30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )"

Transkript

1 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II DERSİ ÖDEV 4 Soru I: Aşağıda verilen dönüşümlerin lineer olup olmadığını gösteriniz. ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x 4, x + x 3x 3 ) ) L : R 4 R 3, L(x, x, x 3, x 4 ) = (x x 3 + x 4, x 3x 3 + x 4, x + x + x 3 ) 3) L : P x R 3, L(a + a x + a x ) = (a, a, a ) 4) L : P n x R, L(a + a x + a ( x a n x) n + a n x n ) = x(a + a x (n )a n x n + na n x n ) + a 5) L : R R x x, L = (x x 3 x + x 4, x + x 3 ) 4 Çözüm: ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x, x + x 3x 3 ) Verilen dönüşümün lineer olduğunu göstermek için her x = (x, x, x 3 ), y = (y, y, y 3 ) R 3 vektörleri ve a, b R skalerleri için L(ax + by) = al(x) + bl(y) olduğunu gösterecğiz. al(x) = a( 3x + x 3 4x, x + x 3x 3 ) = ( a3x + ax 3 4ax, ax + ax 3ax 3 ) bl(y) = b( 3y + y 3 4y, y + y 3y 3 ) = ( b3y + by 3 4by, by + by 3by 3 ) al(x) + bl(y) = ( a3x + ax 3 4ax 3by + by 3 4by, ax + ax 3ax 3 by + by 3by 3 ) () L(ax + by) = ( a3x + ax 3 4ax b3y + by 3 4by, ax + ax 3ax 3 by + by 3by 3 ) () () ve () denklemleri eşit olduğundan verilen dönüşüm lineerdir. ) L : R 4 R 3, L(x, x, x 3, x 4 ) = (x x 3 + x 4, x 3x 3 + x 4, x + x + x 3 ) Verilen dönüşümün lineer olduğunu göstermek için her x = (x, x, x 3, x 4 ), y = (y, y, y 3, y 4 ) R 3 vektörleri ve a, b R skalerleri için L(ax + by) = al(x) + bl(y) olduğunu gösterecğiz. al(x) = a(x x 3 + x 4, x 3x 3 + x 4, x + x + x 3 ) = (ax ax 3 + ax 4, ax 3ax 3 + ax 4, ax + ax + ax 3 ) bl(y) = b(y y 3 + y 4, y 3y 3 + y 4, y + y + y 3 ) = (by by 3 + by 4, by 3by 3 + by 4, by + by + by 3 ) al(x) + bl(y) = (ax ax 3 + ax 4 + by by 3 + by 4, ax 3ax 3 + ax 4 by 3by 3 + by 4, ax + ax + ax 3 + by + by + by 3 ) L(ax + by) = ( a3x + ax 3 4ax 4 b3y + by 3 4by 4, (4) ax + ax 3ax 3 by + by 3by 3 ) (3) ve (4) denklemleri eşit olduğundan verilen dönüşüm lineerdir. 3) L : P x R 3, L(a + a x + a x ) = (a, a, a ) Verilen dönüşümün lineer olduğunu göstermek için her f(x) = a + a x + a x, g(x) = b + b x + b x P x vektörleri ve A, B R skalerleri için L(Af(x) + Bg(x)) = AL(f(x)) + BL(g(x)) olduğunu gösterecğiz. AL(f(x)) = A(a, a, a ) = (Aa, Aa, Aa ) BL(g(x)) = B(b, b, b ) = (Bb, Bb, Bb ) AL(f(x)) + BL(g(x)) = (Aa + Bb, Aa + Bb, Aa + Bb ) (5) L(Af(x) + Bg(x)) = L(Aa + Bb + Aa x + Bb x + Aa x + Bb x ) = (Aa + Bb, Aa + Bb, Aa + Bb ) (6) (3)

2 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II D (5) ve (6) denklemleri eşit olduğundan verilen dönüşüm lineerdir. 4) L : P n x R, L(a + a x + a x a n x n + a n x n ) = x(a + a x (n )a n x n + na n x n ) + a Verilen dönüşümün lineer olduğunu göstermek için her f(x) = a + a x + a x a n x n + a n x n, g(x) = b + b x + b x b n x n + b n x n P n x vektörleri ve A, B R skalerleri için L(Af(x) + Bg(x)) = AL(f(x)) + BL(g(x)) olduğunu gösterecğiz. AL(f(x)) = A(x(a + a x (n )a n x n + na n x n ) + a ) = Ax(a + a x (n )a n x n + na n x n ) + a BL(g(x)) = B(x(b +b x+...+(n )b n x n +nb n x n )+b ) = Bx(b +b x+...+(n )b n x n + nb n x n ) + b AL(f(x)) + BL(g(x)) = Ax(a + a x (n )a n x n + na n x n ) + a +Bx(b + b x (n )b n x n + nb n x n ) + b (7) L(Af(x) + Bg(x)) = L(A(a + a x + a x a n x n + a n x n ) + B(b + b x + b x b n x n + b n x n )) = L(Aa + Bb + (Aa + Bb )x + (Aa + Bb )x (Aa n + Bb n )x n + (Aa n + Bb n )x n ) = xaa + Bb + (Aa + Bb )x Ana n + Bnb n )x n + Aa + Bb (8) (7) ve (8) denklemleri ( eşit olduğundan ) verilen dönüşüm lineerdir. 5) L : R R x x, L = (x x 3 x + x 4, x + x 3 ) 4 x x Verilen dönüşümün lineer olduğunu göstermek için her A = x 3 x 4, B = ve a, b R skalerleri için L(Aa + Bb) = al(a) + bl(b) olduğunu gösterecğiz. al(a) = a(x + x 4, x + x 3 ) = (ax + ax 4, ax + ax 3 ) bl(b) = b(y + y 4, y + y 3 ) = (by + by 4, by + by 3 ) L(aA + bb) y y matrisleri y 3 y 4 al(a) + bl(b) = (ax + ax 4 + by + by 4, ax + ax 3 + by + by 3 ) (9) ( ) ax ax = L by by + = (ax ax 3 ax 4 by 3 by + by + ax 4 + by 4, ax + by + ax 3 + by 3 ) () 4 (9) ve () denklemleri eşit olduğundan verilen dönüşüm lineerdir. Soru II: Aşağıda verilen lineer dönüşümlerin a) Çekirdeğini, çekirdeğinin bir bazını (tabanını ) ve sıfırlığını (dim Ker L) yi bulunuz. b) Görüntü kümesini, görüntü kümesinin bir bazını (tabanını ) ve rankını (dim Im L) yi bulunuz. c) Tanım kümesinin boyutunu bulunuz. Bu dönüşümler (bire bir) ve örten midir? ) k R + olmak üzere L : R R ile tanımlı L(x, x ) = (kx, kx ) fonksiyonu ) L : R 3 R 3 ile tanimlı L(x, x, x 3 ) = (x x 3, x + x 3, x ) fonksiyonu 3) A = 3 olmak üzere L : R 3 R 3 ile tanimlı L(x) = Ax fonksiyonu 6 4) A = 3 olmak üzere L : R R 3 ile tanimlı L(x) = Ax fonksiyonu 5 5) Düzlemin her bir noktasını bu noktanın y eksenine göre simetriğine dönüstüren fonksiyon L : R R 6) Düzlemin her bir noktasını O noktası çevresinde θ radyan döndüren L : R R ile tanımlı L(x, x ) = (x cos θ x sin θ, x sin θ + x cos θ) fonksiyonu. (A = olmak üzere bu dönüşüm L(x) = Ax şeklinde de tanımlanır.) Çözüm: ) k R + olmak üzere L : R R ile tanımlı L(x, x ) = (kx, kx ) fonksiyonu

