Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü"

Transkript

1 * Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü

2 SAYILAR Doğal Sayılar, Tam Sayılar, Rasyonel Sayılar, N={0,1,2,3,,n, } Z={,-3,-2,-1,0,1,2,3, } Q={p/q: p,q Z ve q 0} İrrasyonel Sayılar, I= {p/q şeklinde ifade edilemeyen sayılar } Reel Sayılar R=QUI N Z Q R

3 a ve b iki reel sayı ve a<b olsun. {x R: a<x<b} şeklinde tanımlanan reel sayı kümesine a ve b sayıları ile belirtilen açık aralık denir ve (a,b) şeklinde gösterilir. {x R: a x b} şeklinde tanımlanan reel sayı kümesine a ve b sayıları ile belirtilen kapalı aralık denir ve [a,b] şeklinde gösterilir. (a,b]={x R: a<x b} [a,b)={x R: a x<b} yarı açık aralık denir.

4 a ve b sayısı iki reel sayı olsun. a + r = b olacak şekilde pozitif bir r sayısı mevcut ise; a sayısı b den küçüktür veya b sayısı a dan büyüktür denir ve a<b ile gösterilir.

5 Teorem: 1) a<b ise a+c<b+c 2) a<b ise a-c<b-c 3) a<b ve c>0 ise a.c<b.c 4) a<b ve c<0 ise a.c>b.c 5) a<b ve a.b>0 ise 1 a > 1 b 6) a<b ve c>0 ise a c < b c c<0 ise a c > b c

6 EBOB / OBEB En Büyük Ortak Bölendir Ortak Bölenlerin En Büyüğü Büyük parçalardan küçük küçük parçalar elde ediliyorsa yani büyükten küçüğe gidiliyorsa ebob/obeb bulunur. Verilen sayılar asal çarpanlarına ayrılır ve ortak bölen sayılar çarpılıp ebob/obeb bulunur. Örnek: 80 cm ve 120 cm uzunluğunda iki demir çubuk, boyları birbirine eşit parçalara ayrılacaktır. Bir parçanın uzunluğu en fazla kaç cm olur? ebob/obeb (80,120) = = 40 cm

7 EKOK / OKEK En Küçük Ortak Kat Ortak Katların En Küçüğü Küçük küçük parçalardan büyük parçalar elde ediliyorsa yani küçükten büyüğe gidiliyorsa ekok/okek bulunur. Verilen sayılar asal çarpanlarına ayrılır, bölenlerin hepsi çarpılır ekok/okek bulunur. Örnek: Bir hastanede hasta yatakları katlara 4'er, 5'er, 6'şar olarak dağıtıldığında her defasında 1 yatak artıyor. Buna göre, en az kaç tane yatak vardır? ekok/okek (4,5,6) = = = 61 yatak

8 MUTLAK DEĞER Bir a reel sayısının mutlak değeri, = + a, a > 0 a = - a, a < 0 şeklinde tanımlanır. a ister negatif ister pozitif olsun tanıma göre a daima pozitiftir. Ayrıca a 2 = a 2 ve a = a 2 yazılabilir. Mutlak değer, sayının sayı doğrusu üzerinde sıfıra olan uzaklığını ölçer.

9 Teorem: a 0 a a a a = a ve a b = b a a b a + b a + b a. b = a. b a n = a n a = a, b 0 olmak üzere b b Her p pozitif sayısı için, a = p ise a = p veya a = p a < p ise p < a < p a > p ise a < p ve a > p

10 ÜSLÜ VE KÖKLÜ SAYILAR a herhangi bir sayı ve n pozitif bir tamsayı olmak üzere; a. a. a a çarpımına a nın n-inci dereceden kuvveti denir n tane ve a n olarak gösterilir. a 0 olmak üzere a n = 1 ve a n a0 = 1 olarak tanımlanır.

11 Buna göre; 2 4 = = 16 ( 2) 3 = = = = = olur. 7 0 = 20 0 = ( 10) 0 = 1

12 Teorem: a, b R + ve m, n N için a m. a n = a m+n am a n = am n (a 0) (a m ) n = a m.n (a. b) n = a n. b n Pozitif sayıların bütün kuvvetleri pozitiftir. Negatif sayıların; çift kuvvetleri pozitif, tek kuvvetleri negatiftir.

13 n bir tamsayı ve a reel bir sayı olmak üzere, 1) ( a) 2n = a 2n ifadesi daima pozitiftir. 2) ( a 2n ) = a 2n ifadesi daima negatiftir. 3) ( a) 2n+1 = a 2n+1 ifadesi a pozitif ise negatif, a negatif ise pozitiftir.

