TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5"

Transkript

1 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,, değerlerini alır. X in alabileceği değerler 1 tanedir. a,b ve c birer pozitif tam sayı olmak üzere A =5a+ = 7b+5 = 8c+6 olduğuna göre ; A nın alabileceği en küçük değer kaçtır? A =5a+ = 7b+5 = 8c+6 eşitliğin her tarafına eklersek A+ =5(a+1) = 7(b+1) = 8(c+1) A+ =ekok(5,7, 8 ) A+ = 80.k Anın alabileceği en küçük değer için k= 1 alınırsa A+ = 80 A= 78 ebob u 8 olan doğal sayını toplamı 96 dır. Buna göre, büyük olanın birbirinden farklı kaç değeri vardır? Soruda verilen iki sayının ebob u 8 ise, birisine 8k, diğerine 8m diyebiliriz. 8k + 8m = 96 8k + 8m = 'i 8'in katı şeklinde öyle iki farklı değerlere ayırmalıyız ki, k ve m sayılarının ebob u 1 olsun ve 8k ve 8m toplamı da 96 olsun. Buna göre, 1.8 = = = = = Buna göre büyük olan sayımızın birbirinden farklı 5 değeri vardır. (11.8, 9.8, 8.8, 7.8, 6.8)

2 48 kilo elma, 54 kilo armut, 60 kilo muz birbirine karıştırılmadan boş kasalara konulacaktır.her kasaya aynı miktarda meyve konacağına göre en az kaç kasa gereklidir? Meyveler birbirine karışmayacakmış ve bize en az kaç kasa gerektiğini soruyor, buna göre bu sayıların ebob unu alıp sayıların her birini bulduğumuz ebob değerine bölersek cevap bulunur. ebob(48, 54, 60)= 6 48/6 + 54/6 + 60/6= = 7 aranılan şartlarda kasa gereklidir. Eni 10 boyu 140 m olandiktörtgen biçimindeki tarlanın;kenarlarına ve köşelerine eşit aralıklarla ağaç dikilecektir. Bu işlem için en az kaç ağaç gereklidir? Soruda da 10 ve 140'ı Aynı Şekil Ortak Bölen En Büyük Sayı 0'ye Böldüğünde 6 ve 7 kalıyor. 1x=6 dır aranılan özellikte en az ağaç sayısıdır obeb(x;y)=8 olduğuna göre ; x en az kaçtır? Sayının obebi 8 ise bu iki sayıya 8k ve 8m diyebiliriz. k ile m'in eşit olamayacağını, yani sayıların birbirinden farklı olamayacağını bildiren bir ifade olmadığı için, k=m=1 diyebiliriz.bu durumda x= 8 olacağı aşikardır. (a/b)=(5/7) ve ebob(a,b)=1 ise a+b toplamı kaçtır? Yukarıda verdiğimiz son özelliğe göre, a ve b sayıları ebob un bir katı olmalıdır. a=5 ve b=7 seçtiğimiz zaman a=5.ebob(a,b)=5.1=60 b=7.ebob(a,b)=7.1=84 ise a+b=144 olur.

3 Ebob u 8 olan farklı iki sayının toplamı en az kaçtır? Ebobu 8 olan sayılar 8 in katları şeklinde ifade edilebilir, 8 in katlarını yazalım 8,16,4,.. şeklindedir. Soruda bizden toplamın en az olması gerektiğini söylemiş o halde 8 ve 16 yı seçersek toplamları 4 olur Ortak katlarının en küçüğü 10 olan farklı iki sayının toplamı en çok kaçtır? Ekoku 10 olan sayıları söylüyor aslında. Katı 10 olan sayılara bakalım 10,60,40,0,4,0 şeklindedir. Bize toplamın en çok olmasını söylemiş o halde 10 ve 60 sayılarını seçtiğimizde toplam en çok olur =180 bulunur. Ortak katlarının en küçüğü 80 olan iki sayının toplamı en az kaçtır? 80 sayısını asal çarpanlarına ayırdığımızda 80=...5 olur, burada ilk sayıyı...=16 ve ikinci sayıyı 5 seçtğimizde en az toplamı elde ederiz. Yani; 16+5=1 bulunur. x ve y birer tam sayıdır. x+y=7 olduğuna göre x ve y sayılarının ortak katlarının en küçüğü en fazla kaçtır? x+y=7 verilmiş seçeceğimiz x sayıları aralarında asal olursa çarpımları ekokları olur ve en büyük olur x=5, x=7 seçtiğimiz zaman ekok(5,5)=5.7=195 olur. Toplamları 19 olan A ve B doğal sayılarının en küçük ortak katı 60 tır. Buna göre, A B farkı kaçtır? A+B=19 ve ekok(a,b)=60 verilmiş, A=15 ve B=4 olduğunda bu şartı sağlar A-B =11 bulunur.