3 3 NİSAN-4 MAYIS ZEYNEP KAYARMATEMATİK BÖLÜMÜLİNEER CEBİR-II DE a) KerL = {x R L(x) = R }, R = (, ) ve L(x) = (kx, kx ) = (, ) olacağından (x, x ) = (, ) dır. Yani çekirdek uzayı sadece sıfır elemanından oluşur. Çekirdek uzayını üreten bir küme yoktur, yani çekirdek uzayının bir tabanı B =. Çekirdek uzayının boyutu=l nin sıfırlığı = dimkerl =. b) ImL = {y R x R öyle ki L(x) = y} L(x) = (kx, kx ) = (y, y ) y = kx, y = kx, x, x R olacağından sistemin genel çözümü y = x y + x dir. v =, v = vektörleri görüntü uzayını üretirler. Ayrıca c v + c v = denklemi sadece c = c = için sağlandığından v, v vektörleri lineer bağımsızdır, yani B = {v, v } kümesi görüntü uzayının bir bazını (tabanını) oluştururlar. Bu durumda Görüntü kümesinin boyutu=im L nin boyutu= dim ImL = c) Tanım kümesinin boyutu= dim R = dim KerL + dim ImL = + = dir. L dönüşümü dir çünkü KerL = dır. L dönüşümü örtendir çünkü dim R = dim ImL dir. ) L : R 3 R 3 ile tanimlı L(x, x, x 3 ) = (x x 3, x + x 3, x ) fonksiyonu a) KerL = {x R 3 L(x) = R 3} R 3 = (,, ) ve L(x) = (x x 3, x + x 3, x ) = (,, ) olacağından (x, x, x 3 ) = (,, ) dır. Yani çekirdek uzayı sadece sıfır elemanından oluşur. Çekirdek uzayını üreten bir küme yoktur, yani çekirdek uzayının bir tabanı B =. Çekirdek uzayının boyutu=l nin sıfırlığı = dimkerl =. b) ImL = {y R 3 x R 3 öyle ki L(x) = y} L(x) = (x x 3, x + x 3, x ) = (y, y, y 3 ) y = x x 3, y = x + x 3, y 3 = x, x, x, x 3 R olacağından sistemin genel çözümü y y = x + x + x 3 dir. y 3 v =, v =, v 3 = vektörleri görüntü uzayını üretirler. Ayrıca c v + c v + c 3 = denklemi sadece c = c = c 3 = için sağlandığından v, v, v 3 vektörleri lineer bağımsızdır, yani B = {v, v, v 3 } kümesi görüntü uzayının bir bazını (tabanını) oluştururlar. Bu durumda Görüntü kümesinin boyutu=im L nin boyutu= dim ImL = 3 c) Tanım kümesinin boyutu= dim R 3 = dim KerL + dim ImL = + 3 = 3 dir. L dönüşümü dir çünkü KerL = dır. L dönüşümü örtendir çünkü dim R 3 = dim ImL dir. 3) A = 3 olmak üzere L : R 3 R 3 ile tanimlı L(x) = Ax fonksiyonu 6 a) KerL = {x = (x, x, x 3 ) R 3 L(x) = R 3} R 3 = (,, ) ve L(x) = Ax = 3 x x = x x 3 x + x + 3x 3 = 6 x 3 x + x + 6x 3 çözümü x x = dır. x 3 = x 3 5 olacağından sistemin genel v = 5, vektörü çekirdek uzayını üretir. Ayrıca v vektörü lineer bağımsızdır, yani B = {v } kümesi çekirdek uzayının bir bazını (tabanını) oluşturur. Bu durumda Çekirdek uzayının boyutu=l nin sıfırlığı = dim KerL = b) ImL = {y R 3 x R 3 öyle ki L(x) = y}

