenini bulalım. Öğr.Gör.Dr. A. Sevimlican 14/ 20

Öğr.Gör.Dr. A. Sevimlican 15/ 20

y ö(x) Öğr.Gör.Dr. A. Sevimlican 15/ 20

y ö(x) = 3Ae 3x Öğr.Gör.Dr. A. Sevimlican 15/ 20

y ö(x) = 3Ae 3x y ö(x) Öğr.Gör.Dr. A. Sevimlican 15/ 20

y ö(x) = 3Ae 3x Yerlerine yazılırsa y ö(x) = 9Ae 3x Öğr.Gör.Dr. A. Sevimlican 15/ 20

y ö(x) = 3Ae 3x Yerlerine yazılırsa y ö(x) = 9Ae 3x (9Ae 3x ) Öğr.Gör.Dr. A. Sevimlican 15/ 20

y ö(x) = 3Ae 3x Yerlerine yazılırsa y ö(x) = 9Ae 3x (9Ae 3x ) 4 Öğr.Gör.Dr. A. Sevimlican 15/ 20

y ö(x) = 3Ae 3x Yerlerine yazılırsa y ö(x) = 9Ae 3x (9Ae 3x ) 4(Ae 3x ) Öğr.Gör.Dr. A. Sevimlican 15/ 20

y ö(x) = 3Ae 3x Yerlerine yazılırsa y ö(x) = 9Ae 3x (9Ae 3x ) 4(Ae 3x ) = 2e 3x Öğr.Gör.Dr. A. Sevimlican 15/ 20

y ö(x) = 3Ae 3x Yerlerine yazılırsa y ö(x) = 9Ae 3x (9Ae 3x ) 4(Ae 3x ) = 2e 3x Düzenlersek; (5A)e 3x = 2e 3x Öğr.Gör.Dr. A. Sevimlican 15/ 20

y ö(x) = 3Ae 3x Yerlerine yazılırsa y ö(x) = 9Ae 3x (9Ae 3x ) 4(Ae 3x ) = 2e 3x Düzenlersek; Buradan A = 2 5 bulunur. (5A)e 3x = 2e 3x Öğr.Gör.Dr. A. Sevimlican 15/ 20

y ö(x) = 3Ae 3x Yerlerine yazılırsa y ö(x) = 9Ae 3x (9Ae 3x ) 4(Ae 3x ) = 2e 3x Düzenlersek; Buradan A = 2 5 (5A)e 3x = 2e 3x bulunur.böylece özel çözümümüz olarak bulunur. yö(x) = 2 5 e3x Öğr.Gör.Dr. A. Sevimlican 15/ 20

Belirsiz katsayılar metodu, (1) denklemindeki f(x) fonksiyonun aşağıdaki üç tip fonksiyon (sonlu) çarpımlarının bir lineer birleşimi olması durumunda uygulanır. x e göre polinom e ax tipi üstel fonksiyon cos (ax + b) ya da sin (ax + b) Öğr.Gör.Dr. A. Sevimlican 16/ 20

Tanim x n, n 0 pozitif tmasayı e ax cos (ax + b) ya da sin (ax + b) fonksiyonlarından birisi veya bunların lineer kombinasyonuna, BK (Belirsiz Katsayılar) fonksiyonu denir. Öğr.Gör.Dr. A. Sevimlican 17/ 20

Tanim f nin kendisinden ve ardışık türevlerini lineer birleşimleri ile oluşturulan diğer lineer bağımsız BK fonksiyonlarından oluşan kümeye, f in BK kümesi denir. BK fonksiyonu BK kümesi 1. x n {x n, x n 1,, x, 1} 2. e ax {e ax } 3. cos (ax + b) ya da sin (ax + b) {cos (ax + b), sin (ax + b)} 4. x n e ax {x n e ax, x n 1 e ax,, xe ax, e ax } 5. e ax cos (ax + b) {e ax cos (ax + b), e ax sin (ax + b)} Öğr.Gör.Dr. A. Sevimlican 18/ 20

Belirsiz Katsayılar Yöntemi n. mertebeden homogen olmayan sabit katsayılı bir diferansiyel denklemde y (n) + a 1 y (n 1) + + a n 1 y + a n y = f(x) (3) f(x); u 1, u 2,, u m BK fonksiyonlarının lineer birleşimi olsun (f(x) = c 1 u 1 + c 2 u 2 + + c m u m ) u 1, u 2,..., u m BK fonksiyonlarına karşılık gelen S 1, S 2,..., S m, BK kümelerini belirleyelim Denk veya birbirinde içerilen kümeleri elemine edelim veya üst kümeyi seçelim. BK kümelerinin elemanları homogen kısmının çözümünde olmayacak sekilde x in en küçük kuvveti ile çarpıp kümeyi tekrar oluşturalım. Özel çözümü bu BK fonksiyonlarının lineer birleşimi olduğunu varsayıp özel çözümün yapısını belirleyelim. Lineer birleşimdeki bilinmeyen katsayıları denklemde yerine yazarak bulalım. Öğr.Gör.Dr. A. Sevimlican 19/ 20

ÖRNEK y 3y + 2y = 3e x diferansiyel denkleminin genel çözümünü elde ediniz. ÇÖZÜM Öğr.Gör.Dr. A. Sevimlican 20/ 20