YILLAR ÖSS-YGS

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS"

Transkript

1 YILLAR ÖSS-YGS / - 2/ 2/ / LYS OBEB OKEK OBEB: iki veya daha fazla sayıyı birlikte bölebilen en büyük tamsayıya bu sayıların OBEB i denir Sayılar asal çarpanlarına ayrılır Ortak asal çarpanların en küçük üslüleri alınıp çarpılır OKEK: iki veya daha fazla sayıya birlikte bölünebilen en küçük pozitif tamsayıya bu sayıların OKEK i denir Sayılar asal çarpanlarına ayrılır Ortak asal çarpanların en büyük üslüleri alınıp çarpılır (a, b) obeb, OBEB( a, b) a ile b nin obebi (EBOB) ( a, b) okek, OKEK( a, b) a ile b nin okeki(ekok) Her iki sayıyı bölen sayıların çarpımı obeb, ortak olan olmayan tüm bölenlerin çarpımı da okek i verir Bu durumda; OBEB : 25 = OKEK : = 260 ÖRNEK( 2 ) 05 ve 47 nin obeb ve okek i kaçtır? NOT: i) a ve b sayıları için ; OBEB(a,b)OKEK(a,b) = ab dir (bu kural sadece iki sayı için geçerlidir) ii) a<b olmak üzere; OBEB(a,b) a<b OKEK(a,b) dir OBEB : 37 = 2 OKEK: 357²=735 iii) A ve B aralarında asal iki sayı olsun OBEB(A,B) = OKEK(A,B) = AB a c OBEB( a d, b c) iv) OBEB, = b d OKEK( b, d) a c OKEK( a, c) OKEK, = b d OBEB( b, d) ÖRNEK( ) 90 ile 40 ın obeb ve okek i kaçtır? wwwglobalderscom ÖRNEK( 3 ) 20,72 ve 68 in obeb ve okek i kaçtır? OBEB: 22 = 4 OKEK: 2³3²57=520

2 ÖRNEK( 4 ) 26,45 ve 85 in obeb ve okek i kaçtır? OBEB = OKEK = 23²537 =9890 ÖRNEK( 6 ) 5,2 ve 2 ile bölündüğünde daima 2 kalanını veren en küçük sayı kaçtır? Sayımız A olsun A 5 A 2 A 2 x y z A = 5x+2 = 2y+2 = 2z+2 ĐKĐ SAYI ĐÇĐN KISA YOL: iki sayı verilsin biri paya diğeri paydaya yazılıp bir kesir oluşturulur -kesir en sade şekle getirilir 36 3 örneğin; 36ve48 sayıları için = bu orantıda içlerin veya dışların çarpımı OKEK i, payların veya paydaların çarpımı da OBEB i verir ÖRNEK( 5 ) a,b,c Z ve B=3a+=7b+5=c+9 koşulunu sağlayan 3 basamaklı en büyük sayı kaçtır? Her taraftan 2 çıkarılırsa A-2 = 5x = 2y = 2z Demek ki A-2 sayısı 5,2 ve 2 in okek inin bir katıdır A-2 =OKEK(5,2,2)kat A-2 = 420kat En küçük dendiği için kat= seçilir A-2 = 420 A=422 bulunur ÇÖZÜM Her iki tarafa 2 eklenirse B+2=3a+3=7b+7=c+ B+2= 3(a+) = 7(b+) = (c+) B+2 sayısı hem 3, hem7 ve hem de in katıdır Yani B+2 sayısı 3,7, nin okek inin bir katıdır Okek(3,7,) = 23 B+2 =23kat Burada kat a değerler vererek istenen bulunur Kat=4 için B+2 = 234 B+2 = 924 B =922 bulunur ÖRNEK( 7 ) 6,2 ve 5 i tam bölen en büyük sayı kaçtır? Bu sayıları bölen en büyük sayı 6,2 ve 5 in obeb i olur o halde OBEB (6,2,5)=3 bulunur wwwglobalderscom 2

3 ÖRNEK( 8 ) Eni 00 m, boyu 250 m olan bir bahçe eşit büyüklükteki kare parsellere ayrılacak En az kaç parsel elde edilir? (C: 0) x x 250m 00m ÖRNEK( 0 ) Obeb ile Okek leri çarpımı 048 olan iki sayıdan biri 262 ise diğeri kaçtır? Kural: obeb(x,y)okek(x,y)=xy 048 = 262y y=4 bulunur ÖRNEK( ) Boyutları 9,2 ve 5 cm olan dikdörtgenler prizması şeklindeki bir kaşar peyniri farelere verilmek üzere küp şeklinde dilimlere ayrılacak En az kaç dilim elde edilir? x sayısı hem 00, hem de 250 yi bölmelidir Yani x sayısı 00 ve 250 nin obeb idir x=obeb(00,250)=50 m Bahçenin Alanı Parsel sayısı = Parselin Alanı = =0 tane parsel bulunur Elde edilecek küplerin kenarları eşit ve bu kenarların 9,2 ve 5 i bölmesi gerekir 2cm ÖRNEK( 9 ) Eni 00 m, boyu 250 m olan bir bahçe en az kaç kare parsele ayrılır? (C: 4) 9cm x 5cm Bu soruyu önceki sorudan ayıran eşit kelimesidir Bu soruda eşit kelimesi olmadığından obeb-okek ile çözemeyiz Mümkün olan en büyük kare parseller elde edecek şekilde parçalamalar yapılır 50m 00m 00m x = obeb(9,2,5)=3 cm Dilim Sayısı = Prizmanın Hacmi Küp Dilim lerin Hacmi = = 60 adet dilim elde edilir m ÖRNEK( 2 ) 60 kg lık leblebi, 90 kg lık ceviz ve 80 kg lık çekirdek birbirine karıştırılmadan eşit hacimli torbalara doldurulacaktır En az kaç torba gereklidir? o halde cevap 4 kare parsel olacaktır wwwglobalderscom 3

4 Önce torbaların kaç kg lik olmaları gerektiğini bulalım Bu torba 60,90 ve 80 kg lik çerezleri artmayacak şekilde bölmeli Bu da 60,90 ve 80 i bölen bir ağırlık olmalı Bu ağırlığa x dersek X = obeb(60,90,80) = 30 kg Şimdi her çerez torbasından kaç yeni torba çıkar ona bakalım = 2, = 3, = toplam = = torba bulunur ÖRNEK( 3 ) Boyutları 3,6 ve 5 cm olan kutulardan en az kaç tanesiyle bir küp yapılabilir? çözmek demektir Bu yüzden size hangi işlemi yapacağınız hususunda yardımcı olacak bir pratik verelim VERĐLEN ĐSTENEN ĐŞLEM Büyük Küçük OBEB Küçük Büyük OKEK ÖRNEK( 4 ) Boyutları 42 ve 54 m olan dikdörtgen bir bahçe, etrafına eşit aralıklı ve köşelere birer ağaç gelecek şekilde ağaçlandırılacaktır En az kaç ağaç gereklidir? (Büyük verilmiş küçük isteniyor O halde obeb bulacağız) Obeb(42,54) = 6 m bulunan bu değer iki ağaç arası mesafedir Önceki sorulardan farklı olarak bu sefer bütüne ulaşmaya çalışacağız 6cm Bahçenin çevresi = 2(42+ 54) = 92 m Dikilecek ağaç sayısı 92 6 =32 bulunur ÖRNEK( 5 ) Boyutları 42 ve 54 m olan dikdörtgen bir bahçe, etrafına ve içine eşit aralıklı ve köşelere birer ağaç gelecek şekilde ağaçlandırılacaktır En az kaç ağaç gereklidir? 3 cm 5cm X Küpün bir kenarı bu kutuların ebatlarına bölünmesi gerektiğinden bize okek gerekecek Küpün bir kenarına x dersek x = okek(3,6,5) = 30 cm Küpün Hacmi Kutu Sayısı = Kutunun Hacmi = = 00 adet kutu gereklidir NOT: bir soruda obeb mi, okek mi kullanacağımızı anlamak sorunun yarısını wwwglobalderscom 4 (Verilen büyük, isten küçük olduğundan obeb gereklidir) Diğer sorudan farklı olarak bahçenin içine de ağaç dikileceğinden, ilk yapılacak iki ağaç arası mesafenin bulunmasıdır Obeb(42,54) = 6 m iki ağaç arası mesafedir Şimdi bahçede kaç satır ağaç ve her satırda kaç ağaç dilecek, onu bulalım