4 4 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II D y = L(x) = Ax = genel çözümü y y = x y x x x x 3 + x 3 6 = dir. x x 3 x + x + 3x 3 x + x + 6x 3 = y y y 3 olacağından sistemin v =, v =, v 3 = vektörleri görüntü uzayını üretirler. Ayrıca sadece v, v 6 lineer bağımsızdır, yani B = {v, v } kümesi görüntü uzayının bir bazını (tabanını) oluştururlar. Bu durumda Görüntü kümesinin boyutu=im L nin boyutu= dim ImL = Dikkat edilirse görüntü uzayının bir üreteci {v, v, v 3 }, verilen A matrisinin sütunlarıdır. Görüntü uzayının bir tabanı {v, v } ise, verilen A matrisinin lineer bağımsız sütunlarıdır. c) Tanım kümesinin boyutu= dim R 3 = dim KerL + dim ImL = + = 3 dir. L dönüşümü değildir çünkü KerL dır. L dönüşümü örten değildir çünkü dim = 3 = R 3 dim ImL = dir. 4) A = 3 olmak üzere L : R R 3 ile tanimlı L(x) = Ax fonksiyonu 5 a) KerL = {x = (x, x ) R L(x) = R 3} R 3 = (,, ) ve L(x) = Ax = 3 x = x + x 3x x = olacağından sistemin genel çözümü 5 5x x x = = dır. x Yani çekirdek uzayı sadece sıfır elemanından oluşur. Çekirdek uzayını üreten bir küme yoktur, yani çekirdek uzayının bir tabanı B =. Bu durumda Çekirdek uzayının boyutu=l nin sıfırlığı = dim KerL = b) ImL = {y R 3 x R 3 öyle ki L(x) = y} y = L(x) = Ax = 3 x = x 5 y y = x x x + x 3x 5x x = y y y 3 olacağından sistemin genel çözümü dir. v = 3, v = vektörleri görüntü uzayını üretirler. y 3 5 Yani görüntü uzayının bir üreteci {v, v }, verilen A matrisinin sütunlarıdır. Görüntü uzayının bir tabanı {v, v }, verilen A matrisinin lineer bağımsız sütunlarıdır. Görüntü kümesinin boyutu=im L nin boyutu= dim ImL = c) Tanım kümesinin boyutu= dim R = dim KerL + dim ImL = + = dir. L dönüşümü dir çünkü KerL = dır. L dönüşümü örten değildir çünkü dim R 3 dim ImL dir. 5) Düzlemin her bir noktasını bu noktanın y eksenine göre simetriğine dönüştüren fonksiyon L : R R, her x = (x, x ) R için L(x) = L(x, x ) = ( x, x ) dir. a) KerL = {x = (x, x ) R L(x) = R } R = (, ) ve L(x) = L(x, x ) = ( x, x ) = (, ) olacağından (x, x ) = (, ) Yani çekirdek uzayı sadece sıfır elemanından oluşur. Çekirdek uzayını üreten bir küme yoktur, yani çekirdek uzayının bir tabanı B =. Bu durumda Çekirdek uzayının boyutu=l nin sıfırlığı = dim KerL = b) ImL = {y R x R öyle ki L(x) = y} y = L(x) = ( x, x ) = (y, y ) olacağından sistemin genel çözümü y = x y + x dir. v =, v = vektörleri görüntü uzayını üretirler. Ayrıca c v + c v = denklemi sadece c = c = için sağladığından v, v lineer bağımsızdırlar. Yani görüntü uzayının bir tabanı {v, v } dır. Görüntü kümesinin boyutu=im L nin boyutu= dim ImL =

5 3 NİSAN-4 MAYIS ZEYNEP KAYARMATEMATİK BÖLÜMÜLİNEER CEBİR-II DE c) Tanım kümesinin boyutu= dim R = dim KerL + dim ImL = + = dir. L dönüşümü dir çünkü KerL = dır. L dönüşümü örtendir çünkü dim R = dim ImL dir. 6) Düzlemin her bir noktasını O noktası çevresinde θ radyan döndüren L : R R ile tanımlı L(x, x ) = (x cos θ x sin θ, x sin θ + x cos θ) fonksiyonu. (A = olmak üzere bu dönüşüm L(x) = Ax şeklinde de tanımlanır.) a) KerL = {x = (x, x ) R L(x) = R } R = (, ) ve Her θ R için L(x) = L(x, x ) = (x cos θ x sin θ, x sin θ+x cos θ) = (, ) olacağından (x, x ) = (, ) x x cos θ x. Yol: L(x) = L(x, x ) = Ax = = sin θ = ise x x sin θ + x cos θ x = x Yani çekirdek uzayı sadece sıfır elemanından oluşur. Çekirdek uzayını üreten bir küme yoktur, yani çekirdek uzayının tabanı B =. Bu durumda Çekirdek uzayının boyutu=l nin sıfırlığı = dim KerL = b) ImL = {y R x R öyle ki L(x) = y} y = L(x) = (x cos θ x sin θ, x sin θ + x cos θ) = Ax = (y, y ) olacağından cosθ sinθ v =, v sinθ = vektörleri görüntü uzayını üretirler. Ayrıca c cosθ v +c v = denklemi sadece c = c = için sağladığından v, v lineer bağımsızdırlar. Yani görüntü uzayının bir tabanı {v, v } dır. Görüntü kümesinin boyutu=im L nin boyutu= dim ImL = c) Tanım kümesinin boyutu= dim R = dim KerL + dim ImL = + = dir. L dönüşümü dir çünkü KerL = dır. L dönüşümü örtendir çünkü dim R = dim ImL dir. Soru III: Aşağıda verilen lineer dönüşümlerin verilen tabanlara göre matrislerini bulunuz. ) k R + olmak üzere L : R R ile tanimlı L(x, x ) = (kx, kx ) fonksiyonu b) B = {(, 3), (4, 5)} ve C = {(, ), (, 3)} tabanlarına göre ) L : R 3 R 3 ile tanimlı L(x, x, x 3 ) = (x x 3, x + x 3, x ) fonksiyonu b) B = {(,, 3), (4, 5, 6), (,, 6)} ve C = {(,, 3), (4,, 6), (,, )} tabanlarına göre 3) A = 3 olmak üzere L : R 3 R 3 ile tanimlı L(x) = Ax fonksiyonu 6 b) B = {(,, 3), (4, 5, 6), (,, 6)} ve C = {(,, 3), (4,, 6), (,, )} tabanlarına göre 4) A = 3 olmak üzere L : R R 3 ile tanimlı L(x) = Ax fonksiyonu 5 b) B = {(, ), (4, 5)} ve C = {(,, 3), (4,, 6), (,, )} tabanlarına göre 5) Düzlemin her bir noktasını bu noktanın y eksenine göre simetriğine dönüstüren fonksiyon L : R R b) B = {(, ), (4, 5)} ve C = {(, ), (, 6)} tabanlarına göre 6) Düzlemin her bir noktasını O noktası çevresinde θ radyan döndüren L : R R ile tanımlı L(x, x ) = (x cos θ x sin θ, x sin θ + x cos θ) fonksiyonu. (A = olmak üzere bu dönüşüm L(x) = Ax şeklinde de tanımlanır.) b) B = {(4, 6), (, 6)} ve C = {(, 3), (, )} tabanlarına göre Çözüm: ) k R + olmak üzere L : R R ile tanimlı L(x, x ) = (kx, kx ) fonksiyonu