4 4 A ile B ardışık çift doğal sayılardır. EKOK(A,B)=64 olduğuna göre, A+B toplamı kaçtır? A=k B=k+ olsun. (k ve k+1 sayıları asal sayılar olmak üzere) ebob(a,b)= ekok(a,b).ebob(a,b)=a.b=k.(k+) ekok=k.(k+)=64 k=11 olur A=, B=4 A+B=46 bulunur. Ortak katların en küçüğü 0 olan farklı iki sayının toplamı en çok kaçtır? Sayılardan büyük olanı okek'e yani 0'a eşittir. Küçük olan ise 0'u bölen en büyük sayıdır. Yani 15'dir = 45 olur. Toplamları 6 olan a ve b pozitif tamsayılarının en küçük ortak katı 105 tir. Buna göre, a - b kaçtır? a + b= 6 ve okek (a, b) = 105 olduğuna göre bu koşula uyan a ve b sayıları a = 1, b = 5 tir. a-b = 1-5 = 16 dır. x, y, z pozitif tam sayılar ebob(x,y)=4 ebob(y,z)=5 olduğuna göre, x+y+z toplamı en az kaç olabilir? Y hem 4ün hem 5in katı olduğu için y en az 0 olur. X=4 alınır z de 5 alınır. Toplamları 9 olur.

5 5 A ve B pozitif tam sayılar A.B=16 ebob(a,b)=6 olduğuna göre A+B toplamının en küçük değeri kaçtır? A=6m B=6n A.B=6mn=16 mn=6 m= ve n= A+B=6(m+n)=6.(+)=0 ekokları 60 olan iki pozitif tamsayının farklarının mutlak değeri en az kaç olabilir? Aralarında asal sayıları alınacaktır. 60=1.5 A=1, B=5 bu durumda A+B= 1+5=17 x ve y birbirinden farklı pozitif tamsayılardır. ekok(x,y)=84 olduğuna göre, x+y en büyük değeri kaçtır? x=84 alırız. En büyük değerini istediği için y de 4 olur. x+y en büyük değeri 16 olur. A ve B doğal sayı için; En büyük ortak katları ile en küçük ortak katların çarpımı ; x -x en küçük ortak katları ; x -x+1 olduğuna göre; en büyük ortak katı kaçtır? ebob(a,b).ekok(a,b)=x -x x -x+1.ebob(a,b)=x -x x-1.ebob(a,b)= x-1 ebob(a,b)= x - 1

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

8.Sınıf MATEMATİK. Çarpanlar ve Katlar Konu Testi. Test sayısının tek bölenlerinin sayısı aşağıdakilerden

8.Sınıf MATEMATİK. Çarpanlar ve Katlar Konu Testi. Test sayısının tek bölenlerinin sayısı aşağıdakilerden Çarpanlar ve Katlar Konu Testi MATEMATİK 8.Sınıf Test-01 1. I. 1, her sayının bölenidir. II. 2, asal bir çarpandır. III. Her sayı kendisinin bir çarpanıdır. IV. Bir sayının çarpanları, aynı zamanda o sayının

Detaylı

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır?

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır? BÖLME İŞLEMİ VE ÖZELLİKLERİ A, B, C, K doğal sayılar ve B 0 olmak üzere, BÖLÜNEN A B C BÖLEN BÖLÜM Örnek...4 : x sayısının y ile bölümündeki bölüm 2 ve kalan 5 tir. y sayısının z ile bölümündeki bölüm

Detaylı

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 1. ve y aralarında asal iki doğal sayıdır. 7 y 11 olduğuna göre, y farkı 5. 364 sayısının en büyük asal böleni A) 3 B) 7 C) 11 D) 13 E) 17 A) B) 3 C) 4

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA

MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA 3. Ondalık Sayılarda İşlemler: Toplama - Çıkarma: Ondalık kesirler toplanırken, virgüller alt alta gelecek şekilde yazılır ve doğal sayılarda toplama-çıkarma

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz.

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz. MATEMATİK ASAL ÇARPANLARA AYIRMA A S A L Ç A R P A N L A R A A Y I R M A T a n ı m : Bir tam sayıyı, asal sayıların çarpımı olarak yazmaya, asal çarpanlarına ayırma denir. 0 sayısını asal çarpanlarına

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

SAYILARIN ASAL ÇARPANLARINA AYRILMASI ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

OBEB OKEK ÇÖZÜMLÜ SORULAR

OBEB OKEK ÇÖZÜMLÜ SORULAR OBEB OKEK ÇÖZÜMLÜ SORULAR 1) 4, 36 ve 48 sayılarının ortak bölenlerinin en büyüğü kaçtır? A) 1 B)16 C) 18 D) 4 E) 7 1) Sayılarınhepsini aynı anda asal çarpanlarına ayıralım; 4 36 48 1 18 4 6 9 1 3 9 6

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor.

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor. Bölüm: Doğal Sayılar ve Tamsayılar Test: Temel Kavramlar. abc ve cba üç basamaklı doğal sayılardır. abc cba = 97 olduğuna göre, abc biçiminde yazılabilecek en küçük doğal sayının rakamları toplamı A) B)

Detaylı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13 TANIM Z tam sayılar kümesinde tanımlı ={(x,y): x ile y nin farkı n ile tam bölünür} = {(x,y): n x-y, n N + } bağıntısı bir denklik bağıntısıdır. (x,y) ise x y (mod

Detaylı

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu 016-017 Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları 1) 3. [15 3(8: )] 9 =? a) 16 b) 14 c) 0 d) 14 e) 16 6)

Detaylı

Asal Çarpan, OBEB - OKEK

Asal Çarpan, OBEB - OKEK Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. 15 in doğal sayı çarpanları II. 1 nin tam sayı bölenleri a) 1,, 3, 4, 6, 1 1,, 3, 4, 6, 1 b) 1, 3, 5, 15 III. 140 ın asal çarpanlara ayrılışı c) 140