5 Şekli dikkatli incelediğimizde oluşan satır sayısının 8 ve sütun sayısının da 0 olduğunu görürüz O halde dikilecek ağaç sayısı ; 80 = 80 olur (her soruyu böyle çizerek çözmek zordur Gelin buna bir pratik verelim 42:6=7 eder ama bizim 8 satırımız var 54:6 = 9 eder ama bizim 0 sütunumuz var Demek ki Bir Kenar Uzunluğu + bize satır ve Bulunan obeb sütun sayısını verir Bundan sonra bu yöntemi kullanarak çizimde kaybolan zamanı kazanabiliriz) Đfadenin bilinmeyenli olması fikrimizi bozmasın yapılacak bellidir Verilen büyük, istenen küçük, o halde önce obeb bulacağız 2 a + 7a+ 0 =(a+2)(a+5) 3a+6 = 3(a+2) (a+2)(a+5) 3(a+2) a+2 (a+5) 3 a görüldüğü gibi her iki ifadeyi bölen (a+2) dir o halde Obeb = (a+2) dir ÖRNEK( 6 ) A,x,y,z Z + ve A=5x+2=7y+2=3z+2 ise x+y+z en az kaçtır? A=5x+2=7y+2=3z+2 taraftan 2 çıkarırsak ifadesinde her A-2 = 5x = 7y = 3z elde edilir Bu da A-2 sayısının 5,7 ve 3 ün bir katı olduğunu gösterir A-2 = Okek(5,7,3)kat A-2 = 455kat burada kat= seçilirse A-2=455 bulunur ifadeler tek tek eşitlenirse; Dikdörtgenin Alanı karelerin sayısı = Karenin Alanı (a+ 2)(a+ 5)(3(a+ 2) = (a+ 2)(a+ 2) = 3(a+5) tane kare elde edilir Karelerin er birinin alanı da (a+2)(a+2) = (a+2)² bulunur NOT: bilinmeyenli veya üslü olarak verilen ifadelerin obeb-okek leri alınırken sayılar üslü şekilde gösterilmek kaydıyla; Obeb: ortak olanların üss küçük olanlar Okek: ortak olanların üssü büyük olanlar ile ortak olmayanların hepsi alınır A-2=455=5x=7y=3z x=9, y=65, z=35 bulunur x+y+z =9 bulunur ÖRNEK( 8 ) A= 2³3²5 ve B=2²37 ise Obeb(A,B) ve Okek(A,B) nedir Obeb = 2²3 = 2 Okek = 2³3²57 = 2520 bulunur 2 ÖRNEK( 7 ) Eni ( a + 7a+ 0 ) ve boyu (3a+6) birim olan dikdörtgeni eşit ve en büyük alana sahip kaç kareye ayırabiliriz Ve bu karelerin birinin alanı ne olur? ÖRNEK( 9 ) 360 m lik dairesel bir yarış pistinde hızları sırasıyla 40 m/dk, 60 m/dk ve 90 m/dk olan üç araç yarışıyor Aynı yönde beraber hareket etmelerinden kaç dk sonra yine aynı noktadan beraber geçerler? wwwglobalderscom 5

6 Önce her bir aracın bir turu kaç dk da attığını bulalım; I Araç : 360 =9 dk 40 II Araç : = 6 dk III Araç : =4 dk Şimdi berberce aynı anda başlangıç noktasından geçiş sürelerini bulalım Okek(4,6,9)= 36 dk olur ÖRNEK( 22 ) Farklı iki doğal sayının Obeb i 2, Okek i 72 ise bu iki sayının toplamı a) En az kaçtır? b) En çok kaçtır? Obeb sayıların ortak çarpanı olduğundan bunu ayıralım kalanları sayılara bölüştürürüz ÖRNEK( 20 ) Ahmet ile Hasan aynı cins meyveden farklı kilolarda satın almışlar ve biri bin diğeri bin lira ödemiştir Buna göre bu meyvenin kilogramı en fazla kaç bin lira olabilir? Meyvenin kilosuna x dersek, x in 8750 ve 4000 i bölmesi gerekir Yani ortak bölen olacak Obeb(8750,4000)=750 bulunur ÖRNEK( 2 ) A ve B gibi iki sayı için Obeb=Okek ise bu iki sayının çarpımı kaç olabilir? sayılarımıza a ve b dersek a = 2x ve b = 2y olsun a) x=3 ve y =2 olursa a =23=36 ve b = 22=24 a + b = =60 b) x= ve y =32 olursa a =2=2 ve b = 26=72 a + b = = 84 ÖRNEK( 23 ) Bir markette eşit büyüklükte 320 den fazla kavanoz vardır Bu kavanozlar raflara 6,7,8 er dizildiğinde son dizilen rafta sırasıyla 3,,7 kavanozluk yer eksik kalıyor buna göre bu markette en az kaç kavanoz vardır? A) 5 B) 27 C) 32 D) 64 E) 20 Marketteki kavanoz sayısı A olsun A= 6x-3 = 7y- = 8z-7 Her tarafa 5 eklersek Kural: obebokek=ab Kurala göre gidersek sol taraf bir tamkare oluyor o halde AB bir sayının karesidir Yani cevap D şıkkı olur A+5 = 6x-3+5=7y-+5=8z-7+5 A+5 = 6x+2 = 7y+4 = 8z+8 A+5 = 6(x+2) = 7(y+2) = 8(z+) A+5 sayısı 6,7 ve 8 in bir katıdır wwwglobalderscom 6