6 6 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II D a) R nin standart tabanı B = {e = (, ), e = (, )} = C dir. Şimdi tanım uzayının taban elemanlarının L dönüsümü altındaki görüntülerini bulalım. L(e ) = L(, ) = (k, ) = γ ve L(e ) = L(, ) = (, k) = γ dir. Şimdi γ, γ vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c e + c e ya da bu sisteme denk olarak γ = d e + d e k sistemini yazabiliriz. Burada sol taraftaki matris birim matris olduğundan sağ taraftaki k matris aradığımız A matrisidir. b) Tanım uzayının bir tabanı B = {(, 3), (4, 5)} ve görüntü uzayının bir tabanı C = {(, ), (, 3)} olarak verilmiştir. Şimdi tanım uzayının taban elemanlarının L dönüsümü altındaki görüntülerini bulalım. L(, 3) = (k, 3k) = γ, L(4, 5) = (4k, 5k) = γ dir. Şimdi γ, γ vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c (, ) + c (, 3) γ = d (, ) + d (, 3) k 4k sistemini yazabiliriz. Burada sol taraftaki matrisi satır işlemleri uygulayarak 3 3k 5k birim matrise indirgeyeceğiz ve bu işlemler sonunda sağ tarafta oluşan matris aradığımız A matrisidir. k 4k R R k 4k R +R R k 4k 3 3k 5k 3 3k 5k 3 7k 3k R /3 R k 4k 7k/3 3k/3 k 4k C D I A olduğundan A = dir. 7k/3 3k/3 ) L : R 3 R 3 ile tanimlı L(x, x, x 3 ) = (x x 3, x + x 3, x ) fonksiyonu a) R 3 nin standart tabanı B = {e = (,, ), e = (,, ), e 3 = (,, )} = C dir. Şimdi tanım uzayının taban elemanlarının L dönüşümü altındaki görüntülerini bulalım. L(e ) = L(,, ) = (,, ) = γ, L(e ) = L(,, ) = (,, ) = γ ve L(e 3 ) = L(,, ) = (,, ) dir. Şimdi γ, γ, γ 3 vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c e + c e + c 3 e 3 γ = d e + d e + d 3 e 3 γ 3 = f e + f e + f 3 e 3 sistemini yazabiliriz. Burada sol taraftaki matris birim matris olduğundan sağ taraftaki matris aradığımız A matrisidir. b) Tanım uzayının bir tabanı B = {(,, 3), (4, 5, 6), (,, 6)} ve görüntü uzayının bir tabanı C = {(,, 3), (4,, 6), (,, )} olarak verilmiştir. Şimdi tanım uzayının taban elemanlarının L dönüsümü altındaki görüntülerini bulalım. L(,, 3) = (,, ) = γ, L(4, 5, 6) = (,, 4) = γ, L(,, 6) = ( 5, 4, ) = γ 3 dir. Şimdi γ, γ, γ 3 vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c (,, 3) + c (4,, 6) + c 3 (,, ) γ = d (,, 3) + d (4,, 6) + d 3 (,, ) γ 3 = f (,, 3) + f (4,, 6) + f 3 (,, ) sistemini yazabiliriz. Burada sol taraftaki matrisi satır işlemleri uygulayarak birim matrise indirgeyeceğiz ve bu işlemler sonunda sağ tarafta oluşan matris aradığımız A matrisidir. 3) A = 3 olmak üzere L : R 3 R 3 ile tanimlı L(x) = Ax fonksiyonu 6 a) R 3 nin standart tabanı B = {e = (,, ), e = (,, ), e 3 = (,, )} = C dir. Şimdi tanım uzayının taban elemanlarının L dönüşümü altındaki görüntülerini bulalım.

