30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )"

Transkript

1 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II DERSİ ÖDEV 4 Soru I: Aşağıda verilen dönüşümlerin lineer olup olmadığını gösteriniz. ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x 4, x + x 3x 3 ) ) L : R 4 R 3, L(x, x, x 3, x 4 ) = (x x 3 + x 4, x 3x 3 + x 4, x + x + x 3 ) 3) L : P x R 3, L(a + a x + a x ) = (a, a, a ) 4) L : P n x R, L(a + a x + a ( x a n x) n + a n x n ) = x(a + a x (n )a n x n + na n x n ) + a 5) L : R R x x, L = (x x 3 x + x 4, x + x 3 ) 4 Çözüm: ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x, x + x 3x 3 ) Verilen dönüşümün lineer olduğunu göstermek için her x = (x, x, x 3 ), y = (y, y, y 3 ) R 3 vektörleri ve a, b R skalerleri için L(ax + by) = al(x) + bl(y) olduğunu gösterecğiz. al(x) = a( 3x + x 3 4x, x + x 3x 3 ) = ( a3x + ax 3 4ax, ax + ax 3ax 3 ) bl(y) = b( 3y + y 3 4y, y + y 3y 3 ) = ( b3y + by 3 4by, by + by 3by 3 ) al(x) + bl(y) = ( a3x + ax 3 4ax 3by + by 3 4by, ax + ax 3ax 3 by + by 3by 3 ) () L(ax + by) = ( a3x + ax 3 4ax b3y + by 3 4by, ax + ax 3ax 3 by + by 3by 3 ) () () ve () denklemleri eşit olduğundan verilen dönüşüm lineerdir. ) L : R 4 R 3, L(x, x, x 3, x 4 ) = (x x 3 + x 4, x 3x 3 + x 4, x + x + x 3 ) Verilen dönüşümün lineer olduğunu göstermek için her x = (x, x, x 3, x 4 ), y = (y, y, y 3, y 4 ) R 3 vektörleri ve a, b R skalerleri için L(ax + by) = al(x) + bl(y) olduğunu gösterecğiz. al(x) = a(x x 3 + x 4, x 3x 3 + x 4, x + x + x 3 ) = (ax ax 3 + ax 4, ax 3ax 3 + ax 4, ax + ax + ax 3 ) bl(y) = b(y y 3 + y 4, y 3y 3 + y 4, y + y + y 3 ) = (by by 3 + by 4, by 3by 3 + by 4, by + by + by 3 ) al(x) + bl(y) = (ax ax 3 + ax 4 + by by 3 + by 4, ax 3ax 3 + ax 4 by 3by 3 + by 4, ax + ax + ax 3 + by + by + by 3 ) L(ax + by) = ( a3x + ax 3 4ax 4 b3y + by 3 4by 4, (4) ax + ax 3ax 3 by + by 3by 3 ) (3) ve (4) denklemleri eşit olduğundan verilen dönüşüm lineerdir. 3) L : P x R 3, L(a + a x + a x ) = (a, a, a ) Verilen dönüşümün lineer olduğunu göstermek için her f(x) = a + a x + a x, g(x) = b + b x + b x P x vektörleri ve A, B R skalerleri için L(Af(x) + Bg(x)) = AL(f(x)) + BL(g(x)) olduğunu gösterecğiz. AL(f(x)) = A(a, a, a ) = (Aa, Aa, Aa ) BL(g(x)) = B(b, b, b ) = (Bb, Bb, Bb ) AL(f(x)) + BL(g(x)) = (Aa + Bb, Aa + Bb, Aa + Bb ) (5) L(Af(x) + Bg(x)) = L(Aa + Bb + Aa x + Bb x + Aa x + Bb x ) = (Aa + Bb, Aa + Bb, Aa + Bb ) (6) (3)

2 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II D (5) ve (6) denklemleri eşit olduğundan verilen dönüşüm lineerdir. 4) L : P n x R, L(a + a x + a x a n x n + a n x n ) = x(a + a x (n )a n x n + na n x n ) + a Verilen dönüşümün lineer olduğunu göstermek için her f(x) = a + a x + a x a n x n + a n x n, g(x) = b + b x + b x b n x n + b n x n P n x vektörleri ve A, B R skalerleri için L(Af(x) + Bg(x)) = AL(f(x)) + BL(g(x)) olduğunu gösterecğiz. AL(f(x)) = A(x(a + a x (n )a n x n + na n x n ) + a ) = Ax(a + a x (n )a n x n + na n x n ) + a BL(g(x)) = B(x(b +b x+...+(n )b n x n +nb n x n )+b ) = Bx(b +b x+...+(n )b n x n + nb n x n ) + b AL(f(x)) + BL(g(x)) = Ax(a + a x (n )a n x n + na n x n ) + a +Bx(b + b x (n )b n x n + nb n x n ) + b (7) L(Af(x) + Bg(x)) = L(A(a + a x + a x a n x n + a n x n ) + B(b + b x + b x b n x n + b n x n )) = L(Aa + Bb + (Aa + Bb )x + (Aa + Bb )x (Aa n + Bb n )x n + (Aa n + Bb n )x n ) = xaa + Bb + (Aa + Bb )x Ana n + Bnb n )x n + Aa + Bb (8) (7) ve (8) denklemleri ( eşit olduğundan ) verilen dönüşüm lineerdir. 5) L : R R x x, L = (x x 3 x + x 4, x + x 3 ) 4 x x Verilen dönüşümün lineer olduğunu göstermek için her A = x 3 x 4, B = ve a, b R skalerleri için L(Aa + Bb) = al(a) + bl(b) olduğunu gösterecğiz. al(a) = a(x + x 4, x + x 3 ) = (ax + ax 4, ax + ax 3 ) bl(b) = b(y + y 4, y + y 3 ) = (by + by 4, by + by 3 ) L(aA + bb) y y matrisleri y 3 y 4 al(a) + bl(b) = (ax + ax 4 + by + by 4, ax + ax 3 + by + by 3 ) (9) ( ) ax ax = L by by + = (ax ax 3 ax 4 by 3 by + by + ax 4 + by 4, ax + by + ax 3 + by 3 ) () 4 (9) ve () denklemleri eşit olduğundan verilen dönüşüm lineerdir. Soru II: Aşağıda verilen lineer dönüşümlerin a) Çekirdeğini, çekirdeğinin bir bazını (tabanını ) ve sıfırlığını (dim Ker L) yi bulunuz. b) Görüntü kümesini, görüntü kümesinin bir bazını (tabanını ) ve rankını (dim Im L) yi bulunuz. c) Tanım kümesinin boyutunu bulunuz. Bu dönüşümler (bire bir) ve örten midir? ) k R + olmak üzere L : R R ile tanımlı L(x, x ) = (kx, kx ) fonksiyonu ) L : R 3 R 3 ile tanimlı L(x, x, x 3 ) = (x x 3, x + x 3, x ) fonksiyonu 3) A = 3 olmak üzere L : R 3 R 3 ile tanimlı L(x) = Ax fonksiyonu 6 4) A = 3 olmak üzere L : R R 3 ile tanimlı L(x) = Ax fonksiyonu 5 5) Düzlemin her bir noktasını bu noktanın y eksenine göre simetriğine dönüstüren fonksiyon L : R R 6) Düzlemin her bir noktasını O noktası çevresinde θ radyan döndüren L : R R ile tanımlı L(x, x ) = (x cos θ x sin θ, x sin θ + x cos θ) fonksiyonu. (A = olmak üzere bu dönüşüm L(x) = Ax şeklinde de tanımlanır.) Çözüm: ) k R + olmak üzere L : R R ile tanımlı L(x, x ) = (kx, kx ) fonksiyonu

3 3 NİSAN-4 MAYIS ZEYNEP KAYARMATEMATİK BÖLÜMÜLİNEER CEBİR-II DE a) KerL = {x R L(x) = R }, R = (, ) ve L(x) = (kx, kx ) = (, ) olacağından (x, x ) = (, ) dır. Yani çekirdek uzayı sadece sıfır elemanından oluşur. Çekirdek uzayını üreten bir küme yoktur, yani çekirdek uzayının bir tabanı B =. Çekirdek uzayının boyutu=l nin sıfırlığı = dimkerl =. b) ImL = {y R x R öyle ki L(x) = y} L(x) = (kx, kx ) = (y, y ) y = kx, y = kx, x, x R olacağından sistemin genel çözümü y = x y + x dir. v =, v = vektörleri görüntü uzayını üretirler. Ayrıca c v + c v = denklemi sadece c = c = için sağlandığından v, v vektörleri lineer bağımsızdır, yani B = {v, v } kümesi görüntü uzayının bir bazını (tabanını) oluştururlar. Bu durumda Görüntü kümesinin boyutu=im L nin boyutu= dim ImL = c) Tanım kümesinin boyutu= dim R = dim KerL + dim ImL = + = dir. L dönüşümü dir çünkü KerL = dır. L dönüşümü örtendir çünkü dim R = dim ImL dir. ) L : R 3 R 3 ile tanimlı L(x, x, x 3 ) = (x x 3, x + x 3, x ) fonksiyonu a) KerL = {x R 3 L(x) = R 3} R 3 = (,, ) ve L(x) = (x x 3, x + x 3, x ) = (,, ) olacağından (x, x, x 3 ) = (,, ) dır. Yani çekirdek uzayı sadece sıfır elemanından oluşur. Çekirdek uzayını üreten bir küme yoktur, yani çekirdek uzayının bir tabanı B =. Çekirdek uzayının boyutu=l nin sıfırlığı = dimkerl =. b) ImL = {y R 3 x R 3 öyle ki L(x) = y} L(x) = (x x 3, x + x 3, x ) = (y, y, y 3 ) y = x x 3, y = x + x 3, y 3 = x, x, x, x 3 R olacağından sistemin genel çözümü y y = x + x + x 3 dir. y 3 v =, v =, v 3 = vektörleri görüntü uzayını üretirler. Ayrıca c v + c v + c 3 = denklemi sadece c = c = c 3 = için sağlandığından v, v, v 3 vektörleri lineer bağımsızdır, yani B = {v, v, v 3 } kümesi görüntü uzayının bir bazını (tabanını) oluştururlar. Bu durumda Görüntü kümesinin boyutu=im L nin boyutu= dim ImL = 3 c) Tanım kümesinin boyutu= dim R 3 = dim KerL + dim ImL = + 3 = 3 dir. L dönüşümü dir çünkü KerL = dır. L dönüşümü örtendir çünkü dim R 3 = dim ImL dir. 3) A = 3 olmak üzere L : R 3 R 3 ile tanimlı L(x) = Ax fonksiyonu 6 a) KerL = {x = (x, x, x 3 ) R 3 L(x) = R 3} R 3 = (,, ) ve L(x) = Ax = 3 x x = x x 3 x + x + 3x 3 = 6 x 3 x + x + 6x 3 çözümü x x = dır. x 3 = x 3 5 olacağından sistemin genel v = 5, vektörü çekirdek uzayını üretir. Ayrıca v vektörü lineer bağımsızdır, yani B = {v } kümesi çekirdek uzayının bir bazını (tabanını) oluşturur. Bu durumda Çekirdek uzayının boyutu=l nin sıfırlığı = dim KerL = b) ImL = {y R 3 x R 3 öyle ki L(x) = y}

4 4 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II D y = L(x) = Ax = genel çözümü y y = x y x x x x 3 + x 3 6 = dir. x x 3 x + x + 3x 3 x + x + 6x 3 = y y y 3 olacağından sistemin v =, v =, v 3 = vektörleri görüntü uzayını üretirler. Ayrıca sadece v, v 6 lineer bağımsızdır, yani B = {v, v } kümesi görüntü uzayının bir bazını (tabanını) oluştururlar. Bu durumda Görüntü kümesinin boyutu=im L nin boyutu= dim ImL = Dikkat edilirse görüntü uzayının bir üreteci {v, v, v 3 }, verilen A matrisinin sütunlarıdır. Görüntü uzayının bir tabanı {v, v } ise, verilen A matrisinin lineer bağımsız sütunlarıdır. c) Tanım kümesinin boyutu= dim R 3 = dim KerL + dim ImL = + = 3 dir. L dönüşümü değildir çünkü KerL dır. L dönüşümü örten değildir çünkü dim = 3 = R 3 dim ImL = dir. 4) A = 3 olmak üzere L : R R 3 ile tanimlı L(x) = Ax fonksiyonu 5 a) KerL = {x = (x, x ) R L(x) = R 3} R 3 = (,, ) ve L(x) = Ax = 3 x = x + x 3x x = olacağından sistemin genel çözümü 5 5x x x = = dır. x Yani çekirdek uzayı sadece sıfır elemanından oluşur. Çekirdek uzayını üreten bir küme yoktur, yani çekirdek uzayının bir tabanı B =. Bu durumda Çekirdek uzayının boyutu=l nin sıfırlığı = dim KerL = b) ImL = {y R 3 x R 3 öyle ki L(x) = y} y = L(x) = Ax = 3 x = x 5 y y = x x x + x 3x 5x x = y y y 3 olacağından sistemin genel çözümü dir. v = 3, v = vektörleri görüntü uzayını üretirler. y 3 5 Yani görüntü uzayının bir üreteci {v, v }, verilen A matrisinin sütunlarıdır. Görüntü uzayının bir tabanı {v, v }, verilen A matrisinin lineer bağımsız sütunlarıdır. Görüntü kümesinin boyutu=im L nin boyutu= dim ImL = c) Tanım kümesinin boyutu= dim R = dim KerL + dim ImL = + = dir. L dönüşümü dir çünkü KerL = dır. L dönüşümü örten değildir çünkü dim R 3 dim ImL dir. 5) Düzlemin her bir noktasını bu noktanın y eksenine göre simetriğine dönüştüren fonksiyon L : R R, her x = (x, x ) R için L(x) = L(x, x ) = ( x, x ) dir. a) KerL = {x = (x, x ) R L(x) = R } R = (, ) ve L(x) = L(x, x ) = ( x, x ) = (, ) olacağından (x, x ) = (, ) Yani çekirdek uzayı sadece sıfır elemanından oluşur. Çekirdek uzayını üreten bir küme yoktur, yani çekirdek uzayının bir tabanı B =. Bu durumda Çekirdek uzayının boyutu=l nin sıfırlığı = dim KerL = b) ImL = {y R x R öyle ki L(x) = y} y = L(x) = ( x, x ) = (y, y ) olacağından sistemin genel çözümü y = x y + x dir. v =, v = vektörleri görüntü uzayını üretirler. Ayrıca c v + c v = denklemi sadece c = c = için sağladığından v, v lineer bağımsızdırlar. Yani görüntü uzayının bir tabanı {v, v } dır. Görüntü kümesinin boyutu=im L nin boyutu= dim ImL =

5 3 NİSAN-4 MAYIS ZEYNEP KAYARMATEMATİK BÖLÜMÜLİNEER CEBİR-II DE c) Tanım kümesinin boyutu= dim R = dim KerL + dim ImL = + = dir. L dönüşümü dir çünkü KerL = dır. L dönüşümü örtendir çünkü dim R = dim ImL dir. 6) Düzlemin her bir noktasını O noktası çevresinde θ radyan döndüren L : R R ile tanımlı L(x, x ) = (x cos θ x sin θ, x sin θ + x cos θ) fonksiyonu. (A = olmak üzere bu dönüşüm L(x) = Ax şeklinde de tanımlanır.) a) KerL = {x = (x, x ) R L(x) = R } R = (, ) ve Her θ R için L(x) = L(x, x ) = (x cos θ x sin θ, x sin θ+x cos θ) = (, ) olacağından (x, x ) = (, ) x x cos θ x. Yol: L(x) = L(x, x ) = Ax = = sin θ = ise x x sin θ + x cos θ x = x Yani çekirdek uzayı sadece sıfır elemanından oluşur. Çekirdek uzayını üreten bir küme yoktur, yani çekirdek uzayının tabanı B =. Bu durumda Çekirdek uzayının boyutu=l nin sıfırlığı = dim KerL = b) ImL = {y R x R öyle ki L(x) = y} y = L(x) = (x cos θ x sin θ, x sin θ + x cos θ) = Ax = (y, y ) olacağından cosθ sinθ v =, v sinθ = vektörleri görüntü uzayını üretirler. Ayrıca c cosθ v +c v = denklemi sadece c = c = için sağladığından v, v lineer bağımsızdırlar. Yani görüntü uzayının bir tabanı {v, v } dır. Görüntü kümesinin boyutu=im L nin boyutu= dim ImL = c) Tanım kümesinin boyutu= dim R = dim KerL + dim ImL = + = dir. L dönüşümü dir çünkü KerL = dır. L dönüşümü örtendir çünkü dim R = dim ImL dir. Soru III: Aşağıda verilen lineer dönüşümlerin verilen tabanlara göre matrislerini bulunuz. ) k R + olmak üzere L : R R ile tanimlı L(x, x ) = (kx, kx ) fonksiyonu b) B = {(, 3), (4, 5)} ve C = {(, ), (, 3)} tabanlarına göre ) L : R 3 R 3 ile tanimlı L(x, x, x 3 ) = (x x 3, x + x 3, x ) fonksiyonu b) B = {(,, 3), (4, 5, 6), (,, 6)} ve C = {(,, 3), (4,, 6), (,, )} tabanlarına göre 3) A = 3 olmak üzere L : R 3 R 3 ile tanimlı L(x) = Ax fonksiyonu 6 b) B = {(,, 3), (4, 5, 6), (,, 6)} ve C = {(,, 3), (4,, 6), (,, )} tabanlarına göre 4) A = 3 olmak üzere L : R R 3 ile tanimlı L(x) = Ax fonksiyonu 5 b) B = {(, ), (4, 5)} ve C = {(,, 3), (4,, 6), (,, )} tabanlarına göre 5) Düzlemin her bir noktasını bu noktanın y eksenine göre simetriğine dönüstüren fonksiyon L : R R b) B = {(, ), (4, 5)} ve C = {(, ), (, 6)} tabanlarına göre 6) Düzlemin her bir noktasını O noktası çevresinde θ radyan döndüren L : R R ile tanımlı L(x, x ) = (x cos θ x sin θ, x sin θ + x cos θ) fonksiyonu. (A = olmak üzere bu dönüşüm L(x) = Ax şeklinde de tanımlanır.) b) B = {(4, 6), (, 6)} ve C = {(, 3), (, )} tabanlarına göre Çözüm: ) k R + olmak üzere L : R R ile tanimlı L(x, x ) = (kx, kx ) fonksiyonu

6 6 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II D a) R nin standart tabanı B = {e = (, ), e = (, )} = C dir. Şimdi tanım uzayının taban elemanlarının L dönüsümü altındaki görüntülerini bulalım. L(e ) = L(, ) = (k, ) = γ ve L(e ) = L(, ) = (, k) = γ dir. Şimdi γ, γ vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c e + c e ya da bu sisteme denk olarak γ = d e + d e k sistemini yazabiliriz. Burada sol taraftaki matris birim matris olduğundan sağ taraftaki k matris aradığımız A matrisidir. b) Tanım uzayının bir tabanı B = {(, 3), (4, 5)} ve görüntü uzayının bir tabanı C = {(, ), (, 3)} olarak verilmiştir. Şimdi tanım uzayının taban elemanlarının L dönüsümü altındaki görüntülerini bulalım. L(, 3) = (k, 3k) = γ, L(4, 5) = (4k, 5k) = γ dir. Şimdi γ, γ vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c (, ) + c (, 3) γ = d (, ) + d (, 3) k 4k sistemini yazabiliriz. Burada sol taraftaki matrisi satır işlemleri uygulayarak 3 3k 5k birim matrise indirgeyeceğiz ve bu işlemler sonunda sağ tarafta oluşan matris aradığımız A matrisidir. k 4k R R k 4k R +R R k 4k 3 3k 5k 3 3k 5k 3 7k 3k R /3 R k 4k 7k/3 3k/3 k 4k C D I A olduğundan A = dir. 7k/3 3k/3 ) L : R 3 R 3 ile tanimlı L(x, x, x 3 ) = (x x 3, x + x 3, x ) fonksiyonu a) R 3 nin standart tabanı B = {e = (,, ), e = (,, ), e 3 = (,, )} = C dir. Şimdi tanım uzayının taban elemanlarının L dönüşümü altındaki görüntülerini bulalım. L(e ) = L(,, ) = (,, ) = γ, L(e ) = L(,, ) = (,, ) = γ ve L(e 3 ) = L(,, ) = (,, ) dir. Şimdi γ, γ, γ 3 vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c e + c e + c 3 e 3 γ = d e + d e + d 3 e 3 γ 3 = f e + f e + f 3 e 3 sistemini yazabiliriz. Burada sol taraftaki matris birim matris olduğundan sağ taraftaki matris aradığımız A matrisidir. b) Tanım uzayının bir tabanı B = {(,, 3), (4, 5, 6), (,, 6)} ve görüntü uzayının bir tabanı C = {(,, 3), (4,, 6), (,, )} olarak verilmiştir. Şimdi tanım uzayının taban elemanlarının L dönüsümü altındaki görüntülerini bulalım. L(,, 3) = (,, ) = γ, L(4, 5, 6) = (,, 4) = γ, L(,, 6) = ( 5, 4, ) = γ 3 dir. Şimdi γ, γ, γ 3 vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c (,, 3) + c (4,, 6) + c 3 (,, ) γ = d (,, 3) + d (4,, 6) + d 3 (,, ) γ 3 = f (,, 3) + f (4,, 6) + f 3 (,, ) sistemini yazabiliriz. Burada sol taraftaki matrisi satır işlemleri uygulayarak birim matrise indirgeyeceğiz ve bu işlemler sonunda sağ tarafta oluşan matris aradığımız A matrisidir. 3) A = 3 olmak üzere L : R 3 R 3 ile tanimlı L(x) = Ax fonksiyonu 6 a) R 3 nin standart tabanı B = {e = (,, ), e = (,, ), e 3 = (,, )} = C dir. Şimdi tanım uzayının taban elemanlarının L dönüşümü altındaki görüntülerini bulalım.

7 3 NİSAN-4 MAYIS ZEYNEP KAYARMATEMATİK BÖLÜMÜLİNEER CEBİR-II DE L(e ) = Ae = (,, ) = γ, L(e ) = Ae = (,, ) = γ, dir. L(e 3 ) = Ae 3 = (, 3, 6) = γ 3 Şimdi γ, γ, γ 3 vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c e + c e + c 3 e 3 γ = d e + d e + d 3 e 3 γ 3 = f e + f e + f 3 e 3 3 sistemini yazabiliriz. Burada sol taraftaki matris birim matris olduğundan 6 sağ taraftaki matris aradığımız A matrisidir. Diğer bir deyişle, eğer L lineer dönüşümü bir K matrisi yardımıyla ve görüntü uzayı standart taban ile veriliyor ise bu dönüşümün matrisi A = K dır. b) Tanım uzayının bir tabanı B = {(,, 3), (4, 5, 6), (,, 6)} ve görüntü uzayının bir tabanı C = {(,, 3), (4,, 6), (,, )} olarak verilmiştir. Şimdi tanım uzayının taban elemanlarının L dönüşümü altındaki görüntülerini bulalım. L(,, 3) = A(,, 3) = ( 4,, 4) = γ, L(4, 5, 6) = A(4, 5, 6) = ( 7, 7, 54) = γ, L(,, 6) = A(,, 6) = (,, 4) = γ 3 dir. Şimdi γ, γ, γ 3 vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c (,, 3) + c (4,, 6) + c 3 (,, ) γ = d (,, 3) + d (4,, 6) + d 3 (,, ) γ 3 = f (,, 3) + f (4,, 6) + f 3 (,, ) sistemini yazabiliriz. Burada sol taraftaki matrisi satır işlemleri uygulayarak birim matrise indirgeyeceğiz ve bu işlemler sonunda sağ tarafta oluşan matris aradığımız A matrisidir. 4) A = 3 olmak üzere L : R R 3 ile tanimlı L(x) = Ax fonksiyonu 5 a) R 3 nin standart tabanı B = {e = (,, ), e = (,, ), e 3 = (,, )} = C dir. Verilen L lineer dönüşümü bir K matrisi yardımıyla ve görüntü uzayı standart taban ile verildiğinden bu dönüşümün matrisi A = K dır. b) Tanım uzayının bir tabanı B = {(, ), (4, 5)} ve görüntü uzayının bir tabanı C = {(,, 3), (4,, 6), (,, olarak verilmiştir. Şimdi tanım uzayının taban elemanlarının L dönüşümü altındaki görüntülerini bulalım. L(, ) = A(, ) = (4, 3, ) = γ, L(4, 5) = A(4, 5) = (3,, ) = γ, dir. Şimdi γ, γ vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c (,, 3) + c (4,, 6) + c 3 (,, ) γ = d (,, 3) + d (4,, 6) + d 3 (,, ) sistemini yazabiliriz. Burada sol taraftaki matrisi satır işlemleri uygulayarak 3 6 birim matrise indirgeyeceğiz ve bu işlemler sonunda sağ tarafta oluşan matris aradığımız A matrisidir. 5) L : R R dönüşümü her x = (x, x ) için L(x) = L(x, x ) = ( x, x ) olarak tanımlanıyor. a) R nin standart tabanı B = {e = (, ), e = (, )} = C dir. Şimdi tanım uzayının taban elemanlarının L dönüsümü altındaki görüntülerini bulalım. L(e ) = L(, ) = (, ) = γ ve L(e ) = L(, ) = (, ) = γ dir. Şimdi γ, γ vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c e + c e γ = d e + d e ya da bu sisteme denk olarak

8 8 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II D sistemini yazabiliriz. Burada sol taraftaki matris birim matris olduğundan sağ taraftaki matris aradığımız A matrisidir. Yani L(x) = Ax dir. b) Tanım uzayının bir tabanı B = {(, ), (4, 5)} ve görüntü uzayının bir tabanı C = {(, ), (, 6)} olarak verilmiştir. Şimdi tanım uzayının taban elemanlarının L dönüsümü altındaki görüntülerini bulalım. L(, ) = (, ) = γ, L(4, 5) = ( 4, 5) = γ dir. Şimdi γ, γ vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c (, ) + c (, 6) γ = d (, ) + d (, 6) 4 sistemini yazabiliriz. Burada sol taraftaki matrisi satır işlemleri uygulayarak 6 5 birim matrise indirgeyeceğiz ve bu işlemler sonunda sağ tarafta oluşan matris aradığımız A matrisidir. 4 R +R R 4 R R R / 4+R R 9/4 R /4 R 9/ /4 9/4 C D I A olduğundan A = dir. Yani L(x) = Ax dır. 3/4 6) Düzlemin her bir noktasını O noktası çevresinde θ radyan döndüren L : R R ile tanımlı L(x, x ) = (x cos θ x sin θ, x sin θ + x cos θ) fonksiyonu. (A = olmak üzere bu dönüşüm L(x) = Ax şeklinde de tanımlanır.) a) R nin standart tabanı B = {e = (, ), e = (, )} = C dir. Verilen L lineer dönüşümü K = matrisiyle ve görüntü uzayı standart taban ile verildiğinden bu dönüşümün matrisi A = K dır. b) B = {(4, 6), (, 6)} ve C = {(, 3), (, )} tabanlarına göre Tanım uzayının bir tabanı B = {(4, 6), (, 6)} ve görüntü uzayının bir tabanı C = {(, 3), (, )} olarak verilmiştir. Şimdi tanım uzayının taban elemanlarının L dönüsümü altındaki görüntülerini bulalım. L(, ) = (cos θ sin θ, sin θ + cos θ) = γ, L(4, 5) = (4 cos θ 5 sin θ, 4 sin θ + 5 cos θ) = γ dir. Şimdi γ, γ vektörlerinin görüntü uzayının taban elemanlarının lineer bileşimi şeklinde yazalım. γ = c (, 3) + c (, ) γ = d (, 3) + d (, ) cos θ 5 sin θ sistemini yazabiliriz. Burada sol taraftaki matrisi satır 3 sin θ + cos θ 4 sin θ + 5 cos θ işlemleri uygulayarak birim matrise indirgeyeceğiz ve bu işlemler sonunda sağ tarafta oluşan matris aradığımız A matrisidir. cos θ 5 sin θ 3R +R R cos θ 5 sin θ 3 sin θ + cos θ 4 sin θ + 5 cos θ 3 cos θ + 7 sin θ cos θ + 9 sin θ R /3+R R 3 cos θ + 3 sin θ 5 3 cos θ sin θ 3 cos θ + 7 sin θ cos θ + 9 sin θ R / 3 R 3 cos θ + 3 sin θ 5 3 cos θ sin θ 3 cos θ sin θ 3 cos θ sin θ C D I A olduğundan A = 3 cos θ + 3 sin θ 5 3 cos θ sin θ 3 cos θ sin θ 3 cos θ sin θ dir. Yani L(x) = Ax dır.

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR.

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR. UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ LİNEER CEBİR DERSİ 0 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜÜNLEME SORULARI ÖĞR.GÖR.İNAN ÜNAL www.inanunal.com UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ MAKİNE MÜHENDİSLİĞİ

Detaylı

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3 Matematik 1 - Alıştırma 1 A) Denklemler 1. Dereceden Denklemler 1) Verilen denklemlerdeki bilinmeyeni bulunuz (x =?). a) 4x 6 = x + 4 b) 8x + 5 = 15 x c) 7 4x = 1 6x d) 7x + = e) 5x 1 = 10x + 6 f) 0x =

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 2: Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

Ders 8: Konikler - Doğrularla kesişim

Ders 8: Konikler - Doğrularla kesişim Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır?

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır? 99 ÖYS.,8 + (, + ), işleminin sonucu kaçtır? B) 7 D) 86 987 B) D). a, b, c birer pozitif gerçel sayı ve a=b b=c olduğuna göre, aşağıdakilerden hangisi doğrudur? a

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Fen ve Anadolu Liselerine Öğretmen Seçme Sınav Denemesi

Fen ve Anadolu Liselerine Öğretmen Seçme Sınav Denemesi EN LİSELERİ, SOSYL İLİMLER LİSELERİ,SPOR LİSELERİ,NDOLU LİSELERİ ÖĞRETMENLERİNİN SEÇME SINVIN HZIRLIK DENEME SINVI. 2 HZIRLYN : İ:K(2008) idensu@gmail.com kuscuogluibrahim@gmail.com http://idensu.googlepages.com

Detaylı

DERS: MATEMATİK I MAT101(04)

DERS: MATEMATİK I MAT101(04) DERS: MATEMATİK I MAT0(0) ÜNİTE: FONKSİYONLAR KONU:. TRİGONOMETRİK FONKSİYONLAR Öncelikle açı ölçü birimlerine göz atalım: Bilindiği gibi bir tam açının ölçüsü 0 derecedir. Diğer bir açı ölçü birimi de

Detaylı

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Đşlem ĐŞLEM A ve A x A nın bir alt kümesinden A ya her fonksiyona ikili işlem denir. Örneğin toplama, çıkarma, çarpma birer işlemdir. Đşlemler

Detaylı

Math 103 Lineer Cebir Dersi Ara Sınavı

Math 103 Lineer Cebir Dersi Ara Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Ara Sınavı 9 Kasım 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 3: Bitiş Saati: 4:5 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

. [ ] vektörünü S deki vektörlerin bir lineer

. [ ] vektörünü S deki vektörlerin bir lineer 11.Gram-Schmidt metodu 11.1. Ortonormal baz 11.1.Teorem: { }, V Öklid uzayı için bir ortonormal baz olsun. Bu durumda olmak üzere. 1.Ö.: { }, de bir ortonormal baz olsun. Burada. vektörünü S deki vektörlerin

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Yazar Doç.Dr. Hüseyin AZCAN ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; Küresel Koordinatlar Silindirik Koordinatları Dönel Yüzeylerin Elde Edilmesi

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları 4.Ders Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları Tanım:,U, P bir olasılık uzayı ve X, X,,X n : R n X, X,,X n X, X,,X n olmak üzere, her a, a,,a n R n için : X i a i, i,, 3,,n U özelliği sağlanıyor

Detaylı

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3 p ve q iki önerme olsun p q q p dir. p: = 3 ve q: y< 8 alınırsa I ve III ün denk olduğu görülür. Yanıt B Z 3 = 7 = 7CiS( +k ) k Z k =3CiS ( ) 3 3 k = 0 için z 0 = k=1 için z 1 = 3 k = için z = Yanıt A

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =?

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =? TANIM MUTLAK DEĞER Örnek...6 : 1 x > 1 y > 1 z ise x y x z z y =? Bir x reel sayısına karşılık gelen noktanın sayı doğrusunda 0 (sıf ır) a olan uzaklığına x sayısının mutlak değeri denir ve x şeklinde

Detaylı

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı 9.Konu Lineer bağımsızlık, taban, boyut 9.1. Germe 9.1.Tanım: V vektör uzayının her bir elemanı vektörlerin lineer birleşimi olarak ifade ediliyorsa vektörleri V yi geriyor ya da V yi gerer denir. Üstelik,

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

Lineer Cebir (MATH 275) Ders Detayları

Lineer Cebir (MATH 275) Ders Detayları Lineer Cebir (MATH 275) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Lineer Cebir MATH 275 Her İkisi 4 0 0 4 6 Ön Koşul Ders(ler)i Yok Dersin Dili Dersin

Detaylı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir. Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak

Detaylı

ÜN TE II. UZAYDA VEKTÖR, DO RU VE DÜZLEM N ANAL T K NCELENMES

ÜN TE II. UZAYDA VEKTÖR, DO RU VE DÜZLEM N ANAL T K NCELENMES ANAL T K GEOMETR ÜN TE II. UZAYDA VEKTÖR, DO RU VE DÜZLEM N ANAL T K NCELENMES 1. ANAL T K UZAY. ANAL T K UZAY D A D K KOORD NAT EKSENLER VE ANAL T K UZAY I. Analitik uzayda koordinat sistemi II. Analitik

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

FONKS IYONEL ANAL IZE G IR IŞ I Aras nav Sorular

FONKS IYONEL ANAL IZE G IR IŞ I Aras nav Sorular Ad ve Soyad : Numaras : FONKS IYONEL ANAL IZE G IR IŞ I Aras nav Sorular 30.11.2007 1. Aşa¼g daki ifadelerin do¼gru olup olmad klar n nedenlerini aç klayarak yaz n z. (a) (X; kk) bir normlu uzay ve M bunun

Detaylı

LİNEER CEBİR. Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU. Ders Notu: Prof. Dr. Şaban EREN

LİNEER CEBİR. Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU. Ders Notu: Prof. Dr. Şaban EREN LİNEER CEBİR Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU Ders Notu: Prof. Dr. Şaban EREN 1.BOLUM DOGRUSAL CEBIR VE DIFERANSIYEL DENKLEMLER LİNEER EŞİTLİKLER 1.1. LİNEER EŞİTLİKLERİN TANIMI x 1, x 2,...,

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 15 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 MATEMATİK TESTİ SORULARINI İÇERMEKTEDİR.

MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 MATEMATİK TESTİ SORULARINI İÇERMEKTEDİR. Ö S Y M T.C. YÜKSEKÖĞRETİM KURULU ÖĞRENCİ SEÇME VE YERLEŞTİRME MERKEZİ LİSANS YERLEŞTİRME SINAVI MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 9 HAZİRAN 00 BU SORU KİTAPÇIĞI 9 HAZİRAN 00 LYS MATEMATİK

Detaylı

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir. Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 996 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Bir sınıftaki örencilerin nin fazlası kız örencidir. Sınıfta erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır? A) B) 8 C) 6 D) E) Çözüm Toplam öğrenci

Detaylı

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI 11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI Programın öğrencilerde geliştirmeyi hedeflediği becerilerle 11. sınıf matematik öğretim programı ilişkisi Modelleme/Problem çözme Matematiksel Süreç

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI Özet: Açısal momentumun türetimi Açısal momentum değiştirme bağıntıları Levi- Civita simgesi Genel olarak, L x, L y, L z, nin eşzamanlı özdurumları yoktur L 2 ve bir bileşeni (L z ) nin eşzamanlı özdurumlarıdır.

Detaylı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı 1.8.Reel Sayılar Kümesinin Tamlık Özelliği Rasyonel sayılar kümesi ile rasyonel olmayan sayıların kümesi olan irrasyonel sayılar kümesinin birleşimine reel sayılar kümesi denir ve IR ile gösterilir. Buna

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

Gravite alanı belirlemede modern yaklaşımlar

Gravite alanı belirlemede modern yaklaşımlar Gravite alanı belirlemede modern yaklaşımlar Lisansüstü Ders Notları Aydın ÜSTÜN Selçuk Üniversitesi Harita Mühendisliği austun@selcuk.edu.tr Konya, 2016 A. Üstün (Selçuk Üniversitesi) Gravite alanı belirleme

Detaylı

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Jordan Yöntemi ve Uygulaması Performans Ölçümü 2 Bu çalışmada,

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte

Detaylı

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

x 2i + A)( 1 yj 2 + B) u (v + B), y 1 Ders 11: Örnekler 11.1 Kulplarla inşalar Bu bölümde kulpları birbirine yapıştırıp tanıdık manifoldlar elde edeceğiz. Artık bu son ders. Özellikle dersin ikinci bölümünde son meyveleri toplamak adına koşarak

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10 LİSNS YRLŞTİRM SINVI- MTMTİK-GOMTRİ SINVI MTMTİK TSTİ SORU KİTPÇIĞI 0 U SORU KİTPÇIĞI LYS- MTMTİK TSTİ SORULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

π θ = olarak bulunur. 2 θ + θ θ θ θ θ π 3 UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ 22.04.

π θ = olarak bulunur. 2 θ + θ θ θ θ θ π 3 UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ 22.04. UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ.04.006. Aşağıdaki gibi, M ve M merkezli br yarıçaplı iki dairenin kesişimi şeklinde bir park inşa edilmektedir. Bu iki dairenin

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır?

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır? MATE 106 SOSYAL BİLİMLER İÇİN TEMEL ANALİZ Ad-Soyad No Uygun cevabı bulunuz. 1)A = πr2 formülü r yarıçaplı çemberin A alanını vermektedir. Bir masa örtüsü A alanına sahipse, yarıçapını A'nın bir fonksiyonu

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

Ç NDEK LER I. C LT KONULAR Sayfa 1. Lineer Cebire Giri... 2. Lineer Denklem Sistemlerinin Elemanter lemlerle Çözümü

Ç NDEK LER I. C LT KONULAR Sayfa 1. Lineer Cebire Giri... 2. Lineer Denklem Sistemlerinin Elemanter lemlerle Çözümü ÇNDEKLER I. CLT KONULAR 1. Lineer Cebire Giri... 1 Lineer Modeller... 3 Lineer Olmayan Modeller... 3 Dorunun Analitik Analizi.. 5 Uzayda Geometrik Büyüklükler. 7 Lineer Cebir ve Lineerite 10 Lineer Denklem

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

MATLAB. Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI

MATLAB. Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI MATLAB Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI İçerik Matlab Nedir? Matlab ın Kullanım Alanları Matlab Açılış Ekranı Matlab Programı İle Temel İşlemlerin Gerçekleştirilmesi Vektör İşlemleri

Detaylı

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4 989 ÖYS. a a a b 8 olduğuna göre a-b kaçtır? C). a ile b nin aritmetik ortalaması 5 tir. a ile geometrik ortalaması 0, b ile geometrik ortalaması 0 olan sayı nedir? 0 C) 8 ise a+b+d toplamı ne-. a+b+c=d

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır? Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994 Matematik Soruları ve Çözümleri 4.10 +.10 1. 4 10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 = 4 4 (40+

Detaylı

θ x Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 3 Alıştırmalar KARMAŞIK SAYININ KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ 1) z = 1 + i 2) z = 1 i

θ x Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 3 Alıştırmalar KARMAŞIK SAYININ KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ 1) z = 1 + i 2) z = 1 i KARMAŞIK SAYININ KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ z = a + bi y karmaşık sayısının kartezyen bi koordinatları z=(a, b) dir. Ya da görüntüsü A noktasıdır. A Alıştırmalar Karmaş ık sa yıs ın ın kutupsal

Detaylı

MATEMATİK ÖĞRETMENLİĞİ

MATEMATİK ÖĞRETMENLİĞİ T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 589 MATEMATİK ÖĞRETMENLİĞİ Lineer Cebir Yazar: Yrd.Doç.Dr. Nezahat ÇETİN Öğr.Grv.Dr. Nevin ORHUN Editör: Prof.Dr. Orhan

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ Kenan KILIÇASLAN Okul No:1098107203 1. DESTEK VEKTÖR MAKİNELER

Detaylı

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

A B = A. = P q c A( X(t))

A B = A. = P q c A( X(t)) Ders 19 Metindeki ilgili bölümler 2.6 Elektromanyetik bir alanda yüklü parçacık Şimdi, kuantum mekaniğinin son derece önemli başka bir örneğine geçiyoruz. Verilen bir elektromanyetik alanda hareket eden

Detaylı