Detaylı

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c 138. a ve b gerçel sayılardır. a < a, 6a b 5= 0 b ne olabilir? (11) 4 5 8 11 1 139. < 0 olmak üzere, 4 3. =? ( 3 ) a 1 140. < a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9,4,7 3,

Detaylı

KARTEZYEN ÇARPIM VE BAĞINTI

KARTEZYEN ÇARPIM VE BAĞINTI KRTEZYEN ÇRPIM VE BĞINTI 3. Bölüm TEST -2 1. β={(x,y):2x+y=8,x,y N} şeklinde tanımlı β bağıntısı kaç elemanlıdır? ) 4 B) 5 C) 6 D) 7 E) 8 6. R'de bağıntısı yansıyan ise a.b kaçtır? ) 18 B) 9 C) 2 D) 18

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) :5-3 = = 11 ( C )

Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) :5-3 = = 11 ( C ) Önce ÇARPMA ve Bölme, sonra Toplama ve Çıkarma. 3.4+10:5-3 = 12+2-3 = 11 ( C ) Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) 72:24+64:16 = 3+4 = 7 ( B

Detaylı

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim.

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim. SINIF ÇARPANLAR ve KATLAR www.tayfunolcum.com 8.1.1.1: Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade ya da üslü ifadelerin çarpımı seklinde yazar. Çarpan ( bölen ) Her

Detaylı

90 sayısının asal çarpanlarının toplamı kaçtır?

90 sayısının asal çarpanlarının toplamı kaçtır? 90 sayısının asal çarpanlarının toplamı kaçtır? 2 a.3 b.5 c =750 olduğuna göre a+b-c kaçtır? 25 ve 41 i böldüğünde 1 kalanını veren en büyük doğal sayı kaçtır? 6 ve 8 e bölünebilen iki basamaklı en büyük

Detaylı

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3)": ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3): ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4 Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I Kolay Temel Matematik. 8 ( + ) A) 7 B) 8 C) 9 D) 0 E) 6.! ( )": ( ) A) B) 0 C) D) E). 7. + 5 A) 6 B) 7 C) 8 D)

Detaylı

MERKEZİ ORTAK SINAV KAZANDIRAN MATEMATİK FÖYÜ

MERKEZİ ORTAK SINAV KAZANDIRAN MATEMATİK FÖYÜ MERKEZİ ORTAK SINAV KAZANDIRAN MATEMATİK FÖYÜ ÖRNEK: 18 sayısının pozitif çarpanları nelerdir? Çarpımları 18 olan sayılar arayalım. 18 = 1. 18 18 =. 9 18 =. 6 Her doğal sayı iki doğal sayının çarpımı şeklinde

Detaylı

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur.

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur. FAKTÖRİYEL TANIM Pozitif ilk n tam sayının çarpımı 1.2.3 n = n! biçiminde gösterilir. n Faktöriyel okunur. 1!=1 2!=1.2=2 3!=1.2.3=6 4!=1.2.3.4=24 5!=1.2.3.4.5=120 gibi. Özel olarak; 0! = 1 olarak tanımlanmıştır.

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

Çözüm : * ebob = = * ekok = = * ve 36 sayılarının ebob ve ekok u kaçtır?

Çözüm : * ebob = = * ekok = = * ve 36 sayılarının ebob ve ekok u kaçtır? 1) 24 ve 36 sayılarının ebob ve ekok u kaçtır? 24 36 2 * ebob = 2.2.3 =12 12 18 2 * ekok = 2.2.2.3.3 = 72 6 9 2 3 9 3 * 1 3 3 1 Ebob ( 24, 36 ) = 12 ( * lı olanların çarpımı) Ekok ( 24, 36 ) = 72 ( Hepsinin

Detaylı

Çarpan Kavramı ve Asal Çarpanlara Ayırma 5. A B C A) 25 B) 60 C) 75 D) A) 78 B) 138 C) 246 D) 576 MATEMATİK 8

Çarpan Kavramı ve Asal Çarpanlara Ayırma 5. A B C A) 25 B) 60 C) 75 D) A) 78 B) 138 C) 246 D) 576 MATEMATİK 8 8 MTEMTİK Çarpan Kavramı ve sal Çarpanlara yırma Test. 8 sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden hangisidir? ). ) 8.7 C). D)..7. C D Yanda verilen bölen listesi yöntemine göre, ) ) 6

Detaylı

Soru Konu Doğru Yanlış Boş

Soru Konu Doğru Yanlış Boş YGS - MATEMATİK DENEME- A Soru Konu Doğru Yanlış Boş Okek Bölünebilme % % Obeb Problemleri % % % Obeb - Okek % % Basit ve Bileşik Kesirler % % Okek Denklemi % % Paydaları Eşitlenemeyen Kesirler % % Okek

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

Köklü Sayılar ,1+ 0,1+ 1, 6= m 10 ise m kaçtır? ( 8 5 ) 2x 3. + a =? (4)