7 3 NİSAN-4 MAYIS ZEYNEP KAYARMATEMATİK BÖLÜMÜLİNEER CEBİR-II DE L(e ) = Ae = (,, ) = γ, L(e ) = Ae = (,, ) = γ, dir. L(e 3 ) = Ae 3 = (, 3, 6) = γ 3 Şimdi γ, γ, γ 3 vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c e + c e + c 3 e 3 γ = d e + d e + d 3 e 3 γ 3 = f e + f e + f 3 e 3 3 sistemini yazabiliriz. Burada sol taraftaki matris birim matris olduğundan 6 sağ taraftaki matris aradığımız A matrisidir. Diğer bir deyişle, eğer L lineer dönüşümü bir K matrisi yardımıyla ve görüntü uzayı standart taban ile veriliyor ise bu dönüşümün matrisi A = K dır. b) Tanım uzayının bir tabanı B = {(,, 3), (4, 5, 6), (,, 6)} ve görüntü uzayının bir tabanı C = {(,, 3), (4,, 6), (,, )} olarak verilmiştir. Şimdi tanım uzayının taban elemanlarının L dönüşümü altındaki görüntülerini bulalım. L(,, 3) = A(,, 3) = ( 4,, 4) = γ, L(4, 5, 6) = A(4, 5, 6) = ( 7, 7, 54) = γ, L(,, 6) = A(,, 6) = (,, 4) = γ 3 dir. Şimdi γ, γ, γ 3 vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c (,, 3) + c (4,, 6) + c 3 (,, ) γ = d (,, 3) + d (4,, 6) + d 3 (,, ) γ 3 = f (,, 3) + f (4,, 6) + f 3 (,, ) sistemini yazabiliriz. Burada sol taraftaki matrisi satır işlemleri uygulayarak birim matrise indirgeyeceğiz ve bu işlemler sonunda sağ tarafta oluşan matris aradığımız A matrisidir. 4) A = 3 olmak üzere L : R R 3 ile tanimlı L(x) = Ax fonksiyonu 5 a) R 3 nin standart tabanı B = {e = (,, ), e = (,, ), e 3 = (,, )} = C dir. Verilen L lineer dönüşümü bir K matrisi yardımıyla ve görüntü uzayı standart taban ile verildiğinden bu dönüşümün matrisi A = K dır. b) Tanım uzayının bir tabanı B = {(, ), (4, 5)} ve görüntü uzayının bir tabanı C = {(,, 3), (4,, 6), (,, olarak verilmiştir. Şimdi tanım uzayının taban elemanlarının L dönüşümü altındaki görüntülerini bulalım. L(, ) = A(, ) = (4, 3, ) = γ, L(4, 5) = A(4, 5) = (3,, ) = γ, dir. Şimdi γ, γ vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c (,, 3) + c (4,, 6) + c 3 (,, ) γ = d (,, 3) + d (4,, 6) + d 3 (,, ) sistemini yazabiliriz. Burada sol taraftaki matrisi satır işlemleri uygulayarak 3 6 birim matrise indirgeyeceğiz ve bu işlemler sonunda sağ tarafta oluşan matris aradığımız A matrisidir. 5) L : R R dönüşümü her x = (x, x ) için L(x) = L(x, x ) = ( x, x ) olarak tanımlanıyor. a) R nin standart tabanı B = {e = (, ), e = (, )} = C dir. Şimdi tanım uzayının taban elemanlarının L dönüsümü altındaki görüntülerini bulalım. L(e ) = L(, ) = (, ) = γ ve L(e ) = L(, ) = (, ) = γ dir. Şimdi γ, γ vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c e + c e γ = d e + d e ya da bu sisteme denk olarak

8 8 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II D sistemini yazabiliriz. Burada sol taraftaki matris birim matris olduğundan sağ taraftaki matris aradığımız A matrisidir. Yani L(x) = Ax dir. b) Tanım uzayının bir tabanı B = {(, ), (4, 5)} ve görüntü uzayının bir tabanı C = {(, ), (, 6)} olarak verilmiştir. Şimdi tanım uzayının taban elemanlarının L dönüsümü altındaki görüntülerini bulalım. L(, ) = (, ) = γ, L(4, 5) = ( 4, 5) = γ dir. Şimdi γ, γ vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c (, ) + c (, 6) γ = d (, ) + d (, 6) 4 sistemini yazabiliriz. Burada sol taraftaki matrisi satır işlemleri uygulayarak 6 5 birim matrise indirgeyeceğiz ve bu işlemler sonunda sağ tarafta oluşan matris aradığımız A matrisidir. 4 R +R R 4 R R R / 4+R R 9/4 R /4 R 9/ /4 9/4 C D I A olduğundan A = dir. Yani L(x) = Ax dır. 3/4 6) Düzlemin her bir noktasını O noktası çevresinde θ radyan döndüren L : R R ile tanımlı L(x, x ) = (x cos θ x sin θ, x sin θ + x cos θ) fonksiyonu. (A = olmak üzere bu dönüşüm L(x) = Ax şeklinde de tanımlanır.) a) R nin standart tabanı B = {e = (, ), e = (, )} = C dir. Verilen L lineer dönüşümü K = matrisiyle ve görüntü uzayı standart taban ile verildiğinden bu dönüşümün matrisi A = K dır. b) B = {(4, 6), (, 6)} ve C = {(, 3), (, )} tabanlarına göre Tanım uzayının bir tabanı B = {(4, 6), (, 6)} ve görüntü uzayının bir tabanı C = {(, 3), (, )} olarak verilmiştir. Şimdi tanım uzayının taban elemanlarının L dönüsümü altındaki görüntülerini bulalım. L(, ) = (cos θ sin θ, sin θ + cos θ) = γ, L(4, 5) = (4 cos θ 5 sin θ, 4 sin θ + 5 cos θ) = γ dir. Şimdi γ, γ vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c (, 3) + c (, ) γ = d (, 3) + d (, ) cos θ 5 sin θ sistemini yazabiliriz. Burada sol taraftaki matrisi satır 3 sin θ + cos θ 4 sin θ + 5 cos θ işlemleri uygulayarak birim matrise indirgeyeceğiz ve bu işlemler sonunda sağ tarafta oluşan matris aradığımız A matrisidir. cos θ 5 sin θ 3R +R R cos θ 5 sin θ 3 sin θ + cos θ 4 sin θ + 5 cos θ 3 cos θ + 7 sin θ cos θ + 9 sin θ R /3+R R 3 cos θ + 3 sin θ 5 3 cos θ sin θ 3 cos θ + 7 sin θ cos θ + 9 sin θ R / 3 R 3 cos θ + 3 sin θ 5 3 cos θ sin θ 3 cos θ sin θ 3 cos θ sin θ C D I A olduğundan A = 3 cos θ + 3 sin θ 5 3 cos θ sin θ 3 cos θ sin θ 3 cos θ sin θ dir. Yani L(x) = Ax dır.