7 A+5 = Okek(6,7,8)kat A+5 = 68kat A=68kat-5 > 320 şartını sağlaması için kat a 2 veririz A= > 320 A = > 320 A = 32 >320 O halde markette en az 32 kavanoz vardır ÖRNEK( 24 ) Üç vapur farklı hatlarda seyrediyorlar vapurlar sırasıyla 3/2 sa, ¼ sa, ve 4/5 sa aralıklarla limandan sefer düzenliyorlar Saat 3:00 da beraber limandan ayrılan bu vapurlar saat kaçta yine aynı limandan ayrılırlar? a=23=26 b=35=5 a+b = 4 olduğu görülür O halde a-b = 26-5 = bulunur ÖRNEK( 26 ) a ve b ardışık çift doğal sayılar ve Obeb(a,b) + Okek(a,b)=46 ise (a+2) ve (b+2) nin Okek i kaçtır? Ardışık çift sayılar x ve y ardışık sayı olmak üzere 2x ve 2y şeklindedir Bu yüzden sayılar ; a= 2x ve b=2y olmak üzere Önce aynı anda geçtikleri süreyi bulalım Okek( 3,, )= (3,, 4) okek = 2 (2, 4,5) obeb =2sa Saat 3:00 da ilk geçişlerinden 2 saat sonra tekrar aynı yerden geçerler O halde 3:00+2:00=25:00 bir gün 24 saat olduğundan 25-24= yani gece saat 0:00 da yine aynı limandan geçerler ÖRNEK( 25 ) Aralarında asal a ve b sayılarının Okek i 390 ve a+b=4 ise a b=? (a>b) 2x 2y 2 x y x y y Obeb(a,b) =2 ve Okek(a,b)=2xy 2+2xy =46 2xy = 44 xy = 72 x=8 ve y=9 dur a=28=6 ve b=29=8 dir a+2 = 8 ve b+2=20 dir Okek(8,20)=80 bulunur Đki sayı aralarında asal ise okek leri sayıların çarpımıdır(kural) O halde ab=390 Önce 390 çarpanlarına ayrılır = 2353 bu çarpanlardan toplamları 4 eden iki grup oluşturalım wwwglobalderscom 7 ÖRNEK( 27 ) 3762 sayısına en az kaç eklemeliyiz ki, oluşan sayı3,5,7 ve 9 ile tam bölünsün Sayıya x ekleyelim 3762+x = 3a=5b=7c=9c olur Demek ki 3762 sayısı 3,5,7 ve 9 un bir katıdır 3762+x=Okek(3,5,7,9)kat 3762+x= 35kat

8 kat=2 seçilirse 3762+x= x=3780 x= c=8 bulunur ÖRNEK( 28 ) a,b,c Z + olmak üzere; X=2a+=3b+2=5c+4 ise kaç tane iki basamaklı X sayısı yazılabilir? Her tarafa eklenirse X+=2a+2=3b+3=5c+5 X+=2(a+)=3(b+)=5(c+) Bu durumda X+ sayısı 2,3 ve 5 in bir katı olur X+=Okek(2,3,5)kat X+=30kat X=30kat- Kat= için X=29 Kat=2 için X=59 Kat=3 için X=89 Yani 3 tane X iki basamaklı sayı elde edilir ÖRNEK( 29 ) Farklı iki doğal sayının Okek i 80 ise bu iki sayının toplamı en fazla kaç olur? (C: 270) Sayılar farklı denmese ikisi de 80 alınabilirdi Ancak farklı dediği için birini ;çarpanlardan birtanesini ayırmak sureti ile değiştiririz Ayrılacak sayı çarpanların en küçüğü olmalı ki kalan sayı fazla küçülmesin 80 = 2²3²5 2 en küçükleridir O halde bir sayıyı 80, diğerini de 23²5=90 seçeriz = 270 bulunur ÖRNEK( 30 ) Farklı iki doğal sayının Okek i 20 ise bu iki sayının toplamı en az kaç olur? Toplamları en az olsun isteniyorsa Okek i aralarında asal ve birbirine yakın iki sayı şeklinde parçalarız = görüldüğü gibi aynı olan sayılar birleştirilerek aralarında asal gruplar oluşturuluyor sayı = 8 2 sayı =35=5 sayıların toplamı 8+5 = 23 bulunur ÖRNEK( 3 ) Üçgen şeklindeki bir bahçenin etrafına eşit aralıklarla ağaç dikilecek Boyutları 8,2 ve 6 br olan üçgenin köşelerine birer ağaç dikildiğine göre daha kaç ağaca ihtiyaç vardır? Önce ağaçlar arası eşit mesafe bulunur Obeb(8,2,6)= 4 Üçgenin çevresi =8+2+6=36 Ağaç sayısı 36:4=9 3 tane daha önce dikilmiş 9-3=6 ağaca ihtiyaç vardır ÖRNEK( 32 ) (5,a,75)obeb =5 ve (5,a,75)okek=050 ise a en küçük kaçtır? Okek i oluşturan sayılardan belli olan ikisindeki çarpanlar dikkate alınarak a ya mümkün olan en az çarpan verilir Obeb=5 olduğundan a da 5 olmalıdır wwwglobalderscom 8

9 3 ve 5² zaten 5 ve 75 ten elde ediliyor Geriye bunlardan elde edilemeyen 2 ve 7 kalıyor onları da a ya verirsek A=527=70 bulunur ÖRNEK( 33 ) Mehmet bilyelerini 5 er, 6 şar ve 7 şer sayınca hep bir bilyesi artıyor Buna göre Mehmet in en az kaç bilyesi var? (ÖSS-88) Mehmet in bilye sayısı X olsun X =5a+=6b+=7c+ Her taraftan eksiltirsek X- =5a=6b=7c bu durumda (X-) sayısı 5,6 ve 7 nin bir katı olur ÖRNEK( 35 ) Bir sepetteki güller 5 er demetlenince 2 gül, 7 şer demetlenince 3 gül artmaktadır Buna göre sepette en az kaç gül vardır? (ÖYS-9) A) 7 B) 24 C) 27 D) 37 E) 38 ÇÖZÜM : Gül sayısı X olsun X=5a+2=7b+3 Her tarafa 8 eklersek X+8=5a+2+8=7b+3+8 X+8=5a+20=7b+2 X+8=5(a+4)=7(b+3) X-=Okek(5,6,7)kat X- = 20kat Kat= seçersek X-=20 X=2 bulunur ÖRNEK( 34 ) 7 ve 5 ile bölündüğünde her iki bölümde 2 kalanını veren en küçük pozitif sayının rakamları toplamı kaçtır? (ÖSS-9) Sayımız X olsun X+8=Okek(5,7)kat X+8=35kat Kat= için X+8=35 X=7 bulunur ÇÖZÜM2: Bu soruyu daha pratik olarak şöyle çözebiliriz Şıklardan 5 e bölününce 2, 7 ye bölününce 3 kalanını veren en küçük sayı sorumuzun cevabıdır O halde A şıkkı sorumuzun cevabıdır 7 =53+2 ve 7=72+2 X= 5a+2=7b+2 Her taraftan 2 çıkarırsak X-2=5a=7b Yani (X-2) sayısı 5 ve 7 nin bir katıdır X-2=Okek(5,7)kat X-2=35kat Kat= seçilirse X-2=35 X=37 bulunur buradan 3+7=0 dur wwwglobalderscom 9 ÖRNEK( 36 ) Okek i 30 olan farklı iki sayının toplamı en fazla kaçtır? (ÖSS-96) A) 53 B) 45 C) 83 D) 3 E) 7 Sayılardan birini 30, diğerini 5 seçersek 30+5=45 bulunur cevap B şıkkı (Benzer soruyu daha önce çözmüştük 30=235 olduğundan toplam büyük olsun diye ikinci sayı için çarpanlardan en küçüğü ayrılır, kalan 35=5 ikinci sayı kabul edilir)

10 ÖRNEK( 37 ) Bir kutudaki kalemlerin sayısının en az 87, en çok 30 olduğu bilinmektedir Kutudaki kalemler 3 er, 6 şar ve7 şer sayıldığında her seferinde2 kalem artmaktadır Buna göre kutuda kaç kalem vardır? (ÖSS-96) A) 08 B) 4 C) 7 D) 20 E) 28 Kutudaki kalem sayısı X olsun X= 3a+2=6b+2=7c+2 Her taraftan 2 çıkarırsak X-2=3a=6b=7c Yani (X-2) sayısı 3,6 ve 7 nin bir katıdır X-2=Okek(3,6,7)kat X-2=42kat X=42kat+2 87<42kat+2<30 olacağından en uygun kat değeri 3 tür 423+2=28 eder Cevap E şıkkı ÖRNEK( 39 ) 6,7 ve 8 ile kalansız bölünebilen 4000 den küçük sayıların en büyüğünün onlar basamağındaki rakam kaçtır? (C: 6) (ÖSS 2003) Sayı X olsun X= 6a=7b=8c X=Okek(6,7,8)kat X= 68kat <4000 olacak şekilde bir kat seçelim Kat= 23 seçilirse 6823=3864<4000 şartı sağlar O halde 3864 ün onlar basamağı 6 dır ÖRNEK( 38 ) Toplamları 26 olan a ve b pozitif tamsayılarının en küçük ortak katı 05 tir Buna göre a b =? (ÖSS-2000) YAZAN ĐBRAHĐM HALĐL BABAOĞLU Matematik Öğretmeni wwwglobalderscom a=37=2 ve b=5 seçilirse a+b=2+5=26 olduğundan a-b=2-5=6 bulunur wwwglobalderscom 0

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

SAYILARIN ASAL ÇARPANLARINA AYRILMASI ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki

Detaylı

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz.

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz. MATEMATİK ASAL ÇARPANLARA AYIRMA A S A L Ç A R P A N L A R A A Y I R M A T a n ı m : Bir tam sayıyı, asal sayıların çarpımı olarak yazmaya, asal çarpanlarına ayırma denir. 0 sayısını asal çarpanlarına

Detaylı

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim.

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim. SINIF ÇARPANLAR ve KATLAR www.tayfunolcum.com 8.1.1.1: Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade ya da üslü ifadelerin çarpımı seklinde yazar. Çarpan ( bölen ) Her

Detaylı

Asal Çarpan, OBEB - OKEK

Asal Çarpan, OBEB - OKEK Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. 15 in doğal sayı çarpanları II. 1 nin tam sayı bölenleri a) 1,, 3, 4, 6, 1 1,, 3, 4, 6, 1 b) 1, 3, 5, 15 III. 140 ın asal çarpanlara ayrılışı c) 140

Detaylı

90 sayısının asal çarpanlarının toplamı kaçtır?

90 sayısının asal çarpanlarının toplamı kaçtır? 90 sayısının asal çarpanlarının toplamı kaçtır? 2 a.3 b.5 c =750 olduğuna göre a+b-c kaçtır? 25 ve 41 i böldüğünde 1 kalanını veren en büyük doğal sayı kaçtır? 6 ve 8 e bölünebilen iki basamaklı en büyük

Detaylı

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3)": ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3): ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4 Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I Kolay Temel Matematik. 8 ( + ) A) 7 B) 8 C) 9 D) 0 E) 6.! ( )": ( ) A) B) 0 C) D) E). 7. + 5 A) 6 B) 7 C) 8 D)

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor.

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor. Bölüm: Doğal Sayılar ve Tamsayılar Test: Temel Kavramlar. abc ve cba üç basamaklı doğal sayılardır. abc cba = 97 olduğuna göre, abc biçiminde yazılabilecek en küçük doğal sayının rakamları toplamı A) B)

Detaylı

Ýþlem Yeteneði Temel Kavramlar Sayý Basamaklarý Taban Aritmetiði Bölme ve Bölünebilme Ebob-Ekok

Ýþlem Yeteneði Temel Kavramlar Sayý Basamaklarý Taban Aritmetiði Bölme ve Bölünebilme Ebob-Ekok Ödev Tarihi :... Ödev Kontrol Tarihi :... Kontrol Eden :... LYS MATEMATİK - I Ödev Kitapçığı (MF-TM) Ýþlem Yeteneði Temel Kavramlar Sayý Basamaklarý Taban Aritmetiði Bölme ve Bölünebilme Ebob-Ekok Adý

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

BÖLÜNEBĐLME KURALLARI

BÖLÜNEBĐLME KURALLARI YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS - 2 2-2 1 1-1 1 kalanı bulmak için sağdan ve + ile başlamak gerekir BÖLÜNEBĐLME KURALLARI 2 Đle Bölünebilme: tüm çift sayılar, yani birler

Detaylı

YGS MATEMATİK SORU BANKASI

YGS MATEMATİK SORU BANKASI YGS MATEMATİK SORU BANKASI Sebahattin ÖLMEZ www.limityayinlari.com Sınavlara Hazırlık Serisi YGS Matematik Soru Bankası ISBN: 978-60-48--9 Copyright Lmt Limit Yayınları Bu kitabın tüm hakları Lmt Limit

Detaylı

OBEB - OKEK Test -1. 6. OKEK( 14, 20) kaçtır? 1. OBEB(16, 20, 48) kaçtır? 7. OBEB, 2. OBEB(56, 140, 280) kaçtır? 3. OKEK(10, 15, 25) kaçtır?

OBEB - OKEK Test -1. 6. OKEK( 14, 20) kaçtır? 1. OBEB(16, 20, 48) kaçtır? 7. OBEB, 2. OBEB(56, 140, 280) kaçtır? 3. OKEK(10, 15, 25) kaçtır? OE - OKEK Test -1 1. OE(16, 0, 8) kaçtır? A) ) ) ) 6 E) 8 6. OKEK( 1, 0) kaçtır? A) 10 ) 160 ) 180 ) 10 E) 0. OE(56, 10, 80) kaçtır? 7. OE, 15 5 kaçtır? A) 1 ) 0 ) ) 8 E) A) 75 ) 75 ) 5 ) 5 E) 5. OKEK(10,

Detaylı

2012 YGS MATEMATİK SORU VE ÇÖZÜMLERİ. b 27 18. 3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6. Çözüm : Cevap : E. 4. x ve y birer gerçel sayı olmak üzere,

2012 YGS MATEMATİK SORU VE ÇÖZÜMLERİ. b 27 18. 3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6. Çözüm : Cevap : E. 4. x ve y birer gerçel sayı olmak üzere, 01 YGS MATEMATİK SORU VE ÇÖZÜMLERİ 1. 10, 5,1 0,5 0, işleminin sonucu kaçtır? A) 5 B) 5,5 C) 6 D) 6,5 E) 7. a 1 8 b 7 18 olduğuna göre a b çarpımı kaçtır? A) 4 B) C) 4 D) 5 E) 6 10, 5,1 105 1 41 1 5 0,

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 19 Aralık 2010. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 19 Aralık 2010. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal II / 19 Aralık 010 Matematik Soruları ve Çözümleri 1. a, b ve c sıfırdan farklı gerçel sayılar olmak üzere aşağıdaki ifadelerden

Detaylı

KARTEZYEN ÇARPIM VE BAĞINTI

KARTEZYEN ÇARPIM VE BAĞINTI KRTEZYEN ÇRPIM VE BĞINTI 3. Bölüm TEST -2 1. β={(x,y):2x+y=8,x,y N} şeklinde tanımlı β bağıntısı kaç elemanlıdır? ) 4 B) 5 C) 6 D) 7 E) 8 6. R'de bağıntısı yansıyan ise a.b kaçtır? ) 18 B) 9 C) 2 D) 18

Detaylı

SAYI VE KESĐR PROBLEMLERĐ

SAYI VE KESĐR PROBLEMLERĐ YILLAR 1996 1997 1998 1999 000 001 00 003 004 005 ÖSS 3 3 4 ÖYS SAYI VE KESĐR PROBLEMLERĐ Bir sayının 5 eksiği = x-5 Bir sayının 10 fazlası _x+10 Bir sayının katı :x Bir sayının /3 ün = 3 Bir sayının 4/5

Detaylı

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28)

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28) TEMEL KAVRAMLAR 6. a ve b birer do al say r. a b = 19 oldu una göre, a + b toplam (YANIT: 8) 1. ( 4) ( 1) 6 1 i leminin sonucu (YANIT: ). ( 6) ( 3) ( 4) ( 17) ( 5) :( 11) leminin sonucu (YANIT: 38) 7.

Detaylı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı Özel KEV İlköğretim Okulu Fen ve Matematik Olimpiyatı DİKKT! CEVP KĞIDININ TEST -- BÖLÜMÜNE MTEMTİK SORULRI İŞRETLENECEKTİR. ) 3 basamaklı 4 tane sayının aritmetik ortalaması 400 dür. Bu dört sayının birler

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

ÇARPANLAR VE KATLAR I sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden A) B) C) D)

ÇARPANLAR VE KATLAR I sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden A) B) C) D) 8. Sınıf MATEMATİK ÇARPANLAR VE KATLAR I. Aşağıdakilerden hangisi 6 nın çarpanlarından biridir? A) 3 B) 6 C) 8 D) TEST. 360 sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden hangisidir? A) 3. 3.

Detaylı

C) p = 7 için, 2p + 1 = 2.7 + 1 = 15 asal olmadığından, Sophie Germen asal sayısı değildir.

C) p = 7 için, 2p + 1 = 2.7 + 1 = 15 asal olmadığından, Sophie Germen asal sayısı değildir. Meslek Yüksekokulları Đle Açık Öğretim Ön Lisans Programları Mezunlarının Lisans Öğrenimine Dikey Geçiş Sınavı Dikey Geçiş Sınavı / DGS / 4 Temmuz 010 Matematik Soruları ve Çözümleri 1. 0, nin 5 katı olan

Detaylı

ORAN-ORANTI TEST 1. 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c)

ORAN-ORANTI TEST 1. 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c) 7BÖLÜM ORAN - ORANTI ORAN-ORANTI TEST 1 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c) ) Aşağıda okunuşları verilen oranları yazınız. a) 16 nın 14 e oranı b) 6 nın

Detaylı

MATEMATİK DERS PLÂNI. : Doğal Sayılar (Asal Sayılar Bölünebilme O.B.E.B ve O.K.E.K)

MATEMATİK DERS PLÂNI. : Doğal Sayılar (Asal Sayılar Bölünebilme O.B.E.B ve O.K.E.K) MATEMATİK DERS PLÂNI Başlangıç Tarihi :.. Dersin adı Sınıf Öğrenme Alanı Alt Öğrenme Alanı Planlanan Süre : Matematik : 9. Sınıf : Sayılar : Doğal Sayılar (Asal Sayılar Bölünebilme O.B.E.B ve O.K.E.K)

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS YILLAR 6 7 8 ÖSS-YGS - - / /LYS ONDALIK SAYILAR Paydası ve un pozitif kuvveti şeklinde olan veya u şekle dönüştürüleilen kesirlere ondalık kesir(ondalık sayı) denir 7,,,,,7 6 (,6)gii 8 8 NOT: ondalık sayıların

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır.

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır. Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I YGS Temel Matematik. 8 + 4. + 8 : 4 işleminin sonucu A) 8 B) 9 C) D) 5 E) 8 5. a ve b birer pozitif tam sayıdır.

Detaylı

Temel Matematik Testi - 5

Temel Matematik Testi - 5 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: 005. u testte 40 soru vardır.. Tavsiye edilen süre 40 dakikadır. Temel Matematik Testi

Detaylı

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 7. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 7. SINIF ELEME SINAVI TEST SORULARI . a,b,c negatif tam sayılardır. (a + 3).b b< c< a ve; = 6 olduğuna c göre, a+b+c toplamının en büyük değeri 4. 50 kişinin çalıştığı bir şirkette 25 kişi İngilizce, 6 kişi Fransızca biliyor. En çok bir

Detaylı

DOĞAL SAYILARDA TOPLAMA VE ÇARPMA

DOĞAL SAYILARDA TOPLAMA VE ÇARPMA YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS DOĞAL SAYILARDA TOPLAMA VE ÇARPMA Örnek( 1 ) - - - - (I) yandaki işleme x 1 (II) göre (I) çarpan - - - - kaçtır? 40 + - - - - - - - - - - (ÖSS-8) 40

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

Örnek...6 : Yandaki bölme işleminde A ve n birer doğal sayıdır. A nın alabileceği en küçük ve en bü yük değerleri bulunu z.

Örnek...6 : Yandaki bölme işleminde A ve n birer doğal sayıdır. A nın alabileceği en küçük ve en bü yük değerleri bulunu z. MODÜLER ARİTMETİK ( BÖLME BÖLÜNEBİLME KURALLARI ÖKLİT ALGORİTMASI DEĞERLENDİRME ) BÖLME İŞLEMİ VE ÖZELLİKLERİ A, B, C, K doğal sayılar ve B olmak üzere, BÖLÜNEN A B C BÖLEN BÖLÜM Örnek...5 : A, B, C birbirinden

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 6. SINIF FİNAL SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 6. SINIF FİNAL SORULARI 6. SINIF FİNAL SORULARI 1. a b ve a,b N olmak üzere, altı basamaklı (aaabbb) sayısının 4 ile bölümünden kalan 1 dir. Üç basamaklı (bba) sayısı 9 ile kalansız bölünebildiğine göre, iki basamaklı (aa) sayısının

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 15 Kasım 2009. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 15 Kasım 2009. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 5 Kasım 2009 Matematik Soruları ve Çözümleri. + işleminin sonucu kaçtır? A) 2 B) C) 4 D) 2 E) Çözüm + = + = 4 2 = 4. 2

Detaylı

TEST-8. Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D)

TEST-8. Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D) TEST-8 Matematik Yarışmalarına Hazırlık 1 Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D) 2 Yandaki kareden çizgiler boyunca kesilerek çeşitli şekiller

Detaylı

6BÖLÜM ONDALIK SAYILAR

6BÖLÜM ONDALIK SAYILAR 6BÖLÜM ONDALIK SAYILAR ONDALIK SAYILAR TEST ) Aşağıdaki kesirleri ondalık sayıya çeviriniz. a) 3 b) 2 c) 9 d) 4 5 25 20 2) Aşağıdaki ondalık sayıların basamaklarındaki rakamların sayı ve basamak değerlerini

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

ÇARPANLAR VE KATLAR BİR DOĞAL SAYININ ÇARPANLARINI BULMA. 3. Aşağıda verilen sayıların çarpanlarından asal olanları belirleyelim.

ÇARPANLAR VE KATLAR BİR DOĞAL SAYININ ÇARPANLARINI BULMA. 3. Aşağıda verilen sayıların çarpanlarından asal olanları belirleyelim. ÇARPANLAR VE KATLAR 8.1.1.1. Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade yada üslü ifadelerin çarpımı şeklinde yazar. BİR DOĞAL SAYININ ÇARPANLARINI BULMA Her doğal

Detaylı

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES)

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) 00000000001 AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) plam cevaplama süresi 150 akikadır. (,5 saat) SAYISAL BÖLÜM SAYISAL - 1 TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal

Detaylı

SAYILAR - 3. 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685 tir. Bu üç sayıdan en küçüğü en az kaç olabilir?

SAYILAR - 3. 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685 tir. Bu üç sayıdan en küçüğü en az kaç olabilir? SAYILAR - 3 1) (x + y) ile (y + z) aralarında asal sayılardır. 7x + 3y = 4z olduğuna göre x - z farkı kaçtır? A) -3 B) -2 C) -1 D) 0 E) 1 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685

Detaylı

4 3 ü ile sinin farkı 9 olan sayıyı bulalım.

4 3 ü ile sinin farkı 9 olan sayıyı bulalım. KESİR PROBLEMLERİ Bir sayısının ü : tir. ü ile sinin farkı 9 olan sayıyı bulalım. İstenen sayı olsun. Bir sayısının ü : tür. Bir sayısının yarısının fazlası : tür. 9.. 9 9 ( ) () 9 ( 9).( ) bulunur. Bir

Detaylı

DENEME II 15.12.2013. 1. Bir havuzun tamamını A musluğu 12 saatte doldururken havuzun 1 3

DENEME II 15.12.2013. 1. Bir havuzun tamamını A musluğu 12 saatte doldururken havuzun 1 3 DENEME II 5..03. Bir havuzun tamamını A musluğu saatte doldururken havuzun 3 ünde bulunan bir B musluğu 0 saatte boşaltıyor. Havuz boş iken iki musluk aynı anda açılırsa havuz kaç saatte dolar? A) 30 B)

Detaylı

3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6

3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6 10,25 3,1 1. 0,5 0,2 işleminin sonuu kaçtır? ) 5 B) 5,5 C) 6 D) 6,5 E) 7 3. a 12 8 b 27 18 olduğuna göre, a b çarpımı kaçtır? ) 4 2 B) 3 3 C) 4 D) 5 E) 6 2. 2 3 6 4.6 2 3 3 2.3 işleminin sonuu kaçtır?

Detaylı

TEOG HAZIRLIK. Musa BOR

TEOG HAZIRLIK. Musa BOR TEOG HAZIRLIK sınıf. Musa BOR AFG Matbaa Yayıncılık Kağ. İnş. Ltd. Şti. Buca OSB, BEGOS 2. Bölge 3/20 Sk. No: 17 Buca-İZMİR Tel: 0.232.442 01 01-442 03 03 Faks: 442 06 60 Bu kitabın tüm hakları AFG Matbaa

Detaylı

KARIŞIM PROBLEMLERĐ. Karışım Problemleri YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 MATEMATĐK ĐM 8 8+ .100 =.

KARIŞIM PROBLEMLERĐ. Karışım Problemleri YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 MATEMATĐK ĐM 8 8+ .100 =. YILLAR 02 03 04 0 06 07 08 09 11 ÖSS-YGS - 1 - - - - - - - - KARIŞIM PROBLEMLERĐ ve y maddelerinden oluşan bir da sırasıyla ve y miktar madde varsa bu daki maddesinin yüzdesi Saf madde dir + y Toplam kesrimizi

Detaylı

Kazanım: Doğal sayıların kendisiyle tekrarlı çarpımlarını üslü nicelik olarak yazar. 5) 6.(2+3)-7= işleminin sonucu kaçtır? A) 22 B) 37 C) 8 D) 23

Kazanım: Doğal sayıların kendisiyle tekrarlı çarpımlarını üslü nicelik olarak yazar. 5) 6.(2+3)-7= işleminin sonucu kaçtır? A) 22 B) 37 C) 8 D) 23 Kazanım: Doğal sayıların kendisiyle tekrarlı çarpımlarını üslü nicelik olarak yazar. 1) Aşağıda verilen üslü ifadelerin açılımlarını yazınız? 5) 6.(2+3)-7= işleminin sonucu kaçtır? A) 22 B) 37 C) 8 D)

Detaylı

ÖZEL EGE LİSESİ 15. OKULLAR ARASI MATEMATİK YARIŞMASI 7. SINIF ELEME SINAVI SORULARI

ÖZEL EGE LİSESİ 15. OKULLAR ARASI MATEMATİK YARIŞMASI 7. SINIF ELEME SINAVI SORULARI . a ve b pozitif tam sayılar olmak üzere a 2b+2 2 b+4 yukarıdaki bölme işleminde, a nın alabileceği en küçük değer kaçtır?. 25 soruluk bir sınavda her doğru cevaba 5 puan verilirken, her yanlış cevaptan

Detaylı

1. BÖLÜM. 2. Aþaðýdaki þekillerden hangisinin d doðrusuna göre simetriði çizildiðinde, bir düzgün çokgen elde edilir? DD

1. BÖLÜM. 2. Aþaðýdaki þekillerden hangisinin d doðrusuna göre simetriði çizildiðinde, bir düzgün çokgen elde edilir? DD 6. SINIF COÞMAYA SORULARI 1. BÖLÜM 3. DÝKKAT! Bu bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 1. 1 birim 1 birim Van Gölü nün haritasý yukarýda verilmiþtir. Haritada 1 birim uzunluk 19

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 22 Nisan 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 22 Nisan 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal I / 22 Nisan 2007 Matematik Soruları ve Çözümleri 3 1 1. x pozitif sayısı için, 2 1 x 12 = 0 olduğuna göre, x kaçtır? A) 2

Detaylı

( ) FAKTÖRĐYEL YILLAR /LYS. Örnek( 4.)

( ) FAKTÖRĐYEL YILLAR /LYS. Örnek( 4.) YILLAR 00 003 004 005 006 007 008 009 00 0 ÖSS-YGS - - - - 0/ - / /LYS FAKTÖRĐYEL Örnek( 4) 3)!! ) )! 4 )!? den n e kadar olan sayıların çarpımına n! denir n! 34(n-)n 0!!! 3! 3 6 4! 34 4 5!3450 Örnek(

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / Nisan 007 Matematik Soruları ve Çözümleri 1. 3,15 sayısının aşağıdaki sayılardan hangisiyle çarpımının sonucu bir tam

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ DİKKAT: 1. Soru kitapçıklarını kontrol ederek, baskı

Detaylı

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ DİKKAT: 1. Soru kitapçıklarını kontrol ederek, baskı

Detaylı

Problemler A 2-B 3-E 4-C 5-E 6-A 7-E 8-C

Problemler A 2-B 3-E 4-C 5-E 6-A 7-E 8-C Problemler 1 1. 5. 6. 2. 7. 3. 4. 8. 1-A 2-B 3-E 4-C 5-E 6-A 7-E 8-C Problemler 1 9. 12. - 13. soruları as ağıdaki bilgilere göre birbirinden 10. - 11. soruları as ağıdaki bilgilere göre birbirinden 12.

Detaylı

EŞĐTSĐZLĐKLER MATEMATĐK ĐM. Eşitsizlikler YILLAR /LYS. 14) Özel olarak. x >x ÖZELLĐKLER.

EŞĐTSĐZLĐKLER MATEMATĐK ĐM. Eşitsizlikler YILLAR /LYS. 14) Özel olarak. x >x ÖZELLĐKLER. YILLAR 00 00 00 00 006 007 008 009 00 0 ÖSS-YGS - - - - - / - /LYS EŞĐTSĐZLĐKLER =y,,, y,,, < y y,,, > y,,, y (tarif et ) ÖZELLĐKLER ) > veya < 0

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 10 Mayıs Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 10 Mayıs Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / 0 Mayıs 009 Matematik Soruları ve Çözümleri. ( ) 4 işleminin sonucu kaçtır? A) B) C) 4 D) E) 6 Çözüm ( ) 4 ( ) 4 4 6.

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nasıl Kullanılır? Takdim Sevgili Öğrenciler ve Değerli Öğretmenler, Eğitimin temeli okullarda atılır. İyi bir okul eğitiminden geçmemiş birinin hayatta başarılı olması beklenemez.

Detaylı

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI 4 II MATEMATİK YARIŞMASI I AŞAMA SORULARI 4? 4 4 A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? 5 A) B) C) - D) E) - 8 4 x x

Detaylı

Ortaokul Matematik Org Editörleri Ortak Fikir Denemeleri Teog Matematik-1

Ortaokul Matematik Org Editörleri Ortak Fikir Denemeleri Teog Matematik-1 Ortaokul Matematik Org Editörleri Ortak Fikir enemeleri Teog Matematik- liye RC SRIBŞ Bayram FISTI Esra İNÇER ÇIR Eylül RBY Mehmet BOZURT Mine GÖSU Muhammet BOZURT Mustafa Sefa TUNCY hmet SĞIÇ Sinan SRITŞ

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 16 Kasım Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 16 Kasım Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal II / 6 Kasım 008 Matematik Soruları ve Çözümleri. a 3 < 5 7 eşitsizliğini sağlayan en küçük a doğal sayısı kaçtır? A) 4 B)

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) MTMTİK TSTİ (Mat ). u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. a ve b sıfırdan farklı gerçel sayılar olmak üzere, a a b = = a b b olduğuna

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI 1. x ile y pozitif tam sayılardır. EBOB(x,y) = 9 ve x+y = 7 olduğuna göre, x kaç farklı değer alır? 3. 4 A) B) 3 C) 4 D) 5 9 7 49 1 5 36 10 4? n n-5. Uygun yerlere parantezler yerleştirilerek, 1::3:4:5:6:7:8

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

YGS MATEMATİK DENEMESİ-1

YGS MATEMATİK DENEMESİ-1 YGS MATEMATİK DENEMESİ- Mustafa SEVİMLİ Fatih KAYGISIZ İbrahim KUŞÇUOĞLU Aydın DANIŞMAN ÇAKABEY ANADOLU LİSESİ Serkan TÜRKER Nejdet KİRPİ Şenay TAĞ GÜRLER Taner KAHYA Çakabey Anadolu Lisesi 0-0 . x olduğuna

Detaylı

TEST. Çarpanlar ve Katlar. 1. Asal çarpanların çarpımı olan sayı kaçtır? sayısının kaç tane birbirinden farklı asal çarpanı vardır?

TEST. Çarpanlar ve Katlar. 1. Asal çarpanların çarpımı olan sayı kaçtır? sayısının kaç tane birbirinden farklı asal çarpanı vardır? Çarpanlar ve Katlar 8. Sınıf Matematik Soru Bankası TEST. Asal çarpanların çarpımı..5 olan sayı kaçtır? A) 40 B) 480 C) 60 D) 70 4. 60 sayısının kaç tane birbirinden farklı asal çarpanı vardır? A) B) C)

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 9.SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 9.SINIF ELEME SINAVI TEST SORULARI x 5 6. 0 x 4x 5 x denklemin çözüm kümesi aşağıdakilerden hangisidir? 5 5 4. 6 6... a ise, a kaçtır? A) B) 4 C) 6 D) 8 E) 0 A) B), C) 5, D) 5 E) 5. m 9m m m işleminin sonucu kaçtır?. (6) x x y y (4. ) eşitliği

Detaylı

KÜMELER. Kümeler YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 MATEMATĐK ĐM /LYS. UYARI: {φ} ifadesi boş kümeyi göstermez.

KÜMELER. Kümeler YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 MATEMATĐK ĐM /LYS. UYARI: {φ} ifadesi boş kümeyi göstermez. MTEMTĐK ĐM YILLR 00 00 004 005 006 007 008 009 010 011 ÖSS-YGS - 1 - - - - - 1 1 1/1 /LYS KÜMELER TNIM: in tam bir tanımı yoksa da matematikçiler kümeyi; iyi tanımlanmış nesneler topluluğu olarak kabul

Detaylı

Soru Konu Doğru Yanlış Boş

Soru Konu Doğru Yanlış Boş YGS - MATEMATİK DENEME- A Soru Konu Doğru Yanlış Boş Mutlak Değerin Sayıya Eşitliği % % Sayılar Akıl Yürütme % % Okek Dikdörtgen Birleştirme % % Kesirlerin Okeki % % Obeb Problemleri % % Obeb Denklemi

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

SAYI VE KESĐR PROBLEMLERĐ

SAYI VE KESĐR PROBLEMLERĐ YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS 4 4 4 SAYI VE KESĐR PROBLEMLERĐ Bir sayının eksiği = x- Bir sayının 10 fazlası _x+10 Bir sayının katı :x Bir sayının / ün = Bir sayının 4/ inin 10 fazlası

Detaylı

ygs temel matematik DO AL SAYILAR VE TAM SAYILAR - I 6. 2x (3y + 5x) (2y 2x) + 5y 7. 8 [ 5 [ 2 ( 3)]] 8. a = 3 ve b = 4 olmak üzere,

ygs temel matematik DO AL SAYILAR VE TAM SAYILAR - I 6. 2x (3y + 5x) (2y 2x) + 5y 7. 8 [ 5 [ 2 ( 3)]] 8. a = 3 ve b = 4 olmak üzere, Üniversite ygs temel matematik Hazırlık 0 DO AL SAYILAR VE TAM SAYILAR - I. 8 : ( 4) + 4 : ( ) işleminin sonucu 6. x (y + 5x) (y x) + 5y işleminin sonucu aşağıdakilerden hangisidir? A) 8 B) 6 C) 4 D) E)

Detaylı

TEOG. Matematik ÇÖZÜM KİTAPÇIĞI

TEOG. Matematik ÇÖZÜM KİTAPÇIĞI TEOG ÇÖZÜM KİTAPÇIĞI Deneme. (Çarpanlar ve Katlar) EKOK (0,60) 0 Bu araçlar ilk defa 0 saniye dakika sonra yan yana gelirler.. (Üslü İfadeler) ^0, h c m c m 0 0. 6 6 0 olduğundan geriye 0 0 00 km yol.

Detaylı

MATEMATİK SORULARI 1) 66 ile 6 doğal sayıları arasında kaç tane doğal sayı vardır? a) 55 b) 56 c) 59 d) 60 2) sayısında 3 rakamlarının basamak

MATEMATİK SORULARI 1) 66 ile 6 doğal sayıları arasında kaç tane doğal sayı vardır? a) 55 b) 56 c) 59 d) 60 2) sayısında 3 rakamlarının basamak MATEMATİK SORULARI ) 66 ile 6 doğal sayıları arasında kaç tane doğal sayı vardır? a) b) 6 c) 9 d) 60 2) 2 sayısında rakamlarının basamak değerleri toplamı kaçtır? a) 00 b)2 c)000 d)00000 ) 208 sayısının

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

Yukarıdaki dikdörtgen şeklindeki fayansları kullanarak elde edebileceğimiz en küçük karenin çevresi kaç cm dir?

Yukarıdaki dikdörtgen şeklindeki fayansları kullanarak elde edebileceğimiz en küçük karenin çevresi kaç cm dir? 1) Zehranaz yeni doğan kardeşine mama yedirmeyi çok sevmektedir. Kardeşi Furkan ın mamasının 1 kutusu 510 gr dır ve her 3 saatte bir 10 gr yemesi gerekmektedir. Buna göre; Çarşamba sabah saat 08.15 de

Detaylı

Cevap: A. Cevap: E. Cevap: A. 8. a b. Cevap: D

Cevap: A. Cevap: E. Cevap: A. 8. a b. Cevap: D . 0,5, 0,5 0, 0,75 5 5. () 5 5 Verilenler arasında 0 a en yakın olan 0,5 yani.. 8 8 8 6 8 0,0006 0,08 0000 00 0,08 8 000 8 6 0 8 0 0 0 6 8 0 8 0 6 6. Not : a b a b a b 65 65 65 65 65 65 0 00 65 65 00 00

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak kıl YGS MTEMTİK ENEME SINVI 040- Ortak kıl dem ÇİL yhan YNĞLIŞ arış EMİR elal İŞİLİR eniz KRĞ Engin POLT Ersin KESEN Eyüp ULUT Fatih SĞLM Fatih TÜRKMEN Hakan KIRI Kadir LTINTŞ Köksal YİĞİT Muhammet

Detaylı

TMÖZ Türkiye Matematik Öğretmenleri Zümresi

TMÖZ Türkiye Matematik Öğretmenleri Zümresi YGS MATEMATİK DENEMESİ- Muharrem ŞAHİN TMÖZ Türkiye Matematik Öğretmenleri Zümresi Eyüp Kamil YEŞİLYURT Gökhan KEÇECİ Saygın DİNÇER Mustafa YAĞCI İ:K Ve TMÖZ üyesi 4 00 matematik ve geometri sevdalısı

Detaylı

5. SINIF A)8 B)8,1 C)8,2 D)8,3 E)8,4

5. SINIF A)8 B)8,1 C)8,2 D)8,3 E)8,4 5. SINIF Soru 1 9, 0, 7, 4 rakamları kullanılarak elde edilen, rakamları birbirinden farklı dört basamaklı, en büyük çift doğal sayı ile en küçük çift doğal sayının farkı kaçtır? A)4950 B)4560 C)4260 D)4205

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

2. Cevaplar n z, cevap ka d n n Temel Matematik Testi için ayr lan k sm na iflaretleyiniz. 4. A, B ve C birer rakam olmak üzere,

2. Cevaplar n z, cevap ka d n n Temel Matematik Testi için ayr lan k sm na iflaretleyiniz. 4. A, B ve C birer rakam olmak üzere, YGS ENEME SINVI TEMEL MTEMT K TEST 1. u testte Temel Matematikle ilgili 40 soru vard r.. evaplar n z, cevap ka d n n Temel Matematik Testi için ayr lan k sm na iflaretleyiniz. 1. a tam sayı olmak üzere,

Detaylı

Doğal sayılar sayma sayıları olarak da bilinir ve kısaca saymak için kullanılan

Doğal sayılar sayma sayıları olarak da bilinir ve kısaca saymak için kullanılan DOĞAL SAYILAR -Tanım Doğal sayılar sayma sayıları olarak da bilinir ve kısaca saymak için kullanılan sayılara verilen isimdir. Sayma sayılarına verilen örnek, bir sepet içindeki elmaların sayısıdır. Doğal

Detaylı

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA - 4 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. 4? 4 4. A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? A) 6 B) 8 C) D)

Detaylı

Bunu bir örnek üzerinde gösterelim : Örneğin, ,... birer 5 0 2 3, 0 5 0 4. ondalık kesirdir.

Bunu bir örnek üzerinde gösterelim : Örneğin, ,... birer 5 0 2 3, 0 5 0 4. ondalık kesirdir. Bölüm ONDALIK KESİRLER Paydası 0 un tam kuvveti olan veya bu duruma getirilebilen kesirlere ondalık kesirler denir. Örneğin, ondalık kesirdir. 0 ; 00 ; 000,... birer Paydaları 0 un tam kuvveti olmayan

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

AKILLI. sınıf. Musa BOR

AKILLI. sınıf. Musa BOR AKILLI sınıf. Musa BOR AFG Matbaa Yayıncılık Kağ. İnş. Ltd. Şti. Buca OSB, BEGOS 2. Bölge 3/20 Sk. No: 17 Buca-İZMİR Tel: 0.232.442 01 01-442 03 03 Faks: 442 06 60 Bu kitabın tüm hakları AFG Matbaa Yay.

Detaylı

6. SINIF GENEL AÇIKLAMA

6. SINIF GENEL AÇIKLAMA 6. SINIF GENEL AÇIKLAMA Bu kitapçık 3 bölümden oluşmaktadır. 1. bölümde yer alan 5 sorunun her biri 1, puan değerindedir.. bölümde yer alan 15 sorunun her biri,4 puan değerindedir. 3. bölümde yer alan

Detaylı

Temel Matematik Testi - 4

Temel Matematik Testi - 4 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D00. Bu testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -.

Detaylı

ales dört bin soru tarzına en yakın EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan

ales dört bin soru tarzına en yakın EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan ales 2015 tarzına en yakın dört bin soru EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan Kenan Osmanoğlu - Kerem Köker - Savaş Doğan ALES Eşit Ağırlık ve

Detaylı

DGS 2008 (1) DGS SORU BANK. / 87. SAYFA / 4. SORU. ( a).(a).( a) ( a).( a).(a)

DGS 2008 (1) DGS SORU BANK. / 87. SAYFA / 4. SORU. ( a).(a).( a) ( a).( a).(a) DGS 2008 (1) DGS SORU BANK. / 87. SAYFA / 4. SORU 1. a sıfırdan büyük bir gerçek sayı olduğuna göre, aşağıdakilerden hangisi negatiftir? A) 3 a B) a 4 C) a 6 D) a 5 E) a 3 4. a bir tam sayı olmak üzere;

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25 Yükseköğretime Geçiş Sınavı (Ygs) / Nisan 00 Matematik Soruları ve Çözümleri. 0, 0,0 0, işleminin sonucu kaçtır? A) B) 4 7 C) 0 8 D) E) Çözüm 0, 0,0 0, = 0,00 0,0 0, = 0,7 0, 000 7 7. = = 000 00 0... işleminin

Detaylı