Köklü Sayılar ,1+ 0,1+ 1, 6= m 10 ise m kaçtır? ( 8 5 ) 2x 3. + a =? (4) Köklü Sayılar.,+ 0,+, 6= m 0 ise m kaçtır ( 8 5 ). a= ise a + a (). : :... = 8 0 0... eşitliğini sağlayan değeri nedir (). 99.0+.6+ (75) 5. + : + 8 7 8 () 6. > 0 ve = olduğuna göre ( ) + a+ b 7. a, b R

Detaylı

TEOG 8. SINIF MATEMATİK TEOG ÇALIŞMA SORULARI (OPTİK FORMLU) MESUT HOCA MATEMATİK ORTAOKUL HAZIRLAYAN : MESUT YAŞA MATEMATİK ÖĞRETMENİ

TEOG 8. SINIF MATEMATİK TEOG ÇALIŞMA SORULARI (OPTİK FORMLU) MESUT HOCA MATEMATİK ORTAOKUL HAZIRLAYAN : MESUT YAŞA MATEMATİK ÖĞRETMENİ 201-201. SINIF ÇALIŞMA SORULARI (OPTİK FORMLU) HAZIRLAYAN : YAŞA ÖĞRETMENİ ÜNİTE: SAYILAR VE İŞLEMLER KONU: ÇARPANLAR VE KATLAR 1) ) ) 2) ) 3). SINIF 9) 4) 10) 11) ) 12) 2 .SINIF ÇALIŞMA SORULARI 13) 19)

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

Genel Yetenek - Matematik KAMU PERSONELİ SEÇME SINAVI KPSS. GENEL KÜLTÜR ve GENEL YETENEK

Genel Yetenek - Matematik KAMU PERSONELİ SEÇME SINAVI KPSS. GENEL KÜLTÜR ve GENEL YETENEK 1 KAMU PERSONELİ SEÇME SINAVI KPSS GENEL KÜLTÜR ve GENEL YETENEK KPSS Sınavına hazırlık dosyalarımız son 3 yılda yapılan sınavlarda çıkmış sorular baz alınarak hazırlanmıştır. İtinalı çalışmalarımıza rağmen

Detaylı

TEST. Çarpanlar ve Katlar. 1. Asal çarpanların çarpımı olan sayı kaçtır? sayısının kaç tane birbirinden farklı asal çarpanı vardır?

TEST. Çarpanlar ve Katlar. 1. Asal çarpanların çarpımı olan sayı kaçtır? sayısının kaç tane birbirinden farklı asal çarpanı vardır? Çarpanlar ve Katlar 8. Sınıf Matematik Soru Bankası TEST. Asal çarpanların çarpımı..5 olan sayı kaçtır? A) 40 B) 480 C) 60 D) 70 4. 60 sayısının kaç tane birbirinden farklı asal çarpanı vardır? A) B) C)

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI 1. a ve b birer pozitif tamsayıdır. 12. a = b³ olduğuna göre, a + b toplamının alabileceği en küçük değer kaçtır? A) 21 B) 23 C) 24 D) 25 3. Beş kişinin yaşlarının aritmetik ortalaması 24 tür. Aşağıda

Detaylı

2017 MÜKEMMEL YGS MATEMATİK

2017 MÜKEMMEL YGS MATEMATİK 2017 MÜKEMMEL YGS MATEMATİK 1. 2,31 0,33 0,65 0,13 + 3,6 0,6 işleminin sonucu kaçtır? A)0,5 B) 0,8 C)0,9 D)5 E)8 4. Üç basamaklı ABB doğal sayısı 4 e ve 9 a kalansız bölünmektedir. Buna göre, A+B toplamının

Detaylı

BÖLME ve BÖLÜNEBİLME

BÖLME ve BÖLÜNEBİLME BÖLME ve BÖLÜNEBİLME A. BÖLME A, B, C, K birer doğal sayı ve B 0 olmak üzere, bölme işleminde, A ya bölünen, B ye bölen, C ye bölüm, K ya kalan denir. A = B. C + K dır. Kalan, bölenden küçüktür. (K < B)

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

Soru Konu Doğru Yanlış Boş

Soru Konu Doğru Yanlış Boş YGS - MATEMATİK DENEME- A Soru Konu Doğru Yanlış Boş Mutlak Değerin Sayıya Eşitliği % % Sayılar Akıl Yürütme % % Okek Dikdörtgen Birleştirme % % Kesirlerin Okeki % % Obeb Problemleri % % Obeb Denklemi

Detaylı

sayısının asal çarpanlarına ayrılmış biçimi aşağıdakilerden. 1. Aşağıdakilerden hangisi 96 sayısının çarpanlarından A) 16 B) 28 C) 32 D) 48

sayısının asal çarpanlarına ayrılmış biçimi aşağıdakilerden. 1. Aşağıdakilerden hangisi 96 sayısının çarpanlarından A) 16 B) 28 C) 32 D) 48 1. Aşağıdakilerden hangisi 96 sayısının çarpanlarından biri değildir? A) 16 B) 28 C) 32 D) 48 4. 216 sayısının asal çarpanlarına ayrılmış biçimi aşağıdakilerden hangisidir? A) 3 2 2 3 5 B) 2 2 2 3 C) 2

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES)

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) 00000000001 AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) plam cevaplama süresi 150 akikadır. (,5 saat) SAYISAL BÖLÜM SAYISAL - 1 TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal

Detaylı

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır.

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır. Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I YGS Temel Matematik. 8 + 4. + 8 : 4 işleminin sonucu A) 8 B) 9 C) D) 5 E) 8 5. a ve b birer pozitif tam sayıdır.