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR.

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR. UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ LİNEER CEBİR DERSİ 0 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜÜNLEME SORULARI ÖĞR.GÖR.İNAN ÜNAL www.inanunal.com UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ MAKİNE MÜHENDİSLİĞİ

Detaylı

Ders 8: Konikler - Doğrularla kesişim

Ders 8: Konikler - Doğrularla kesişim Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 2: Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

. [ ] vektörünü S deki vektörlerin bir lineer

. [ ] vektörünü S deki vektörlerin bir lineer 11.Gram-Schmidt metodu 11.1. Ortonormal baz 11.1.Teorem: { }, V Öklid uzayı için bir ortonormal baz olsun. Bu durumda olmak üzere. 1.Ö.: { }, de bir ortonormal baz olsun. Burada. vektörünü S deki vektörlerin

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Yazar Doç.Dr. Hüseyin AZCAN ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; Küresel Koordinatlar Silindirik Koordinatları Dönel Yüzeylerin Elde Edilmesi

Detaylı

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları 4.Ders Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları Tanım:,U, P bir olasılık uzayı ve X, X,,X n : R n X, X,,X n X, X,,X n olmak üzere, her a, a,,a n R n için : X i a i, i,, 3,,n U özelliği sağlanıyor

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

ÜN TE II. UZAYDA VEKTÖR, DO RU VE DÜZLEM N ANAL T K NCELENMES

ÜN TE II. UZAYDA VEKTÖR, DO RU VE DÜZLEM N ANAL T K NCELENMES ANAL T K GEOMETR ÜN TE II. UZAYDA VEKTÖR, DO RU VE DÜZLEM N ANAL T K NCELENMES 1. ANAL T K UZAY. ANAL T K UZAY D A D K KOORD NAT EKSENLER VE ANAL T K UZAY I. Analitik uzayda koordinat sistemi II. Analitik

Detaylı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir. Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 MATEMATİK TESTİ SORULARINI İÇERMEKTEDİR.

MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 MATEMATİK TESTİ SORULARINI İÇERMEKTEDİR. Ö S Y M T.C. YÜKSEKÖĞRETİM KURULU ÖĞRENCİ SEÇME VE YERLEŞTİRME MERKEZİ LİSANS YERLEŞTİRME SINAVI MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 9 HAZİRAN 00 BU SORU KİTAPÇIĞI 9 HAZİRAN 00 LYS MATEMATİK

Detaylı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı 1.8.Reel Sayılar Kümesinin Tamlık Özelliği Rasyonel sayılar kümesi ile rasyonel olmayan sayıların kümesi olan irrasyonel sayılar kümesinin birleşimine reel sayılar kümesi denir ve IR ile gösterilir. Buna

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

x 2i + A)( 1 yj 2 + B) u (v + B), y 1 Ders 11: Örnekler 11.1 Kulplarla inşalar Bu bölümde kulpları birbirine yapıştırıp tanıdık manifoldlar elde edeceğiz. Artık bu son ders. Özellikle dersin ikinci bölümünde son meyveleri toplamak adına koşarak

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

π θ = olarak bulunur. 2 θ + θ θ θ θ θ π 3 UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ 22.04.

π θ = olarak bulunur. 2 θ + θ θ θ θ θ π 3 UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ 22.04. UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ.04.006. Aşağıdaki gibi, M ve M merkezli br yarıçaplı iki dairenin kesişimi şeklinde bir park inşa edilmektedir. Bu iki dairenin

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte

Detaylı

Türev Uygulamaları. 4.1 Bağımlı Hız

Türev Uygulamaları. 4.1 Bağımlı Hız Bölüm 4 Türev Uygulamaları 4.1 Bağımlı Hız Eğer bir balonun içine hava pompalarsak, balonun hem yarıçapı hem de hacmi artar ve artış hızları birbirine bağımlıdır. Fakat, hacmin artış hızını doğrudan ölçmek

Detaylı

A B = A. = P q c A( X(t))

A B = A. = P q c A( X(t)) Ders 19 Metindeki ilgili bölümler 2.6 Elektromanyetik bir alanda yüklü parçacık Şimdi, kuantum mekaniğinin son derece önemli başka bir örneğine geçiyoruz. Verilen bir elektromanyetik alanda hareket eden

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır?

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır? MATE 106 SOSYAL BİLİMLER İÇİN TEMEL ANALİZ Ad-Soyad No Uygun cevabı bulunuz. 1)A = πr2 formülü r yarıçaplı çemberin A alanını vermektedir. Bir masa örtüsü A alanına sahipse, yarıçapını A'nın bir fonksiyonu

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

Ders 7: Konikler - Tanım

Ders 7: Konikler - Tanım Ders 7: Konikler - Tanım Şimdie kadar nokta ve doğrular ve bunların ilişkilerini konuştuk. Bu derste eni bir kümeden söz edeceğiz: kuadrikler ve düzlemdeki özel adı konikler. İzdüşümsel doğrular, doğrusal

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

Ç NDEK LER I. C LT KONULAR Sayfa 1. Lineer Cebire Giri... 2. Lineer Denklem Sistemlerinin Elemanter lemlerle Çözümü

Ç NDEK LER I. C LT KONULAR Sayfa 1. Lineer Cebire Giri... 2. Lineer Denklem Sistemlerinin Elemanter lemlerle Çözümü ÇNDEKLER I. CLT KONULAR 1. Lineer Cebire Giri... 1 Lineer Modeller... 3 Lineer Olmayan Modeller... 3 Dorunun Analitik Analizi.. 5 Uzayda Geometrik Büyüklükler. 7 Lineer Cebir ve Lineerite 10 Lineer Denklem

Detaylı

MATRİS İŞLEMLER LEMLERİ

MATRİS İŞLEMLER LEMLERİ MTRİS İŞLEMLER LEMLERİ Temel matris işlemlerinin doğrudan matematik açılımını 2 yapmadan önce, bir eşanlı denklem sisteminin matris işlemleri kullanılarak nasıl daha kolay ve sistematik bir çözüm verdiğini,