14 a 0 ve n herhangi bir pozitif tamsayı olmak üzere, n-inci kuvveti a olan bir tek pozitif reel sayı vardır. a nın n-inci kuvvetten kökü denilen bu sayı n a ile gösterilir. Teorem: a, b R + ve m, n N için n a n = a

15 n a. b = n a n b n a b = n a n b, (b 0) m n a = m.n a Eğer n tek ise, a nın negatif değerleri içinde n a tanımlanabilir. Bu durumda n a, n- inci kuvveti a olan bir negatif sayıdır. 3 8 = = = 1

16 Verilen bir köklü sayıyı kökten kurtarmak için çarptığımız sayıya, verilen köklü sayının eşleniği adı verilir. Bazı köklü sayıların eşleniği aşağıdaki gibidir; a eşleniği a a + b eşleniği a b a + b eşleniği a b a + b eşleniği a b a b + c eşleniği a b c Not: Eşlenik çarpımı sonucu iki kare farkı elde edilir. a + b. a b = a 2 b 2

17 İÇ İÇE KÖKLER m a n b k c = m.n.k. a n.k. b k. c m n k a = m.n.k. a a. a. a a = a 2n n tane a

18 SONSUZ KÖKLER n a. n a. n a = n 1 a n a: n a: n a: = n+1 a n a. m a. n a. m a = m.n 1 a m+1 n a. m b. n a. m b = m.n 1 a m. b n a + n a + n a + = n a n a n a = 1+ 4a a+1 2

19 1) 1 x = 2 ise x=? 7) (32) 4Τ5. (16) 5Τ4 işleminin sonucunu hesaplayınız. 2) x 1 3 ise x in aralığını bulunuz. 8) 12 3 =? işleminin sonucunu hesaplayınız. 3) 3x + 12 > 0 ise x in aralığını bulunuz. 9) = a 27 ise a nın değerini hesaplayınız. 4) =? işleminin sonucunu hesaplayınız. 10) hesaplayınız. =? işleminin sonucunu 5) 0,00001 =? işleminin sonucunu hesaplayınız. 11) hesaplayınız. 6 işleminin sonucunu 6) (8a 6 ) 4Τ3 işleminin sonucunu hesaplayınız. 1 12) işleminin sonucunu hesaplayınız.

20 CEBİR Matematiğin en önemli konularından olan cebir, özellikle sayısal işlem yapma, verilen bir bağıntının uygulanması, bağıntılarda bir değişkenin belirlenmesi gibi çok sayıda konuyu içermektedir. Değişken, sabit, parametre ile bunların toplamlarını, farklarını, çarpımlarını ve bölümlerini içeren, üslü, köklü ifadeleri de bulunduran fakat eşitlik veya eşitsizlik içermeyen ifadelere cebirsel ifade denir.

21 Değişken: Farklı değerler alabilen büyüklüktür. x, y, z gibi Sabit: Her zaman aynı kalan büyüklüktür. 5, 10, 12, 7 gibi Parametre: Bazen sabit, bazen de değişken olarak işlem gören büyüklüğe denir. mx + 8 3x 7 m: parametredir, her türlü değer alabilir. x: değişken 8: sabittir. 3: parametre, x: değişken, -7 sabittir.

22 CEBİRSEL İŞLEMLER Sayılarda 4 işlem (toplama, çıkarma, çarpma ve bölme) yapılırken işaretlere dikkat edilmesi gerekiyor. Toplama ve çıkarma yapılırken, aynı işaretli sayılar kendi içinde toplanır, farklı işaretli sayılarda ise mutlak değerce büyük olandan küçük olan çıkarılır ve büyüğün işareti verilir. Çarpma ve bölme işlemlerinde aynı işaretli olanların çarpımı veya bölümü pozitif, farklı işaretli olanların çarpımı veya bölümü negatiftir.

23 Not: Dört işlemden önce varsa kuvvet alma işlemi gerçekleştirilir. Parantezli ifadelerden kurtulduktan sonra işlemlere geçilir.

24 1) 89+9 :( 2)2 + 2.( 5) 1.( 10) :10 =? işleminin sonucunu hesaplayınız. 2) ( 10) : ( 2) 2 =? işleminin sonucunu hesaplayınız. 3) 136 :(34) ( 2) ( 1) 200 =? işleminin sonucunu hesaplayınız. 4) ( 1)121 +( 2) ( 2) 5 =? işleminin sonucunu hesaplayınız.

25 Harfli işlemeler yapılırken de aynı mantıkla çözümlenir. 5) 2m m 2m n n 3m m n 2m n 3n m =? işleminin sonucunu hesaplayınız. 6) 2r p 3 r 2p 2r 7r r p p 2p 3r +4r =? işleminin sonucunu hesaplayınız.

26 İstenileni diğer değişken türünden yazmak. 7) x 2y = 4x 3y 5 ise x in y türünden değerini hesaplayınız. 8) a, x R olmak üzere 2a x 3 x+3a 4 =0 ise x in değerini a türünden bulunuz. 9) x x. y x 1 y x + 1 = 0 ise y nin değerini hesaplayınız.

27 ÇARPANLARA AYIRMA VE ÖZDEŞLİKLER Bir polinomu, iki veya daha çok polinomun çarpımı biçiminde yazmaya, verilen polinomu çarpanlara ayırma denir. Çarpanlara Ayırma Metodları Çarpanlara ayırma konusu ile ilgili soruları birkaç metod ile çözebiliriz.

28 1. Ortak Çarpan Parantezine Alma Her terimde ortak olan çarpanlar, bütün çok terimlinin ortak çarpanı olarak yazılır. Ortak çarpan; terimlerin katsayılarının O.B.E.B. i ile ortak harflerin üssü en küçük olanlardan oluşur. xa ± xb ± xc = x(a ± b ± c)

29 Örnek: 12x 2 y 2 6xy x 4 y 4 ifadesini çarpanlara ayıralım. Çözüm: Katsayıları 12, -6 ve 18 dir. (12, -6, 18) = 6 dır. Ortak harfler x ve y dir. x lerin üssü en küçük olanı x, y lerin en küçük olanı y 2 dir. O halde; ortak çarpan 6xy 2 dir.

30 2. Gruplandırma Yöntemi Tüm terimler; aynı ortak çarpan parantezine sahip değilse, terimler uygun şekilde (ortak parantez olacak şekilde) ikişerli, üçerli v.b gruplara ayrılır. Her grup kendi ortak çarpan parantezine alınarak işleme devam edilir.

31 Örnek: ax + bx + ay + by = x.(a + b) + y.(a + b) =(a + b).(x + y) Örnek: 2x-2ax-3a+3 a 2 = 2x.(1 - a) - 3a.(1 - a) = (1 - a).(2x - 3a)

32 3. Tam Kare Şeklindeki İfadelerin Çarpanlara Ayrılması Örnek: 9x xy + 4y 2 Çözüm: ifadesini çarpanlara ayıralım. 9x xy + 4y 2 9x 2 = 3x 4y 2 = 2y Böylece; 2. 3x. (2y) (2. terim) 9x xy + 4y 2 = (3x + 2y) 2

33 4. x 2 + Mx + N Şeklindeki İfadelerin Çarpanlara Ayrılması x 1. x 2 = N x 1 + x 2 = M olacak şekilde x 1 ve x 2 sayıları bulunabilirse x 2 + Mx + N = x + x 1. x + x 2 şeklinde çarpanlara ayırma işlemi yapılır.

34 x 2 7x + 10 ifadesini çarpanlara ayırınız. (-2)+(-5) (-2).(-5) -7 ve 10 sayıları yukarıdaki biçimde yazılabildiğinden ifade x 2 7x + 10 = x 2. (x 5) şeklinde yazılabilir.

35 x 2 5x 6 ifadesini çarpanlara ayırınız. (-6)+(+1) (-6).(+1) x 2 5x 6 = x 6. (x + 1) şeklinde yazılabilir.

36 5. ax 2 + bx + c Şeklindeki İfadelerin Çarpanlara Ayrılması ax 2 = px. qx c = m. n ve b. x = m. p + n. q. x olarak yazılabilirse ax 2 + bx + c = şeklinde yazılabilir. px + n. (qx + m) NOT: 1.terimin çarpanları ile 3. terim çarpanları seçilir. Bu çarpanlar, çapraz çarpılıp toplandığında 2. terimin işareti ile birlikte veriyorsa seçimler doğru yapılmıştır.

37 Örnek: 3x 2 x 2 ifadesini çarpanlara ayıralım. elde edildiğinden 3x 2 = 3x. x 2 = +2. ( 1) x = x 3x 2 x 2 = 3x + 2. (x 1)

38 6x 2 13x + 6 ifadesini çarpanlara ayıralım. 3x -2 2x -3 3x.( 3)+2x.( 2)=( 9x)+( 4x)= 13x 6x 2 13x + 6 = 3x 2. (2x 3) olarak yazılır.

39 6. İki Kare Farkı Şeklindeki İfadelerin Çarpanlara Ayrılması a 2 b 2 = a b. (a + b) eşitliğine iki kare farkı denir. Örnek: x 2 25 = x 2 25 = x 5. x + 5 İki kare farkında, ifadelerinin köklerinin toplamları ve farkları çarpan olarak yazılır.

40 7. İki Kare Farkına Dönüştürerek Çarpanlara Ayırma Verilen çok terimli; terim ekleme ve çıkarma veya gruplandırma ile iki kare farkı biçimine getirilerek çarpanlara ayrılır. a 2 b 2 4a + 4 ifadesini çarpanlarına ayıralım a 2 b 2 4a + 4 = a 2 4a + 4 b 2 Tam kare ifadesi = (a 2) 2 b 2 = a 2 + b. a 2 b İki kare farkı

41 8. İki Küp Toplamı veya Farkının Çarpanlara Ayrılması a 3 + b 3 = a + b. (a 2 ab + b 2 ) a 3 b 3 = a b. (a 2 + ab b 2 ) Örnek: a ifadesini çarpanlara ayıralım. a = a = a + 2. (a 2 2a + 4)

42 9. Tam Küp Biçimindeki İfadelerin Çarpanlara Ayrılması (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 eşitlikleri vardır.

43 NOT : İki sayının küpler toplamı ile bu sayıların toplamının küpü birbirine eşit değildir. a 3 + b 3 a + b 3 İki sayının küpler farkı ile bu sayıların farkının küpü birbirine eşit değildir. a 3 b 3 (a b) 3

44 10. a n b n ve a n + b n İfadelerinin Çarpanlara Ayrılması n N + ise a n b n = a b. (a n 1 + a n 2. b + + b n 1 ) n N + ve n tek ise a n + b n = a + b. (a n 1 a n 2. b + a n 3. b 2 + b n 1 ) Not: n çift sayı ise a n + b n ifadesi çarpanlarına ayrılmaz.

45 Örnek: a 5 1 = a 1. (a 4 + a 3 + a 2 + 1) a = a + 2. (a 4 2a 3 + 4a 2 8a + 16) x 3 y 3 = x y. (x 2 + xy + y 2 )

46 Önemli Özdeşlikler (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 = a 3 +b 3 + 3ab(a + b)

47 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 = a 3 b 3 3ab(a b) (a + b) 2 = (a b) 2 +4ab (a + b + c) 2 = a 2 + b 2 + c 2 + 2(ab + ac + bc)

48 x 2 +2xy+y 2 1) x = 196, y = 4, a = 38 ve b = 2 için a 3 +3a 2 b+3ab 2 +b 3 kaçtır? ifadesinin değeri 2) x ve y pozitif gerçel sayılar olmak üzere; 3x 2 + 2xy 8y 2 = 0 olduğuna göre 6x+y 3x y işleminin sonucunu hesaplayınız. 3) x pozitif gerçel sayı olmak üzere, x 4 7x = 0 ise x x 3 işleminin sonucunu hesaplayınız. 4) x 2 y xy 2 = 0 x. y = 2 olduğuna göre (x + y) 2 işleminin sonucunu hesaplayınız.

49 5) x + y + z = 6 ve xy + yz + xz = 12 olduğuna göre x 2 + y 2 + z 2 toplamı kaçtır? 6) x 1 3x = 6 ise x3 1 x 3 kaçtır? 7) x 2y = 5 ve a + 3b = 6 olduğuna ax 2ay+3bx 6by+12 6y 3x+9 sonucunu hesaplayınız. ifadesinin

50 8) a 3 3a 2 b + 3ab 2 b 3 = 125 olduğuna göre x 2 a a+b x 2 b 8x 2 8 işleminin sonucunu hesaplayınız. 9) x2 a 3 x 3a : x2 +ax+a 2 x 2 a 2 x 3 a 3 ifadesinin sadeleşmiş biçimini hesaplayınız. 10) 3a 2 6a 2 = 0 olduğuna göre 27a 3 8 a 3 kaçtır?

51 *: Ders notları, ilk hafta verilen kaynaklar üzerinden öğrencilerin yararlanması amacıyla hazırlanmıştır.

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz.

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz. MATEMATİK ASAL ÇARPANLARA AYIRMA A S A L Ç A R P A N L A R A A Y I R M A T a n ı m : Bir tam sayıyı, asal sayıların çarpımı olarak yazmaya, asal çarpanlarına ayırma denir. 0 sayısını asal çarpanlarına

Detaylı

Asal Çarpanlara Ayırma / EBOB-EKOK ORTAK DERSLER MATEMATİK. Prof. Dr. Emin KASAP

Asal Çarpanlara Ayırma / EBOB-EKOK ORTAK DERSLER MATEMATİK. Prof. Dr. Emin KASAP 3 Asal Çarpanlara Ayırma / EBOB-EKOK ORTAK DERSLER MATEMATİK Prof Dr Emin KASAP 1 Ünite: 5 ASAL ÇARPANLARA AYIRMA / EBOB - EKOK Prof Dr Emin KASAP İçindekiler 51 ASAL ÇARPANLARA AYIRMa 3 511 Asal Sayılar

Detaylı

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır?

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır? BÖLME İŞLEMİ VE ÖZELLİKLERİ A, B, C, K doğal sayılar ve B 0 olmak üzere, BÖLÜNEN A B C BÖLEN BÖLÜM Örnek...4 : x sayısının y ile bölümündeki bölüm 2 ve kalan 5 tir. y sayısının z ile bölümündeki bölüm

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır?

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır? BÖLME İŞLEMİ VE ÖZELLİKLERİ A, B, C, K doğal sayılar ve B 0 olmak üzere, BÖLÜNEN A B C BÖLEN BÖLÜM Örnek...4 : x sayısının y ile bölümündeki bölüm 2 ve kalan 5 tir. y sayısının z ile bölümündeki bölüm

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir.

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. 1 B)ÇARPANLARA AYIRMA VE ÖZDEŞLİKLER: Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. Çarpanlara Ayırma Yöntemleri: 1)Ortak Çarpan Parantezine Alma:

Detaylı

KILAVUZ SORU ÇÖZÜMLERİ Matematik

KILAVUZ SORU ÇÖZÜMLERİ Matematik 9. Çarpanlar ve Katlar b Dikdörtgenin alanı 4 cm olduğuna göre, kısa ve uzun kenarının çarpımı 4 cm 'dir. a. b = 4 a 6. Asal Çarpanlar A B C D E Yukarıda verilen asal çarpanlara ayırma işleminin son satırında

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER HEDEFLER İÇİNDEKİLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER Özdeşlikler Birinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemler Yüksek Dereceden Denklemler Eşitsizlikler

Detaylı

Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar

Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar Atatürk Anadolu Lisesi M A T E M A T İ K Temel Kavramlar Üzerine Kısa Çalışmalar KONYA \ SELÇUKLU 01 MATEMATİK 1. TEMEL KAVRAMLAR 1.1. RAKAM Sayıların yazılmasında kullanılan sembollere rakam denir. Onluk

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

10 SINIF MATEMATİK. Polinomlar Çarpanlara Ayırma İkinci Dereceden Bir Bilinmeyenli Denklemler

10 SINIF MATEMATİK. Polinomlar Çarpanlara Ayırma İkinci Dereceden Bir Bilinmeyenli Denklemler 10 SINIF MATEMATİK Polinomlar Çarpanlara Ayırma İkinci Dereceden Bir Bilinmeyenli Denklemler YAYIN KOORDİNATÖRÜ Oğuz GÜMÜŞ EDİTÖR Hazal ÖZNAR - Uğurcan AYDIN DİZGİ Muhammed KARATAŞ SAYFA TASARIM - KAPAK

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif tamsayılar

Detaylı

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır. Sevgili Öğrenciler, Matematik ilköğretimden üniversiteye kadar çoğu öğrencinin korkulu rüyası olmuştur. Buna karşılık, istediğiniz üniversitede okuyabilmeniz büyük ölçüde YGS ve LYS'de matematik testinde

Detaylı

Polinomlar. Rüstem YILMAZ

Polinomlar. Rüstem YILMAZ Polinomlar Rüstem YILMAZ 546 550 86 48 matematikklinigi@gmail.com 26 Aralık 2016 0.1 Tanımı a, b, c, d reel sayılar ve n N olmak üzere, P (x) = ax n + bx n 1 + + cx + d ifadesine reel katsayılı ve bir

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ 1 SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA

MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA 3. Ondalık Sayılarda İşlemler: Toplama - Çıkarma: Ondalık kesirler toplanırken, virgüller alt alta gelecek şekilde yazılır ve doğal sayılarda toplama-çıkarma

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

8. SINIF MATEMATiK KAREKÖKLÜ SAYILAR

8. SINIF MATEMATiK KAREKÖKLÜ SAYILAR 0 8. SINIF MATEMATiK KAREKÖKLÜ SAYILAR KAREKÖKLÜ SAYI KAVRAMI Karekök ile gösterilir. karekökünün içi negatif bir sayıya eşit olamaz. ÖR: Aşağıda verilen eşitliklere göre x lerin alabileceği değerleri

Detaylı

ÜNİTE 1: TEMEL KAVRAMLAR

ÜNİTE 1: TEMEL KAVRAMLAR MATEMATİK ÜNİTE : TEMEL KAVRAMLAR Temel Kavramlar ADF 0 RAKAM Sayı oluşturmak için kullanılan sembollere... denir. 0 luk sayma düzenindeki rakamlar 0,,,... 8 ve 9 olup 0 tanedir. örnek a, b, c sıfırdan

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

Örnek...4 : P(x) = 3x + 2 ve Q(x)= x 2 +4x -3 polinomları için a) P(x). Q(x) b)x.p(x) 2.Q(x) işlem lerini ya pınız.

Örnek...4 : P(x) = 3x + 2 ve Q(x)= x 2 +4x -3 polinomları için a) P(x). Q(x) b)x.p(x) 2.Q(x) işlem lerini ya pınız. POLİNOMLARDA Polinomlarda To plama ve Çıkarma P(x) ve Q(x) iki polinom olsun. P(x) + Q(x) veya P(x) Q(x) işlemi yapılırken eşit dereceli terimlerin katsayıları işlemine göre toplanır veya çıkarılır. Örnek...1

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

KONU: ÇARPANLARA AYIRMA TARİH: YER:LAB.4 _PC5

KONU: ÇARPANLARA AYIRMA TARİH: YER:LAB.4 _PC5 KONU: ÇARPANLARA AYIRMA TARİH:29.11.2011 YER:LAB.4 _PC5 İçindekiler KONU HAKKINDA GENEL BİLGİ :...3 A.ORTAK ÇARPAN PARANTEZİNE ALMA :...3 B.GRUPLANDIRARAK ÇARPANLARA AYIRMA:...3 C.İKİ KARE FARKI OLAN İFADELERİN

Detaylı

PENDİK ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI 10.SINIF MATEMATİK DERSİ YILLIK PLANI

PENDİK ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI 10.SINIF MATEMATİK DERSİ YILLIK PLANI PENDİK ANADOLU İMAM HATİP LİSESİ 0-0 EĞİTİM VE ÖĞRETİM YILI 0.SINIF MATEMATİK DERSİ YILLIK PLANI EYLÜL EKİM. Gerçek katsayılı ve tek değişkenli polinomu kavram olarak örneklerle açıklar, polinomun derecesini,

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3)": ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3): ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4 Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I Kolay Temel Matematik. 8 ( + ) A) 7 B) 8 C) 9 D) 0 E) 6.! ( )": ( ) A) B) 0 C) D) E). 7. + 5 A) 6 B) 7 C) 8 D)

Detaylı

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c 138. a ve b gerçel sayılardır. a < a, 6a b 5= 0 b ne olabilir? (11) 4 5 8 11 1 139. < 0 olmak üzere, 4 3. =? ( 3 ) a 1 140. < a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9,4,7 3,

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi ÜNTE: RASYONEL SAYILAR ONU: Rasyonel Sayılar ümesinde Çıkarma şlemi ÖRNE SORULAR VE ÇÖZÜMLER. işleminin sonucu B) D) ki rasyonel sayının farkını bulmak için çıkan terimin toplama işlemine göre tersi alınarak

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

1 RASYONEL SAYILARDA İŞLEMLER Sorular Sorular DOĞRUSAL DENKLEMLER Sorular DOĞRUSAL DENKLEM SİSTEMLERİ 25

1 RASYONEL SAYILARDA İŞLEMLER Sorular Sorular DOĞRUSAL DENKLEMLER Sorular DOĞRUSAL DENKLEM SİSTEMLERİ 25 İçindekiler RASYONEL SAYILARDA İŞLEMLER. Çözümlü Sorular............................. 2.2 Sorular................................... 5 2 TEK - TERİMLİ veçok-terimli İFADELER 7 2. Çözümlü Sorular.............................

Detaylı

Atatürk Anadolu. Bölme, Bölünebilme, Asal Sayılar, Obeb, Okek, Rasyonel Sayılar, Basit Eşitsizlikler ve Mutlak Değer Üzerine Kısa Çalışmalar

Atatürk Anadolu. Bölme, Bölünebilme, Asal Sayılar, Obeb, Okek, Rasyonel Sayılar, Basit Eşitsizlikler ve Mutlak Değer Üzerine Kısa Çalışmalar Atatürk Anadolu Lisesi M A T E M A T İ K Bölme, Bölünebilme, Asal Sayılar, Obeb, Okek, Rasyonel Sayılar, Basit Eşitsizlikler ve Mutlak Değer Üzerine Kısa Çalışmalar KONYA \ SELÇUKLU 07 Bölme, Bölünebilme,

Detaylı

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik 1. Ünite: Geometriden Olasılığa 1. Bölüm: Yansıyan ve Dönen Şekiller, Fraktallar Yansıma, Öteleme, Dönme Fraktallar 2. Bölüm: Üslü Sayılar Tam

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) :5-3 = = 11 ( C )

Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) :5-3 = = 11 ( C ) Önce ÇARPMA ve Bölme, sonra Toplama ve Çıkarma. 3.4+10:5-3 = 12+2-3 = 11 ( C ) Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) 72:24+64:16 = 3+4 = 7 ( B

Detaylı

ÜSLÜ SAYILAR SİBEL BAŞ AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF

ÜSLÜ SAYILAR SİBEL BAŞ AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF ÜSLÜ SAYILAR SİBEL BAŞ 20120907010 AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF 1 ANLATIMI ÜSLÜ SAYILAR KONU Üslü sayılar konu anlatımı içeriği; Üslü sayıların gösterimi, Negatif üslü

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

TAM SAYILAR. Tam Sayılarda Dört İşlem

TAM SAYILAR. Tam Sayılarda Dört İşlem TAM SAYILAR Tam Sayılarda Dört İşlem Pozitif ve negatif tam sayılar konu anlatımı ve örnekler içermektedir. Tam sayılarda dört işlem ve bu konuyla ilgili örnek soru çözümleri bulunmaktadır. Grup_09 29.11.2011

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Rasyonel Fonksiyonlar 5 Bibliography 35 Inde 39 Rasyonel Fonksiyonlar Polinomlar Yetmez! Bölme

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

MATEMATİK. Temel Kavramlar I. Test a ve b doğal sayılardır. 5. Ardışık 5 tek sayının toplamı 115 tir. 6. x ve y tamsayılardır.

MATEMATİK. Temel Kavramlar I. Test a ve b doğal sayılardır. 5. Ardışık 5 tek sayının toplamı 115 tir. 6. x ve y tamsayılardır. MATEMATİK Test 0 Temel Kavramlar I. a ve b doğal sayılardır. a + b = 7 olduğuna göre, a.b çarpımının alabileceği en büyük değer kaçtır?. Ardışık tek sayının toplamı tir. Buna göre, bu sayıların en büyüğü

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI 0 KULLARARASI MATEMATİK YARIŞMASI 0 SINIFLAR SRULARI (5xy) dört basamaklı sayıdır 5 x y 6 - a 3 Yukarıdaki bölme işlemine göre y nin alabileceği değerler toplamı kaçtır? 4 m pozitif bir tamsayı olmak üzere;

Detaylı

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören çocuklarımızın ana ve babalarına da yavrularının öğreniminin tamamlanması

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

KONU: Polinomlarda Bölme İşlemi. 6. P x x x 1

KONU: Polinomlarda Bölme İşlemi. 6. P x x x 1 ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Polinomlarda Bölme İşlemi Dersin Konusu 1. Px 4 x x polinomunun x 1 ile bölümünden kalan A) 0 B) 1 C) D) 4 E) 6. Px x x 1 polinomunun x + 1 ile

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

8.SINIF FİNAL MAÇI KONULARI 26 NİSAN 2019

8.SINIF FİNAL MAÇI KONULARI 26 NİSAN 2019 8.SINIF FİNAL MAÇI KONULARI 26 NİSAN 2019 1) ÇARPANLAR VE KATLAR M.8.1.1.1. Verilen pozitif tam sayıların pozitif tam sayı çarpanlarını bulur, pozitif tam sayıların pozitif tam sayı Çarpanlarını üslü ifadelerin

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

SAYILARIN ASAL ÇARPANLARINA AYRILMASI ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki

Detaylı

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi...

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi... İÇİNDEKİLER HARFLİ İFADELER Harfli İfadeler ve Elemanları... 1 Benzer Terim... Harfli İfadenin Terimlerini Toplayıp Çıkarma... Harfli İfadelerin Terimlerini Çarpma... Harfli İfadelerde Parantez Açma...

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

1. ÜNİTE:SAYILAR VE İŞLEMLER

1. ÜNİTE:SAYILAR VE İŞLEMLER 1. ÜNİTE:SAYILAR VE İŞLEMLER 2 DERS SAATİ:Verilen iki doğal sayının aralarında asal olup olmadığını belirler. ASAL SAYILAR 1 ve kendisinden başka hiçbir sayma sayısı ile bölünemeyen 1 den büyük doğal sayılara

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Çarpanlara Ayırma 5 52 Polinomlar 53 100 İkinci Dereceden Denklemler 101 120 Karmaşık Sayılar

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR - 1-2 ÜNİTE İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR ÖĞRENME ALANI CEBİR İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere Şeklindeki açık önermelere, ikinci dereceden bir bilinmeyenli

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

Cebirsel ifadeler. a) 4x = b) y = c) 5a = 2x ile x x ile 4x a ile 5ab 2x y ile yx. 3a b ile a b 4 ile 7 5 ile x x ile -3x.

Cebirsel ifadeler. a) 4x = b) y = c) 5a = 2x ile x x ile 4x a ile 5ab 2x y ile yx. 3a b ile a b 4 ile 7 5 ile x x ile -3x. Cebirsel ifadeler Bir veya birden fazla bilinmeyen(harf) bulunduran matematiksel ifadelere cebirsel ifadeler denir. -( +.5) ifadesi cebirsel ifade değildir. x + y -5 ifadesi cebirsel ifadedir. Aşağıdaki

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

5. P(x). Q(x) polinomunun derecesi 9, P(x) Q(x) 7. P(x) = (3m 1)x 3 4x 2 (n + 1) x+ k ve. Q(x) = 17x 3

5. P(x). Q(x) polinomunun derecesi 9, P(x) Q(x) 7. P(x) = (3m 1)x 3 4x 2 (n + 1) x+ k ve. Q(x) = 17x 3 , 006 MC Cebir Notları Gökhan DEMĐR, gdemir@yahoo.com.tr Polinomlar TEST I 1. Aşağıdakilerden hangisi bir polinomdur? A) = 4 x5 4x 4 5 + 7 x 4 5.. polinomunun derecesi 9, polinomunun derecesi 5 olduğuna

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA İÇİNDEKİLER Matematiğe Giriş... Temel Kavramlar... Bölme - Bölünebilme Kuralları... 85 EBOB - EKOK... Rasyonel Sayılar... Basit Eşitsizlikler... 65 Mutlak

Detaylı

TEMEL KAVRAMLAR A: SAYI Sayıları ifade etmeye yarayan sembollere rakam denir. Ör: 0,1,2,3,4,5,6 Rakamların çokluk belirtecek şekilde bir araya getirilmesiyle oluşturulan ifadeler ifadesine sayı denir.

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 1. ve y aralarında asal iki doğal sayıdır. 7 y 11 olduğuna göre, y farkı 5. 364 sayısının en büyük asal böleni A) 3 B) 7 C) 11 D) 13 E) 17 A) B) 3 C) 4

Detaylı

ÜSLÜ SAYILAR. AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama

ÜSLÜ SAYILAR. AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama KURAL: Bir sayının belli bir sayıda yan yana çarpımının kolay yoldan gösterimine üslü sayılar denir. Örneğin 5 sayısının

Detaylı

8.Sınıf MATEMATİK. Çarpanlar ve Katlar Konu Testi. Test sayısının tek bölenlerinin sayısı aşağıdakilerden

8.Sınıf MATEMATİK. Çarpanlar ve Katlar Konu Testi. Test sayısının tek bölenlerinin sayısı aşağıdakilerden Çarpanlar ve Katlar Konu Testi MATEMATİK 8.Sınıf Test-01 1. I. 1, her sayının bölenidir. II. 2, asal bir çarpandır. III. Her sayı kendisinin bir çarpanıdır. IV. Bir sayının çarpanları, aynı zamanda o sayının

Detaylı

SAYILAR VE TEMEL KAVRAMLAR

SAYILAR VE TEMEL KAVRAMLAR Sayıları göstermeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,,5,6,7,8 ve 9 dur. N = {0,1,2,3,, n, n + 1, } kümesinin elemanlarına doğal sayı denir. En küçük doğal sayı 0 dır. N + = {1,2,3,, n,

Detaylı

ÇARPANLARA AYIRMA ÇÖZÜMLÜ TEST 2

ÇARPANLARA AYIRMA ÇÖZÜMLÜ TEST 2 ÇARPANLARA AYIRMA ÇÖZÜMLÜ TEST 1) 4y x xy 4 4y x xy 4 ifadesinin en sade biçimi aşağıdakilerden hangisidir? 4 x 4 x x A) B) C) 4 x 4 x 4 x x x 1 D) E) 4 x x 1 1) İkili ikili gruplayarak ortak paranteze

Detaylı

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde ezberbozan serisi MATEMATİK GEOMETRİ KPSS 2017 SORU BANKASI eğitimde tamamı çözümlü 30. Kerem Köker Kenan Osmanoğlu Levent Şahin Uğur Özçelik Ahmet Tümer Yılmaz Ceylan KOMİSYON KPSS EZBERBOZAN MATEMATİK

Detaylı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

KPSS soruda SORU GENEL YETENEK - GENEL KÜLTÜR MATEMATİK GEOMETRİ TAMAMI ÇÖZÜMLÜ SORU BANKASI

KPSS soruda SORU GENEL YETENEK - GENEL KÜLTÜR MATEMATİK GEOMETRİ TAMAMI ÇÖZÜMLÜ SORU BANKASI KPSS 019 10 soruda 86 SORU GENEL YETENEK - GENEL KÜLTÜR MATEMATİK GEOMETRİ TAMAMI ÇÖZÜMLÜ SORU BANKASI Komisyon KPSS LİSANS MATEMATİK - GEOMETRİ SORU BANKASI ISBN 978-605-41-77-0 Kitapta yer alan bölümlerin

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

ünite12 POLİNOMLAR Polinomlar

ünite12 POLİNOMLAR Polinomlar ünite1 POOM = 1 Polinomlar 0 1 1. şağıdakilerden hangileri bir polinom değildir?. x 4 + 3. x 3 3x 5 +. x 6 1 V. x 4 1 + V. 5x 1 8 POOM POOM 5. P(x) = (a )x + (b + 3)x + ab 1 polinomu sabit bir polinom

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

ÜNİVERSİTEYE HAZIRLIK 10. SINIF OKULA YARDIMCI KONU ANLATIMLI SORU BANKASI

ÜNİVERSİTEYE HAZIRLIK 10. SINIF OKULA YARDIMCI KONU ANLATIMLI SORU BANKASI ÜNİVERSİTEYE HAZIRLIK 0. SINIF OKULA YARDIMCI KONU ANLATIMLI SORU BANKASI POLİNOMLAR ÇARPANLARA AYIRMA İKİNCİ DERECEDEN DENKLEMLER V ÜNİVERSİTEYE HAZIRLIK 0. SINIF OKULA YARDIMCI KONU ANLATIMLI SORU BANKASI

Detaylı

TAM SAYILARLA TOPLAMA ÇIKARMA

TAM SAYILARLA TOPLAMA ÇIKARMA 7. Kazanım Tam sayılarla toplama çıkarma işlemlerini yapar. SINIF MATEMATİK tam SAYILAR TAM SAYILARLA TOPLAMA ÇIKARMA ( + 6) + ( + ) ( + 8) ( ) + ( ) ( 9) 8 Aynı işaretli sayılarda toplama yapılırken,

Detaylı

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme kpss 04 akıcı ayrıntılı güncel konu anlatımları örnekler yorumlar uyarılar pratik bilgiler ösym tarzında özgün sorular ve açıklamaları matematik sayısal akıl yürütme mantıksal akıl yürütme 0 kpss de 85

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur.

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur. FAKTÖRİYEL TANIM Pozitif ilk n tam sayının çarpımı 1.2.3 n = n! biçiminde gösterilir. n Faktöriyel okunur. 1!=1 2!=1.2=2 3!=1.2.3=6 4!=1.2.3.4=24 5!=1.2.3.4.5=120 gibi. Özel olarak; 0! = 1 olarak tanımlanmıştır.

Detaylı

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu 016-017 Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları 1) 3. [15 3(8: )] 9 =? a) 16 b) 14 c) 0 d) 14 e) 16 6)

Detaylı