Detaylı

M a t e m a t i k. 8. Sınıf & Ders Notları

M a t e m a t i k. 8. Sınıf & Ders Notları ÇARPANLAR VE KATLAR Hatırlatma: Asal Sayı: 1 ve kendisinden başka bir sayıya bölünemeyen, 1 den büyük doğal sayılara asal sayı denir. Buna göre asal sayılar : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,.. Örnek

Detaylı

ÇALIŞMA KAĞIDI Kazanım: Çarpanlar ve Katlar

ÇALIŞMA KAĞIDI Kazanım: Çarpanlar ve Katlar ÇALIŞMA KAĞIDI Kazanım: Çarpanlar ve Katlar 8 basamaklı en büyük asal sayının kaç tane çarpanı vardır? 30 sayısının çarpanlarını yazınız Asal çarpanlarına ayrılış halı 2 3.5 3 olan sayıyı 96 sayısının

Detaylı

Tek Doğal Sayılar; Çift Doğal Sayılar

Tek Doğal Sayılar; Çift Doğal Sayılar Bölüm BÖLÜNEBİLME VE ÇARPANLARA AYIRMA. Bölünebilme Kuralları Bir a doğal sayısı bir b sayma sayısına bölündüğünde bölüm bir doğal sayı ve kalan sıfır ise, a doğal sayısı b sayma sayısına bölünebilir.

Detaylı

ÇARPANLAR VE KATLAR I sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden A) B) C) D)

ÇARPANLAR VE KATLAR I sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden A) B) C) D) 8. Sınıf MATEMATİK ÇARPANLAR VE KATLAR I. Aşağıdakilerden hangisi 6 nın çarpanlarından biridir? A) 3 B) 6 C) 8 D) TEST. 360 sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden hangisidir? A) 3. 3.

Detaylı

Soru Konu Doğru Yanlış Boş

Soru Konu Doğru Yanlış Boş YGS - MATEMATİK DENEME- A Soru Konu Doğru Yanlış Boş Okek Bölünebilme % % Okek Denklemi % % % % % % % % Aralarında Asal Sayıların Obebi % % Bölen Sayısı % % % % % % % % % % % % % % % Reel Sayılar % % %

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar,

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar, 1. 9 2 x 2 ifadesinin açılımında sabit x terim kaç olur? A) 672 B) 84 C) 1 D) -84.E) -672 6. Ali her gün cebinde kalan parasının %20 sini harcamaktadır. Pazartesi sabahı haftalığını alan Ali ni Salı günü

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 200 20 ÖSS-YGS - - - 2 2 / - 2/ 2/ / LYS OBEB OKEK OBEB: iki veya daha fazla sayıyı birlikte bölebilen en büyük tamsayıya bu sayıların OBEB i denir Sayılar

Detaylı

Çözüm 1. yol 36 bölenleri 1,2,3,4,6,9,12,18,36. Örnek...1 : Obeb( 60, 15) kaçtır? Örnek...2 : OBEB( 60, 36) kaçtır? Çözüm : ÖKLİD ALGORİTMASI

Çözüm 1. yol 36 bölenleri 1,2,3,4,6,9,12,18,36. Örnek...1 : Obeb( 60, 15) kaçtır? Örnek...2 : OBEB( 60, 36) kaçtır? Çözüm : ÖKLİD ALGORİTMASI EBOB İkisi birden sıfır olmayan a ve b tam sayılarının ikisini birden bölen en büyük pozitif tam sayıya bu sayıların en bü yük ortak böleni (EBOB -eski OBEB-) denir ve EBOB(a,b)=x biçiminde gösterilir.

Detaylı

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I Üniversite Hazırlık / YGS Kolay Temel Matematik 0 KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I. 8 ( 3 + ) A) 7 B) 8 C) 9 D) 0 E) 6. 3! 3 ( 3 3)": ( 3) A) B) 0 C) D) E) 3. 7 3. + 5 A) 6 B) 7 C) 8 D) 0

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI 1. x ile y pozitif tam sayılardır. EBOB(x,y) = 9 ve x+y = 7 olduğuna göre, x kaç farklı değer alır? 3. 4 A) B) 3 C) 4 D) 5 9 7 49 1 5 36 10 4? n n-5. Uygun yerlere parantezler yerleştirilerek, 1::3:4:5:6:7:8

Detaylı

ÖZEL EGE LİSESİ 12. OKULLAR ARASI MATEMATİK YARIŞMASI 6. SINIF ELEME SINAVI TEST SORULARI A) B) X C) 2X D) 3X

ÖZEL EGE LİSESİ 12. OKULLAR ARASI MATEMATİK YARIŞMASI 6. SINIF ELEME SINAVI TEST SORULARI A) B) X C) 2X D) 3X . < a < b < < c 2 sıralamasında birbirini izleyen sayılar arasındaki farklar eşittir. Buna göre, a+c toplamı kaçtır? 3. X=.+3.3+5.5+ +5.5 Y=.3+3.9+5.5+ +5.53 ise Y X farkının X cinsinden değeri kaçtır?

Detaylı

MUTLAK DEĞER Test -1

MUTLAK DEĞER Test -1 MUTLAK DEĞER Test -. < x < olduğuna göre, x x ifadesinin eşiti aşağıdakilerden 7 B) 7 x C) x 7 D) x 7 E) 7 x 5. y < 0 < x olduğuna göre, y x x y x y ifadesinin eşiti aşağıdakilerden xy B) xy C) xy D) xy

Detaylı

Cebir Notları. Birinci Derecen Denklemler TEST I. Gökhan DEMĐR, x

Cebir Notları. Birinci Derecen Denklemler TEST I. Gökhan DEMĐR, x MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir@yahoo.com.tr Birinci Derecen Denklemler TEST I. 7 [ [ ( )] ] + 6 = ( ) + denkleminin kökü 6. + 7 = 0 denkleminin köklerinin toplamı A) B)

Detaylı

MATEMATİK DERS PLÂNI. : Doğal Sayılar (Asal Sayılar Bölünebilme O.B.E.B ve O.K.E.K)

MATEMATİK DERS PLÂNI. : Doğal Sayılar (Asal Sayılar Bölünebilme O.B.E.B ve O.K.E.K) MATEMATİK DERS PLÂNI Başlangıç Tarihi :.. Dersin adı Sınıf Öğrenme Alanı Alt Öğrenme Alanı Planlanan Süre : Matematik : 9. Sınıf : Sayılar : Doğal Sayılar (Asal Sayılar Bölünebilme O.B.E.B ve O.K.E.K)

Detaylı

Soru 3. 17! hesaplanırsa sondan kaç basamağı sıfır olur? Çözüm: Nasıl ki bir tamsayıyı 10 ile çarptığımızda sonuna bir sıfır geliyor, 3 kere 10 ile ça

Soru 3. 17! hesaplanırsa sondan kaç basamağı sıfır olur? Çözüm: Nasıl ki bir tamsayıyı 10 ile çarptığımızda sonuna bir sıfır geliyor, 3 kere 10 ile ça Sayılar Mustafa Yağcı, yagcimustafa@yahoo.com Tanım: n, 1 den büyük bir doğal sayı olmak üzere; 1 den n ye kadar olan doğal sayıların çarpımına n nin faktöryeli veya kısaca n faktöryel denir. (n!) biçiminde

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

++ :8. SINIF. ÜNİTE Çarpanlar ve Katlar UYGULAMA BÖLÜMÜ. Anla-Uygula

++ :8. SINIF. ÜNİTE Çarpanlar ve Katlar UYGULAMA BÖLÜMÜ. Anla-Uygula ÜNİTE 1 8.1.1 Çarpanlar ve Katlar Anla-Uygula 1 A B ++ :8. SINIF C D UYGULAMA BÖLÜMÜ 8.1.1.2 İki doğal sayının en büyük ortak bölenini (EBOB) ve en küçük ortak katını (EKOK) hesaplar; ilgili problemleri

Detaylı

8. AB ve BA iki basamaklı sayılarının 17 ile bölümünden kalanların toplamı 17 dir. Buna göre A B kaçtır? işleminin sonucu kaçtır?

8. AB ve BA iki basamaklı sayılarının 17 ile bölümünden kalanların toplamı 17 dir. Buna göre A B kaçtır? işleminin sonucu kaçtır? 1. 6 (8 6 4 ) işleminin sonucu kaçtır? Cevap: 5 8. AB ve BA iki basamaklı sayılarının 17 ile bölümünden kalanların toplamı 17 dir. Buna göre A B kaçtır? Cevap : 1. 0, 0,75 işleminin sonucu kaçtır? 0,1

Detaylı

3) x = 10 3 ise x kaçt r? Çözüm: Toplamadaki ard k terimlerin fark 5 oldu undan, A =

3) x = 10 3 ise x kaçt r? Çözüm: Toplamadaki ard k terimlerin fark 5 oldu undan, A = DO AL SAYILAR, TAMSAYILAR ) 8. 0 7 +. 0 + 4. 0 say, a dakilerden hangisidir? 8. 0 7 +. 0 + 4. 0 = 8. 0 7 + 0. 0 6 + 0. 0 + 0. 0 4 + 0. 0 + 0. 0 2 + 4. 0 + 0. 0 0 eklinde yaz labilir. Öyleyse, say 8000040

Detaylı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI 0 KULLARARASI MATEMATİK YARIŞMASI 0 SINIFLAR SRULARI (5xy) dört basamaklı sayıdır 5 x y 6 - a 3 Yukarıdaki bölme işlemine göre y nin alabileceği değerler toplamı kaçtır? 4 m pozitif bir tamsayı olmak üzere;

Detaylı

Olimpiyat Eğitimi TUĞBA DENEME SINAVI

Olimpiyat Eğitimi TUĞBA DENEME SINAVI TUSİ Ortaöğretim Öğretmenleri için Olimpiyat Eğitimi TUĞBA DENEME SINAVI 10.01.2014-17.01.2014 2 1. Tuğba üç test yapar. İlkinde, 25 sorudan %60 ını, ikinci de 30 sorudan ve %70 ini ve son olarak 45 sorudan

Detaylı

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4 NİSAN 21 DENEMESİ 1) ABCD dikdörtgeninin AB kenarı üzerindeki M noktasından geçen ve CM doğrusuna dik olan doğru AD kenarını E noktasında kesiyor. M noktasından CE doğrusuna indirilen dikmenin ayağı P

Detaylı

ÇARPANLAR VE KATLAR. 1) 72 sayısının pozitif bölenlerin tamamı hangi seçenekte doğru verilmiştir?

ÇARPANLAR VE KATLAR. 1) 72 sayısının pozitif bölenlerin tamamı hangi seçenekte doğru verilmiştir? 1) 72 sayısının pozitif bölenlerin tamamı hangi seçenekte doğru verilmiştir? A)2 ve 3 B)1,2,3,8,9,18,24,36 ve 72 C)2,3 ve 5 4) 240=2 a.3 b.5 c ifadesi veriliyor.aşağıdakilerden hangisi aa. bb cc İfadesinin

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

MODÜLER ARİTMETİK Test -4

MODÜLER ARİTMETİK Test -4 MODÜLER ARİTMETİK Test -4 1. A doğal sayısının 7 ye bölümündeki kalan 4, B doğal sayısının 7 ye bölümündeki kalan 5 tir. Buna göre, A toplamının 7 ye bölümündeki kalan 3B A) 0 B) 1 C) D) 3 E) 4 5. I. 1

Detaylı

BÖLME - BÖLÜNEBİLME Test -1

BÖLME - BÖLÜNEBİLME Test -1 BÖLME - BÖLÜNEBİLME Test -1 1. A saısının 6 ile bölümünden elde edilen bölüm 9 kalan olduğuna göre, A saısı A) 3 B) C) 7 D) 8 E) 9. x, N olmak üzere, x 6 ukarıdaki bölme işlemine göre x in alabileceği

Detaylı

ÇARPANLAR VE KATLAR ÖĞRENİYORUM

ÇARPANLAR VE KATLAR ÖĞRENİYORUM ÖĞRENİYORUM Bir pozitif tam sayıyı birden fazla pozitif tam sayının çarpımı şeklinde yazarken kullandığımız her bir sayıya o sayının çarpanı denir. Örnek: nin çarpanları,, 3, 4, 6 ve dir. UYGULUYORUM Verilmeyen

Detaylı

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde ezberbozan serisi MATEMATİK GEOMETRİ KPSS 2017 SORU BANKASI eğitimde tamamı çözümlü 30. Kerem Köker Kenan Osmanoğlu Levent Şahin Uğur Özçelik Ahmet Tümer Yılmaz Ceylan KOMİSYON KPSS EZBERBOZAN MATEMATİK

Detaylı

ÇARPANLAR VE KATLAR. Başarı Başaracağım Diye Başlayanındır. 1

ÇARPANLAR VE KATLAR. Başarı Başaracağım Diye Başlayanındır. 1 ÇARPANLAR VE KATLAR Başarı Başaracağım Diye Başlayanındır. 1 ÖRNEK 1 48 sayısının çarpanlarını bulalım. 1.Gökkuşağı yöntemi 48 sayısının çarpanlarını küçükten büyüğe sıralayarak eşleştiriniz. 48 çarpanlarını

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI OKULLAR ARASI. MATEMATİK YARIŞMASI. a ve b birer doğal sayıdır. a 4.b olduğuna göre a+b toplamının en küçük değeri kaçtır?. A B A) B) C) D) C Yukarıdaki tabloda her karenin içindeki sayı sağındaki sayının

Detaylı

ÇARPANLAR VE KATLAR ÖRNEK. 8 Sayılar ve İşlemler. 2 x x 2 x 6. 2 x 2 x 2 x 9

ÇARPANLAR VE KATLAR ÖRNEK. 8 Sayılar ve İşlemler. 2 x x 2 x 6. 2 x 2 x 2 x 9 ÇARPANLAR VE KATLAR POZİTİF TAM SAYILARIN ÇARPANLARI Her pozitif tam sayı, iki doğal sayının çarpımı olarak yazılabilir. Bu iki doğal sayıdan her birine o sayının çarpanı denir. Bir sayının çarpanı aynı

Detaylı

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz.

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz. Asal Sayılar Sadece kendisine ve sayısına bölünebilen 'den büyük tam sayılara asal sayı denir. En küçük asal sayı 2'dir ÇARPANLAR ve KATLAR Uygulama- Aşağıdaki sayıların çarpanlarını (bölenlerini) 36=

Detaylı

TEMEL MATEMATİK TESTİ

TEMEL MATEMATİK TESTİ TEMEL MTEMTİK TESTİ 1. u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 010 YGS / MT 1. 0, 0,0 0,. + 1 ) 1 7 0 ) 1 + 1 1.. ( a+ 1) ( a )

Detaylı

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir. -- Bu ders materyali 06.09.05 :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-00 Cevap: x- -x- x- =0 denklemini sağlayan x değeri kaçtır? UYGULAMA-00 Cevap: x x x 5 + = + denklemini

Detaylı

ales dört bin soru tarzına en yakın EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan

ales dört bin soru tarzına en yakın EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan ales 2015 tarzına en yakın dört bin soru EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan Kenan Osmanoğlu - Kerem Köker - Savaş Doğan ALES Eşit Ağırlık ve

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

BÖLÜNEBİLME ÇÖZÜMLÜ SORULAR

BÖLÜNEBİLME ÇÖZÜMLÜ SORULAR BÖLÜNEBİLME ÇÖZÜMLÜ SORULAR 1) Rakamları birbirinden farklı dört basamaklı 435a sayısı 2 ile tam bölünüyor fakat 4 ile tam bölünemiyor ise a'nın alabileceği değerler toplamı kaçtır? A) 2 B) 4 C) 6 D) 8