Detaylı

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve nin her g L 2 (S için tek çözümünüm olması için gerekli ve yeterli koşulun her j için λ λ j olacak biçimde λ j ifadesini sağlayan R \ {} de bir λ j dizisinin olduğunu gösteriniz. (13) Her λ j için (19.43)

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır? Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994 Matematik Soruları ve Çözümleri 4.10 +.10 1. 4 10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 = 4 4 (40+

Detaylı

MATEMATİK ÖĞRETMENLİĞİ

MATEMATİK ÖĞRETMENLİĞİ T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 589 MATEMATİK ÖĞRETMENLİĞİ Lineer Cebir Yazar: Yrd.Doç.Dr. Nezahat ÇETİN Öğr.Grv.Dr. Nevin ORHUN Editör: Prof.Dr. Orhan

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ Kenan KILIÇASLAN Okul No:1098107203 1. DESTEK VEKTÖR MAKİNELER

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

8.04 Kuantum Fiziği Ders XII

8.04 Kuantum Fiziği Ders XII Enerji ölçümünden sonra Sonucu E i olan enerji ölçümünden sonra parçacık enerji özdurumu u i de olacak ve daha sonraki ardışık tüm enerji ölçümleri E i enerjisini verecektir. Ölçüm yapılmadan önce enerji

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Şekil 2 Hareketin başladığı an

Şekil 2 Hareketin başladığı an Şekil 2 Hareketin başladığı an Bir savaş uçağı şekildeki gibi 1500 km/sa hızla sorti (dalışa geçerek bombardıman gerçekleştirmek) için harekete başlıyor ve eğrilik yarıçapı 300m. olan dairesel yörüngede

Detaylı

Bilgisayar Grafikleri

Bilgisayar Grafikleri Bilgisayar Grafikleri Konular: Cismin Tanımlanması Bilindiği gibi iki boyutta noktalar x ve y olmak üzere iki boyutun koordinatları şeklinde ifade edilirler. Üç boyutta da üçüncü boyut olan z ekseni üçücü

Detaylı

15. Bağıntılara Devam:

15. Bağıntılara Devam: 15. Bağıntılara Devam: Yerel Bağıntılardan Örnekler: Doğal sayılar kümesi üzerinde bir küçüğüdür (< 1 ) bağıntısı: < 1 {(x, x+1) x N} {(0,1), (1, 2), } a< 1 b yazıldığında, a doğal sayılarda bir küçüktür

Detaylı

ANALİTİK GEOMETRİ. Matrisler - Determinant Lineer Denklem Sistemleri - Vektörler Uzayda Doğru Denklemi - Uzayda Düzlem Denklemi

ANALİTİK GEOMETRİ. Matrisler - Determinant Lineer Denklem Sistemleri - Vektörler Uzayda Doğru Denklemi - Uzayda Düzlem Denklemi ANALİTİK GEOMETRİ Matrisler - Determinant Lineer Denklem Sistemleri - Vektörler Uzayda Doğru Denklemi - Uzayda Düzlem Denklemi Kutupsal Koordinat Sistemi - Konikler Koordinat Dönüşümleri - Koniklerin Genel

Detaylı

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y ARABL Tanım: Düzlemde verilen sabit bir noktası ile bir d doğrusuna uzaklıkları eşit olan noktaların geometrik erine arabol denir. Sabit noktaa arabolün odağı; doğrua ise doğrultmanı denir. Merkezil arabol

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

ANALİZ III. Mert Çağlar

ANALİZ III. Mert Çağlar ANALİZ III Mert Çağlar Bu notlar Örgün Öğretimde Uzaktan Öğretim Desteği (UDES) lisansı altındadır. Ders notlarına erişim için: http://udes.iku.edu.tr CC $\ BY: Mert Çağlar C Matematik-Bilgisayar Bölümü

Detaylı

HESAP. (kesiklik var; süreklilik örnekleniyor) Hesap sürecinin zaman ekseninde geçtiği durumlar

HESAP. (kesiklik var; süreklilik örnekleniyor) Hesap sürecinin zaman ekseninde geçtiği durumlar HESAP Hesap soyut bir süreçtir. Bu çarpıcı ifade üzerine bazıları, hesaplayıcı dediğimiz somut makinelerde cereyan eden somut süreçlerin nasıl olup da hesap sayılmayacağını sorgulayabilirler. Bunun basit

Detaylı

Salim. Yüce LİNEER CEBİR

Salim. Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR ISBN 978-605-318-030-2 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. 2015, Pegem Akademi Bu kitabın basım, yayın ve satış

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

18.702 Cebir II 2008 Bahar

18.702 Cebir II 2008 Bahar MIT Açk Ders Malzemeleri http://ocw.mit.edu 18.702 Cebir II 2008 Bahar Bu materyallerden alnt yapmak veya Kullanm artlar hakknda bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJENİN ADI: OYUN TEORİSİ İLE İSTANBUL TRAFİĞİNİN İNCELENMESİ HAZIRLAYANLAR: ECE TUNÇKOL-BERKE OĞUZ AKIN MEV KOLEJİ ÖZEL

Detaylı

6. 3x2-8x - 3 = O denkleminin negatif kökü asagidakilerden. 7. mx2 - (2m2 + i) x + 2m = O denkleminin köklerinden

6. 3x2-8x - 3 = O denkleminin negatif kökü asagidakilerden. 7. mx2 - (2m2 + i) x + 2m = O denkleminin köklerinden ikinci Dereceden Denklemler, tçözüm Kümesi, Köklerin Varligi. (m - 9) x + x - 6 = o denkleminin ikinci dereceden bir bilinmeyenli denklem olmasi için, m degeri asagidakilerden hangisi olamaz? A) - B) -