Detaylı

Cebir. Notları. Faktöryel Mustafa YAĞCI,

Cebir. Notları. Faktöryel Mustafa YAĞCI, www.mustafayagci.com, 003 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Tanım: n, 1 den büyük bir doğal sayı olmak üzere; 1 den n ye kadar olan doğal sayıların çarpımına n nin faktöryeli veya kısaca

Detaylı

2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM

2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM 2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM DOĞAL SAYILAR ve DÖRT İŞLEM TEST 1 1) Güzelyurt ta oturan bir aile piknik için arabayla Karpaz a gidip, geri dönüyor. Bu yolculuk sonunda arabanın km göstergesini kontrol

Detaylı

SAYILAR TEORİSİ. KİTAPTA BULUNAN, TEOREM İSPATLARI, KONU ANLATIMI ve ÇÖZÜMLERİN OLDUĞU KISIMLAR, BU DÖKÜMANA KONULMAMIŞTIR.

SAYILAR TEORİSİ. KİTAPTA BULUNAN, TEOREM İSPATLARI, KONU ANLATIMI ve ÇÖZÜMLERİN OLDUĞU KISIMLAR, BU DÖKÜMANA KONULMAMIŞTIR. 2 SAYILAR TEORİSİ - MUSTAFA ÖZDEMİR SAYILAR TEORİSİ Bu kitap üniversitelerimizin Matematik ve Matematik Eğitimi bölümlerinde okutulmakta olan Sayılar Teorisi derslerine de yardımcı olacaktır. Bunun yanında,

Detaylı

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme Türkiye Ulusal Matematik Olimpiyatları Birinci Aşama Zor Deneme Sınavı 11 Haziran 2016 DENEME SINAVI 4. Deneme Soru Sayısı: 32 Sınav Süresi: 210 dakika Başarılar Dileriz... Page 1 of 9 DENEME SINAVI (4.

Detaylı

İSTANBUL III. BİLİM OLİMPİYATI

İSTANBUL III. BİLİM OLİMPİYATI İSTANBUL III. BİLİM OLİMPİYATI MATEMATİK SBELIAN Bu çalışma notunda İstanbul Bilim Olimpiyatı matematik sorularının bir bölümünün soru metinleri ve çözümleri verilmiştir. Soruların tamamının yayın hakkı

Detaylı

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28)

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28) TEMEL KAVRAMLAR 6. a ve b birer do al say r. a b = 19 oldu una göre, a + b toplam (YANIT: 8) 1. ( 4) ( 1) 6 1 i leminin sonucu (YANIT: ). ( 6) ( 3) ( 4) ( 17) ( 5) :( 11) leminin sonucu (YANIT: 38) 7.

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25 Yükseköğretime Geçiş Sınavı (Ygs) / Nisan 00 Matematik Soruları ve Çözümleri. 0, 0,0 0, işleminin sonucu kaçtır? A) B) 4 7 C) 0 8 D) E) Çözüm 0, 0,0 0, = 0,00 0,0 0, = 0,7 0, 000 7 7. = = 000 00 0... işleminin

Detaylı

ÇARPANIARVE KATİAR Ş AsalSayılar -} Asal Çarpanlar + En BüyükOrtakBölen t En KüçükOrtakKat ğ Aralarında Asal Sayılar . 4. Üç basamaklı Aşağıdakilerden hangisi asa! sayıdır? 8 82 83 D) 84 2. ı ıı 2 3 4

Detaylı

ÖZEL EGE LİSESİ 10. MATEMATİK YARIŞMASI 7. SINIF TEST SORULARI

ÖZEL EGE LİSESİ 10. MATEMATİK YARIŞMASI 7. SINIF TEST SORULARI 4. + :. 4 7 7 7 =? + : 6 4. x, y, z, a, b, c Z olmak üzere x+a = y+b = z+c= - bağıntısı vardır. x,y,z sayılarının aritmetik ortalaması olduğuna göre, a, b, c sayılarının aritmetik ortalaması kaçtır? A)

Detaylı

ISBN Sertifika No: 11748

ISBN Sertifika No: 11748 ISN - 978-0--- Sertifika No: 78 GENEL KOORDİNTÖR: REMZİ ŞHİN KSNKUR REDKTE: REMZİ ŞHİN KSNKUR SERDR DEMİRCİ - SRİ ŞENTÜRK SERVET SVŞ ÇETİN as m Yeri: UMUT MTCILIK - MERTER / STNUL u kitab n tüm bas m ve

Detaylı

2. Dereceden Denklemler

2. Dereceden Denklemler . Dereceden Denklemler Yazım hataları olabilir. Tam olarak tashih edilmemiştir. Hataları osmanekiz000@gmail.com mail adresine bildirilseniz makbule geçer.. a + b + 5c = c(a + b) ise a b =? C: 9. ( 4) (

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA İÇİNDEKİLER Matematiğe Giriş... Temel Kavramlar... Bölme - Bölünebilme Kuralları... 85 EBOB - EKOK... Rasyonel Sayılar... Basit Eşitsizlikler... 65 Mutlak

Detaylı