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

Mehmet ŞAHİN. www.mehmetsahinkitaplari.org

Mehmet ŞAHİN. www.mehmetsahinkitaplari.org 0. Sınıf M AT E M AT İ K Mehmet ŞAHİN www.mehmetsahinkitaplari.org M.E.B Talim ve Terbiye Kurulu Başkanlığı nın 0..009 tarih ve 4 sayılı kararı ve 00-0 öğretim yılından itibaren uygulanacak programa göre

Detaylı

uzman yaklaşımı matematik (lise) Branş Analizi Matematik Zümresi

uzman yaklaşımı matematik (lise) Branş Analizi Matematik Zümresi Branş Analizi matematik (lise) Öğretmenlik Alan Bilgisi Testi (ÖABT) Matematik (Lise) Sınavı nda sorular 5 ana kategoriye ayrılmıştır. Analiz, uygulamalı matematik, cebir ve geometri gibi matematik alanının

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

2013 KAMU PERSONEL SEÇME SINAVI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI VE ÇÖZÜMLERİ

2013 KAMU PERSONEL SEÇME SINAVI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI VE ÇÖZÜMLERİ 0 KAMU PERSONEL SEÇME SINAI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI E ÇÖZÜMLERİ Temmuz, 0 MATEMATİK (İLKÖĞRETİM) ÖĞRETMENLİĞİ Analizden soru sorulmuştur. İlk 8 soru

Detaylı

MATEMATİK ÖĞRETMENLİĞİ

MATEMATİK ÖĞRETMENLİĞİ T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 589 MATEMATİK ÖĞRETMENLİĞİ Lineer Cebir Yazar: Yrd.Doç.Dr. Nezahat ÇETİN Öğr.Grv.Dr. Nevin ORHUN Editör: Prof.Dr. Orhan

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)

Detaylı

İLKÖĞRETİM MATEMATİK SOYUT CEBİR LİNEER CEBİR

İLKÖĞRETİM MATEMATİK SOYUT CEBİR LİNEER CEBİR ÖABT 205 Soruları yakalayan komisyon tarafından hazırlanmıştır. ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ÖABT İLKÖĞRETİM MATEMATİK SOYUT CEBİR LİNEER CEBİR Konu Anlatımı Özgün Sorular Ayrıntılı Çözümler Test Stratejileri

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

KÜMELER. Kümeler YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 MATEMATĐK ĐM /LYS. UYARI: {φ} ifadesi boş kümeyi göstermez.

KÜMELER. Kümeler YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 MATEMATĐK ĐM /LYS. UYARI: {φ} ifadesi boş kümeyi göstermez. MTEMTĐK ĐM YILLR 00 00 004 005 006 007 008 009 010 011 ÖSS-YGS - 1 - - - - - 1 1 1/1 /LYS KÜMELER TNIM: in tam bir tanımı yoksa da matematikçiler kümeyi; iyi tanımlanmış nesneler topluluğu olarak kabul

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

AST409 Astronomide Sayısal Çözümleme. II. Python da Matrisler

AST409 Astronomide Sayısal Çözümleme. II. Python da Matrisler AST409 Astronomide Sayısal Çözümleme II. Python da Matrisler Python da Yardım Alma Seçenekleri Start Programs Python 2.7.5 Python Manuals IDLE Help! (F1) www.python.org/help/ Python Kullanım Kılavuzu Erdem

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ 15. OKULLAR ARASI MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ 15. OKULLAR ARASI MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI SORULARI EGE BÖLGESİ 5. OKULLAR ARASI MATEMATİK YARIŞMASI. [( p q) q] [(p q) q ] bileşik önermesinin en sade şekli A) p B) p C) D) 0 E) q 4. A kümesinin eleman sayısı fazla; B kümesinin eleman sayısı eksik olsaydı

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

SU DALGALARINDA GİRİŞİM

SU DALGALARINDA GİRİŞİM SU DALGALARINDA GİRİŞİM Yukarıda iki kaynağın oluşturduğu dairesel su dalgalarının meydana getirdiği girişim deseni gösterilmiştir Burada kesikli çizgiler dalga çukurlarını, düz çizgiler dalga tepelerini

Detaylı

1. GİRİŞ 1.1. GENEL BAKIŞ 1.2. KULLANICI ARAYÜZÜ

1. GİRİŞ 1.1. GENEL BAKIŞ 1.2. KULLANICI ARAYÜZÜ 1. GİRİŞ 1.1. GENEL BAKIŞ MATLAB (MATrix LABoratory) sayısal hesaplama ve dördüncü nesil programlama dilidir. MathWorks firması tarafından geliştiriliyor. MATLAB; - matris işlenmesine, - fonksiyonlar ve

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

4. a ve b, 7 den küçük pozitif tam sayý olduðuna göre, 2 a a b. 5. 16 x+1 = 3

4. a ve b, 7 den küçük pozitif tam sayý olduðuna göre, 2 a a b. 5. 16 x+1 = 3 LYS ÜNÝVSÝT HAZILIK ÖZ-D-BÝ YAYINLAI MATMATÝK DNM SINAVI A Soru saýsý: 5 Yanýtlama süresi: 75 dakika Bu testle ilgili anýtlarýnýzý optik formdaki Matematik bölümüne iþaretleiniz. Doðru anýtlarýnýzýn saýsýndan

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ HAZİRAN 04 PAZAR TG 9 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun,

Detaylı

İLKÖĞRETİM MATEMATİK GEOMETRİ-İSTATİSTİK VE OLASILIK

İLKÖĞRETİM MATEMATİK GEOMETRİ-İSTATİSTİK VE OLASILIK ÖAT 015 Soruları yakalayan komisyon tarafından hazırlanmıştır. ÖĞRETMENLİK ALAN İLGİSİ TESTİ ÖAT İLKÖĞRETİM MATEMATİK GEOMETRİ-İSTATİSTİK VE OLASILIK Geometri: Doç. Dr. Hakan Efe İstatistik ve Olasılık:

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı