Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü"

Transkript

1 Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1

2 GİRİŞ Olasılık Teorisi: Matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır ve rastgele değişkenleri inceler. Rastgele Değişken: Gelecekteki bir gözlemde alacağı değer önceden kesinlikle bilinemeyen bir değişkendir. Örneğin: Bir zar atışında gelecek sayının önceden bilinememesi Herhangi bir gün gözlenecek yağış yüksekliği Makine elemanının hasara uğrama zamanı vb. Belirsizliğin Kaynağı: Daha önceden tahmin edilemeyen çok sayıda etkene bağlı olunması Doğal olaylardaki mevcut değişkenliklerin olması Bu tür olaylarda değişkenler deterministik bir yaklaşımla incelenemez Değişkenin alacağı değeri önceden kesinlikle belirleyen yasalar elde edilemez. Bunun yerine probabilistik (olasılığa dayalı) yaklaşım gerekir. 2

3 GİRİŞ Belirsizliklerden hareketle elde edilen verilerden bazı sonuçlar çıkarmak ve tahmin yapabilmek istatistiğin konusudur. Bugün hava muhtemelen yağışlı ve biraz soğuk olacak, bu dersten büyük bir ihtimalle geçerim, bu ameliyatın başarı düzeyi %95 dir,... vb gibi olmak üzere günlük hayatta olasılık kavramı sık sık gündeme gelir. Aslında bu ifadeleri kullanan kişi, daha önceki bilgi ve deneyimleri vasıtasıyla bu sonuçlara varmaktadır. Elde edilen sonuçlar kesin olmamakla birlikte belirli bir güven (doğruluk payı) taşımaktadır. 3

4 Rastgele Olay Rastgele Olay Rastgele değişkenin alacağı değer kesin olarak belirlenemeyeceğinden ancak değişkenin belirli bir değeri alma ihtimali belirlenebilir. Bir rastgele değişkenin bir gözlem sırasında belli bir değeri almasına rastgele olay denir. Hangi rastgele olayın görüleceği önceden kesinlikle bilinememekle birlikte herhangi bir rastgele olayın görülme ihtimalini belirlemek mümkündür. Örneğin: Bir zar atışında seçilen bir sayının (tabii 1 ile 6 arasında) görülmesi bir rastgele olay olup bunun ihtimali hesaplanabilir. 4

5 Örnek uzayı ve Küme kavramı Örnek Uzayı: İlgilenen rastgele olayın alabileceği tüm değerleri içeren uzaydır. Örneğin: Bir zar atışında gelebilecek sayıların tümü Bir deneyde gözlemlenecek değerlerin tümü Olasılık teorisinde küme teorisi, rastgele olayların tanımlanması kolaylaştıran bir yaklaşımdır. Küme kesin olarak tanımlanmış elemanlardan oluşur. Kümenin adı büyük harfle, elemanları bu harfe karşılık gelen küçük harf ile gösterilir. Örneğin: Türkçedeki sesli harfler kümesi Zar atışında görülecek sayıların kümesi 5

6 Küme kavramı Bir elemanın bir kümeye ait olduğu şeklinde gösterilir. Bir elemanın bir kümeye ait olmadığı şeklinde gösterilir. Hiçbir elemanı bulunmayan bir küme boş küme olarak adlandırılır. Bir kümenin bütün elemanları diğer bir kümenin de elemanları ise ilk küme ikinci kümenin alt kümesidir. Örnek: Herhangi iki küme A ve B için, A nın tüm elemanları B kümesinde ise: A B nin alt kümesi veya B A yı kapsar denir. 6

7 Venn Diyagramı Bir küme ile alt kümeleri arasındaki ilişkileri grafiksel gösterim kullanarak kolayca tanımlamak için kullanılır. 7

8 Venn Diyagramı Bir A kümesi ile B kümesinin ortak elemanları yok ise yani: birbirinden tamamen farklı birbirini engelleyen olaylar (mutually exclusive) olarak adlandırılır. 8

9 Olasılık Kavramı Bir deneme farklı N sonucu ortaya koyuyor ve bunlardan n tanesinde A olayı meydan geliyorsa, A olayının ortaya çıkma olasılığı, Rastgele değişkeni büyük harfle (X), rastgele değişkenin bir gözlem sırasında aldığı değeri bu harfe karşılık gelen küçük harfle (x) ile gösterirsek X=x i rastgele olayın olasılığı: 9

10 Olasılık Aksiyomları Aksiyom 1: Herhangi bir E rastgele olayının ihtimali 0 P(E) 1 P(E): E rastgele olayının ihtimalini gösterir. Aksiyom 2: Eğer örnek uzayı S ise P(S)=1 yani örnek uzayındaki olayların olasılıklarının toplamı 1 e eşittir. Aksiyom 3: Eğer birbirlerini engelleyen E 1, E 2, E 3,.En (mutually exclusive) olaylar ise Bu aksiyomdan hareketle aşağıdaki özellikler belirlenebilir 10

11 Olasılık Aksiyomları Örnek 1: Tüm Amerikan erkeklerinin %28 i sigara, %7 si puro ve %5 i hem puro hem de sigara içmektedir. Bu erkeklerin yüzde kaçı ne sigara ne de puro içmektedir? 11

12 Farklı-Bağımsız Olaylar İstatistikte olayların bağımsızlığı, bir olay hakkındaki bilgi başka bir olaya bağlı değilse bu olay istatistiksel olarak bağımsızdır (independent events). Karşılıklı olarak birbirini engelleyen olaylar (mutually exculsive events) ise bir olayın olması durumunda diğer başka bir olayın gerçekleşme ihtimalinin sıfır olmasıdır. Bağımsız olaylar asla birbirlerini engelleyen olaylar (mutually exculsive events) olmazlar. Örneğin: 52 lik bir desteden çekilen bir kağıdın kalp olması ve sinek olması farklı olaylardır, zira sinek çekilmiş ise bunun kalp olma ihtimali yoktur. Fakat çekilen kartın kalp olması ve kırmız olması birbirlerini engelleyen olaylar değildir zira bu iki durumun aynı anda olma ihtimali vardır. 12

13 Olasılık Hesaplamaları Örnek 2: Bir torbada 5 kırmızı, 7 siyah ve 3 beyaz bilye bulunmaktadır. Bu torbadan rastgele çekilecek bir bilyenin kırmızı gelme olasılığı nedir? Örnek çözüm 2: 13

14 Olasılık Hesaplamaları Örnek 3: Bir önceki örnekteki bilgileri kullanarak; a) Herhangi bir renkte bilye gelme olasılığını hesaplayınız. b) Mavi renkte bilye gelme olasılığını hesaplayınız. c) Siyah renkte bilye gelme olasılığını hesaplayınız 14

15 Olasılık Hesaplamaları Örnek Çözüm 3: 15

16 Olasılık Kuralları Olasılık olayları: birbirini tamamıyla engelleyen birlikte meydana gelebilen olaylar olmak üzere iki gruba ayrılmaktadır. Ayrımın özelliğine göre kullanılacak olasılık kuralları da farklı olmaktadır. TOPLAMA KURALI Karşılıklı olarak birbirini engelleyen olaylardan (mutually exclusive) birinin veya diğerinin ortaya çıkma olasılığı, bu olayların ayrı ayrı ortaya çıkma olasılıkları toplamına eşittir. A ve B gibi birbirini engelleyen (ayrık) iki olaydan herhangi birisinin meydana gelme olasılığı: zira 16

17 Olasılık Kuralları Örnek 3: Kusursuz bir tavla zarı atıldığında 2 veya 3 gelmesi olasılığı nedir? Örnek 3 Çözüm: Bu olay birbirini engelleyen özellikte olup, herhangi bir anda sadece tek yüz ile karşılaşılacağından toplama kuralı kullanılmalıdır. 17

18 Olasılık Kuralları ÇARPMA KURALI Birbirinden bağımsız ve aynı zamanda meydana gelebilen olayların olasılığı, bu olayların ayrı ayrı ortaya çıkma olasılıkları çarpımına eşittir. Örnek 4: Kusursuz bir tavla zarı ve madeni para birlikte atıldığında, paranın yazı ve zarın 5 gelmesi olasılığı nedir? Örnek 4 Çözüm: Bu olaylar birlikte meydana gelebilen özellikte olup, birbirini engellemez. Bu nedenle çarpma kuralı kullanılmalıdır. 18

19 Olasılık Kuralları Bazı olaylarda ise hem birlikte ortaya çıkma ve hem de birbirlerini engelleme söz konusu olabilir. Bu gibi olaylarda çarpma ve toplama kuralı birlikte kullanılır. Çarpma ve toplama kuralının birlikte kullanıldığı olay sayısı 2 ise (A ve B) formül Olay sayısı 3 (A,B ve C) olduğunda 19

20 Olasılık Kuralları Örnek 5: Bir torbada 1 den 5 e kadar numaralanmış 5 beyaz, 6 dan 12 ye kadar numaralanmış 7 tane siyah bilye vardır. Bu torbadan yapılacak bir çekilişte çıkacak bilyenin beyaz veya tek numaralı olması olasılığını hesaplayınız. 20

21 Olasılık Kuralları Örnek 5 Çözüm B : beyaz bilye T : tek sayılı bilye olmak üzere olayı Venn diyagramında gösterelim. iki olayın elemanlarından bazıları birbirlerini engelleyen özellikte iken bazıları da birlikte ortaya çıkma özelliğindedir. Sözgelimi, çift sayılı beyaz bir bilyenin gelmesi halinde tek sayılı beyaz bir bilye gelemez, oysa hem beyaz, hem de tek sayılı gelince iki olay birlikte ortaya çıkmış olmaktadır. Buna göre beyaz veya tek sayılı bilye gelme olasılığı 21

22 Koşullu Olasılık Bir olayın ortaya çıkma olasılığı, daha önce ortaya çıkan başka bir olaya göre değişiyorsa sözü edilen olaylar arasında bağımlılık vardır ve koşullu olasılık kuralı uygulanır. A olayının meydana gelmesi koşulu ile B olayının ortaya çıkma olasılığı P(B/A) şeklinde gösterilir ve aşağıdaki formül yardımıyla hesaplanır. 22

23 Koşullu Olasılık Örnek 6: 100 kişilik bir öğrenci grubunun 30 u kız ve 70 i erkek ve yine bu 100 kişinin yarısı 20 yaşında diğer yarısı da 21 yaşındadır. Seçtiğimiz öğrenci kız ise 20 yaşında olması ihtimali nedir? 20 yaşında ise erkek olması ihtimali nedir? 20 yaş 21 yaş Toplam Kız Erkek Toplam

24 Koşullu Olasılık Örnek 7: Bir sınıftaki öğrencilerin %80 inin erkek olduğu biliniyor. Başarı oranı erkeklerde %60 ve kızlarda ise %70 dir. Şansa bağlı çekilen bir öğrencinin başarılı olduğu bilindiğine göre kız olma ihtimali nedir? 24

25 Koşullu Olasılık Bayes Teoremi Bayes teoremi şartlı ihtimallerin hesaplanmasında kullanılan bir tekniktir. Kuralın amacı bir olayın ortaya çıkmasında birden fazla bağımsız nedenin etkili olması halinde bu nedenlerden herhangi birinin, o olayı yaratmış olması ihtimalini hesaplayabilmektir. ve Denklemlerinden yola çıkarak P(A).P(B A)=P(B).P(A B) şeklinde eşitlik elde edebiliriz. P A B P( A) P( B P( B) A) şekline çevirebiliriz 25

26 Koşullu Olasılık Eğer B yi etkileyen n sayıda birbirini engelleyen olayın veya nedenin (A 1, A 2, A 3,.A n ) bulunduğunu varsayarsak, Bayes kuralına göre B olayının A i nedeninden kaynaklanmış olması ihtimali P A i B P( A i P( A ) P( B i A ) P( B i ) A i ) ile belirlenir. P(B) Formülde P(A i ) ile A i olayının ihtimali, P(B A i ) ile A i olayının ortaya çıkmış olması halinde B nin ihtimali gösterilmektedir. 26

27 Koşullu Olasılık Örnek 8: Bir ev aletleri üreticisi firmanın A1, A2, A3 ve A4 olmak üzere 4 fabrikası bulunmakta ve toplam üretimin %15 i A1, %25 i A2, %20 si A3 ve %40 ı A4 fabrikasında gerçekleştirilmektedir. B ile kusurlu bir aletin bayi tarafından iade edilmesi olayı belirtilirse, P(B A1)=0.03 ile A1 fabrikasının, P(B A2)=0.02 ile A2 fabrikasının, P(B A3)=0.01 ile A3 fabrikasının ve P(B A4)=0.05 ile A4 fabrikasının kusurlu oranları ifade edilebilir. Bu duruma göre iade edilen bir aletin A3 fabrikasında üretilmiş olma ihtimali nedir? 27

28 Koşullu Olasılık Örnek 9: Bir bölgede seçmenlerin %40 ı A partisine %60 ise B partisine oy vermişlerdir. Bir kamuoyu yoklamasında A partisine oy verenlerin %30 ile B partisine oy verenlerin %70 i Avrupa Birliğine girmeyi desteklemektedirler. Bu bölgeden rastgele seçilen birinin Avrupa Birliğini desteklediği bilindiğine göre B partisinde olma ihtimali nedir? 28

29 Koşullu Olasılık Örnek 10: Elektrik ampulü üreten bir fabrikanın üretiminin %20 si A tipi, %80 ide B tipi ampullerden oluşmaktadır. Hatalı üretim oranı A tipi ampullerde %36, B tipi ampullerde ise %18 dir. Rasgele seçilen bir ampulün hatalı olduğu bilindiğine göre bu ampulün A tipi olma olasılığı nedir? 29

30 Koşullu Olasılık Örnek çözüm 10: 30

31 Permütasyon ve Kombinasyon Olasılık hesaplarının yapılmasında en önemli husus, olayın meydana gelebileceği yolların sayısı (N) ile istenen olayın meydana gelebileceği yolların sayısını (n) belirlemektir. Bu iki sayı belirlendikten sonra olasılık formülleri vasıtasıyla hesaplama kolayca yapılabilir. Olayların meydana gelebileceği sayısı belirlenirken permütasyon ve kombinasyon işlemleri uygulanabilir 31

32 Permütasyon (Dizilem) İncelenen n bireyden her defasında r adedi alınarak, sıra gözetilmek kaydıyla, kaç farklı dizi oluşturulabileceği şeklindeki permütasyon formülü ile hesaplanır. 32

33 Permütasyon (Dizilem) Örnek 11: 20 kişilik genel kurul toplantısında başkan, başkan yardımcısı ve sekreter olmak üzere 3 kişilik idare heyeti seçilecektir. Buna göre, A) İdare heyeti için kaç farklı heyet oluşturulabilir? B) Bilinen 3 kişiden A nın başkan, B nin başkan yardımcısı ve C nin de sekreter seçilmesi olasılığı nedir? 33

34 Permütasyon (Dizilem) Örnek çözüm 11: 3 pozisyon için yapılacak seçimde sıra gözetileceğinden (yani oluşturulan bir ABC heyetinde A başkan, B yardımcı, C sekreter iken, BAC heyetinde B başkan, A yardımcı ve C sekreterdir) permutasyon formülü kullanılır. 34

35 Kombinasyon (Bileşim) İncelenen n bireyden her defasında r adedi alınmak ve sıra gözetilmemek kaydıyla oluşturulabilecek kombinasyon sayısı Permutasyonlarda değişik sıra değişik hal olarak sayılmakta idi ve örneğin abc harflerinden ikisini kullanarak meydana getirebileceğimiz permutasyonlar 3! (3 2)! tane idi. Değişik sıra değişik hal sayılmadığı, yani ba ve ab arasında fark gözetilmediği hallerde abc arasından seçeceğimiz iki harfi sadece ab, bc ve ca olarak sadece 3 şekilde yerleştirebiliriz. 35

36 Kombinasyon Örnek 12: 10 profesörün bulunduğu bir gruptan seçilecek 3 kişilik jürinin istenen şahıslardan meydana gelme olasılığı nedir? 36

37 Kombinasyon Örnek çözüm 12: 37

38 Kombinasyon Örnek 13: 7 kadın ve 5 erkek arasından 3 kadın ve 2 erkek seçilerek kaç grup meydana getirebilir? 38

39 Kombinasyon Aynı özellikte r1,r2, r3 bireyden oluşan n objenin meydana getireceği kombinasyon sayısı olarak ifade edilen multinom katsayısı ile hesaplanır. Örnek 14: 4 tarih, 3 felsefe ve 3 matematik kitabı olmak üzere toplam 10 kitap rafta kaç değişik şekilde sıralanabilir? 39

40 Kombinasyon Örnek çözüm 14: 40

41 Biraz Kafa Yoralım Soru: 30 kişilik bir sınıfta en az iki kişinin doğum gününün aynı olma olasılığı nedir??? 41

42 3-Merkezi Eğilim ve Dağılma Ölçüleri Kaynaklar 1- İstatistik ve Olasılık Ders Notları-Prof. Dr. İrfan KAYMAZ 2-İstatistiğe Giriş- Prof. Dr. Necati YILDIZ 3- İstatistik Analiz Metotları- Prof. Dr. Bilge ALOBA KÖKSAL 4- Mühendisler için İstatistik- Prof. Dr. Mehmetçik BAYAZIT

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 4: OLASILIK TEORİSİ Giriş Bu bölüm sonunda öğreneceğiniz konular: Rastgele Olay Örnek Uzayı Olasılık Aksiyomları Bağımsız ve Ayrık Olaylar Olasılık Kuralları Koşullu Olasılık

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 4: OLASILIK TEORİSİ Prof. Dr. İrfan KAYMAZ Giriş Bu bölüm sonunda öğreneceğiniz konular: Rastgele Olay Örnek Uzayı Olasılık Aksiyomları Bağımsız ve Ayrık Olaylar Olasılık Kuralları

Detaylı

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü Olasılık Kavramı Mühendislikte İstatistik Metotlar Çukurova Üniversitesi İnşaat Mühendisliği ölümü OLSILIK KVRMI KÜME KVRMI irlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler.

Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler. Bölüm 2 OLASILIK TEORİSİ Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler. Rasgele değişken, gelecekteki bir gözlemde alacağı

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU 1-Açıklayıcı (Betimleyici) İstatistik İnceleme sonucu elde edilen ham verilerin istatistiksel

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2 Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S

Detaylı

OLASILIK. P(A) = şeklinde ifade edilir.

OLASILIK. P(A) = şeklinde ifade edilir. OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya

Detaylı

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız.

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız. OLASILIK (İHTİMALLER HESABI) Olasılık kavram ı ilk önceleri şans oyunları ile başlamıştır. Örneğin bir oyunda kazanıp kazanmama, bir paranın atılmasıyla tura gelip gelmemesi gibi. Bu gün bu kavramın birçok

Detaylı

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir.

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir. BÖLÜM 1 KÜMELER CEBİRİ Küme, iyi tanımlanmış ve farklı olan nesneler topluluğudur. Yani küme, belli bir kurala göre verilmiş nesnelerin listesidir. Nesneler reel veya kavramsal olabilir. Kümede bulunan

Detaylı

Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı

Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı LYS Matematik Olasılık Tanım: Bir deneyde çıkabilecek tüm sonuçların kümesine örnek uzay denir ve E ile gösterilir. Örnek uzayın herhangi bir elemanına da örnek nokta denir. Örnek: Bir zarın atılması deneyinde

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür.

Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür. 1 Olasılık Örnekler 1. Bir çantada 4 beyaz 8 siyah top vardır. Bir siyah top çekilmesi olasılığı nedir? Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür. 2.

Detaylı

OLASILIK LASILIK ve İSTATİSTİK Olasılık

OLASILIK LASILIK ve İSTATİSTİK Olasılık 1-1 Click To Edit Master Title Style OLASILIK ve İSTATİSTİK Olasılık Yrd.Doç.Dr Doç.Dr.. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü 1-2 GİRİŞ Olasılık,

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir.

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

SAÜ BÖLÜM 11. OLASILIK. Prof. Dr. Mustafa AKAL

SAÜ BÖLÜM 11. OLASILIK. Prof. Dr. Mustafa AKAL SAÜ BÖLÜM. OLASILIK Prof. Dr. Mustafa AKAL 0 İÇİNDEKİLER.KAVRAMLAR.. Rassal Deney, Örneklem Uzayı ve Olay.. Olayların Biçimlenmesi.3. Olasılık Tanımı.PERMÜTASYON VE KOMBİNASYON..Permütasyon... Sıralı Permütasyon...

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir?

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 9. 4 çocuklu bir aile yan yana poz verecektir. Çocukların soldan sağa doğru boy sırasında olduğu kaç durum

Detaylı

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,,

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,, BİNOM AÇILIMI Binom Açılımı n doğal sayı olmak üzere, (x+y) n ifadesinin açılımını pascal üçgeni yardımıyla öğrenmiştik. Pascal üçgenindeki katsayılar; (x+y) n ifadesi 1. Sütun: (x+y) n açılımındaki katsayılar

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan Oktay İÇİNDEKİLER HEDEFLER İHTİMAL TEORİSİ

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan Oktay İÇİNDEKİLER HEDEFLER İHTİMAL TEORİSİ HEDEFLER İÇİNDEKİLER İHTİMAL TEORİSİ Temel Kavramlar Toplama Kuralı Çarpma Kuralı İhtimal Dağılım Tablosu Beklenen Değer İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan Oktay Bu üniteyi çalıştıktan sonra; İhtimal (olasılık)

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir?

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir? İSTATİSTİK SORU VE CEVAPLARI 1)Tabloda 500 kişinin sahip oldukları akıllı telefon markalarını gösteren bilgiler verilmiştir.bu tabloda ki bilgileri yansıtan daire grafiği aşağıdakilerden hangisidir? TELEFON

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

OLASILIK. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

OLASILIK.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) OLASILIK 46 0 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları Ocak 20 0. Teorik Olasılık 0.. Deney ve Çıktı 4. Bir zar ile

Detaylı

OLASILIK (İHTİMAL) TEORİSİ. DENEY (experiment),sonuç (outcome), OLAY (event) DENEY:Bir aktivitenin gözlemlenmesi ve ölçüm yapma şekilleridir.

OLASILIK (İHTİMAL) TEORİSİ. DENEY (experiment),sonuç (outcome), OLAY (event) DENEY:Bir aktivitenin gözlemlenmesi ve ölçüm yapma şekilleridir. OLASILIK (İHTİMAL) TEORİSİ 1 DENEY (experiment),sonuç (outcome), OLAY (event) DENEY:Bir aktivitenin gözlemlenmesi ve ölçüm yapma şekilleridir. SONUÇ:Deneylerin tamamlanması ile elde edilen verilerdir.

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

BİYOİSTATİSTİK OLASILIK

BİYOİSTATİSTİK OLASILIK BİYOİSTATİSTİK OLASILIK B Doç. Dr. Mahmut AKBOLAT *Küme Kavramı: Küme, tek bir isim altında toplanabilen ve benzer özellik gösteren birimlerin meydana getirdiği topluluk olarak tanımlanabilir. Küme içinde

Detaylı

OLASILIK PROBLEMLERİ I (BAĞIMSIZ OLAYLAR, KOLMOGOROV BELİTLERİ VE KOŞULLU OLASILIK)

OLASILIK PROBLEMLERİ I (BAĞIMSIZ OLAYLAR, KOLMOGOROV BELİTLERİ VE KOŞULLU OLASILIK) İST65-0-02-OLASILIK I (BAĞIMSIZ OLAYLAR, KOLMOGOROV BELİTLERİ VE KOŞULLU OLASILIK). A ve B olayları ayrık olaylar ve olasılıkları sıfırdan farklı ise, bu olayların bağımlı olduklarını tanıtlayınız. A ve

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

Olasılık Kavramı. Mühendislikte İstatistik Yöntemler

Olasılık Kavramı. Mühendislikte İstatistik Yöntemler Olasılık Kavramı Mühendislikte İstatistik Yöntemler KÜME KAVRAMI Birlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere de eleman, öğe veya üye denir. Kümenin elemanlerı (öğeleri,

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

İstenen Durum Olasılık Tüm Durum 12

İstenen Durum Olasılık Tüm Durum 12 OLASILIK ÇIKMIŞ SORULAR 1.SORU İçinde top bulunan iki torbadan birincisinde beyaz, siyah ve ikincisinde beyaz, 5 siyah top vardır. Birinci torbadan bir top çekilip rengine bakılmadan ikinci torbaya atılıyor.

Detaylı

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK ve İSTATİSTİK ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT Permütasyon. Kazanım : Eşleme, toplama ve çarpma yoluyla sayma yöntemlerini açıklar. 2. Kazanım : n elemanlı

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER. ÜNİTE SAYMA Sıralama ve Seçme... 4 Toplama Yolu ile Sayma... 4 Çarpma Yolu ile Sayma... 4 Permütasyon (Sıralama)... 5 Konu Testleri - -... 9 Kombinasyon (Seçme)... 4 Konu Testleri

Detaylı

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm TEMEL SAYMA KLURALLARI AÇIK UÇLU SORULAR. A = {0,,, 3, 4, } kümesindeki rakamlar kullanılarak 3 basamaklı rakamları farklı kaç farklı tek sayı yazılabilir? 48. A = {0,,

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi Balıkesir Üniversitesi İnşaat

Detaylı

Toplam Olasılık Prensibi

Toplam Olasılık Prensibi 1 Toplam Olasılık Prensibi A 1, A 2,, A n karşılıklı kapsamayan ve birlikte tamamlayan olaylar kümesi olsun: A k A A j 0 = 0 k j j nn j j 1 = 1 B, S içinde herhangi bir olay ise k j AA j = ise S ise Pr[A

Detaylı

OLASILIK ve İSTATİSTİĞE GİRİŞ. Yrd. Doç. Dr. Hüsey n Dem r

OLASILIK ve İSTATİSTİĞE GİRİŞ. Yrd. Doç. Dr. Hüsey n Dem r OLASILIK ve İSTATİSTİĞE GİRİŞ Yrd. Doç. Dr. Hüsey n Dem r Yrd. Doç. Dr. Hüseyin Demir OLASILIK VE İSTATİSTİĞE GİRİŞ ISBN 978-605-318-470-6 DOI 10.14527/9786053184706 Kitap içeriğinin tüm sorumluluğu yazarlarına

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 10. Sınıf Matemat k Ders İşleme Defter OLASILIK Altın Kalem Yayınları KOŞULLU OLASILIK Bas t olayların olma olasılıklarını 9. sınıf matemat k konularında şlem şt k. Ş md yapacağımız se daha karmaşık olayların

Detaylı

OLASILIK (Probability)

OLASILIK (Probability) OLASILIK (Probability) Olasılık, bir olayın meydana gelme, ortaya çıkma şansını ifade eder ve P ile gösterilir. E i ile gösterilen bir basit olayın olasılığı P (E i ), A bileşik olayının olasılığıysa P

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

Şartlı Olasılık. Pr[A A ] Pr A A Pr[A ] Bir olayın (A 1 ) olma olsılığı, başka bir olayın (A 2 ) gerçekleştiğinin bilinmesine bağlıysa;

Şartlı Olasılık. Pr[A A ] Pr A A Pr[A ] Bir olayın (A 1 ) olma olsılığı, başka bir olayın (A 2 ) gerçekleştiğinin bilinmesine bağlıysa; Şartlı Olasılık Bir olayın (A ) olma olsılığı, başka bir olayın (A 2 ) gerçekleştiğinin bilinmesine bağlıysa; Pr[A A 2 Pr A A Pr A A = Pr[A A 2 2 2 Pr[A Pr[A 2 2 A A 2 S Pr[A A 2 A 2 verildiğinde (gerçekleştiğinde)

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

Olasılık: Klasik Yaklaşım

Olasılık: Klasik Yaklaşım Olasılık Teorisi Olasılık: Klasik Yaklaşım Olasılık Bir olayın meydana gelme şansına olasılık denir. Örnek Türkiye nin kazanma olasılığı Hava durumu Loto Olayların Olasılığını Belirleme Rastsal (gelişigüzel)

Detaylı

2. (x 1 + x 2 + x 3 + x 4 + x 5 ) 10 ifadesinin açılımında kaç terim vardır?

2. (x 1 + x 2 + x 3 + x 4 + x 5 ) 10 ifadesinin açılımında kaç terim vardır? Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız. Sınavın ilk 30 dakikasında sınıftan çıkılmayacaktır.

Detaylı

MOMENTLER, ÇARPIKLIK VE BASIKLIK. Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti:

MOMENTLER, ÇARPIKLIK VE BASIKLIK. Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti: MOMENTLER, ÇARPIKLIK VE BASIKLIK Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti: İşletme no 1 2 3 4 5 Arazi genişliği (da) 5 10 4 3 8 Aritmetik ortalamaya göre

Detaylı

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar OLASILIK OLASILIK İstatistiğin temel araçlarından biri olasılıktır 17. yy daşans oyunları ile başlamıştır Her bir denemenin çıktısı belirsizdir Fakat uzun dönemde çıktı kestirimlenebilir Bireysel belirsizlik

Detaylı

a. Aynı sırada çekilen herhangi iki kartın aynı d. 4. çekişte iki torbadan da 4 numaralı kartların e. 2. ve 4. çekişte aynı numaralı kartların

a. Aynı sırada çekilen herhangi iki kartın aynı d. 4. çekişte iki torbadan da 4 numaralı kartların e. 2. ve 4. çekişte aynı numaralı kartların Örnek Problem - Sinemada, yan yana koltukta oturan arkadaş, ara verildiğinde kalkıyorlar. Dönüşte, aynı koltuğa rastgele oturduklarına göre; hiçbirinin ilk yerine oturmaması olasılığı Örnek Problem - 4

Detaylı

Olasılığa Giriş Koşullu Olasılık Bayes Kuralı

Olasılığa Giriş Koşullu Olasılık Bayes Kuralı Olasılığa Giriş Koşullu Olasılık Bayes Kuralı Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Olasılığa Giriş Bundan önceki bölümlerde veri setini özetleyen,

Detaylı

Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir.

Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir. BÖLÜM 3. OLASILIK ve OLASILIK DAĞILIMLARI Rasgele Sonuçlu Deney: Sonuçlarının kümesi belli olan, ancak hangi sonucun ortaya çıkacağı önceden söylenemeyen bir işleme Rasgele Sonuçlu Deney veya kısaca Deney

Detaylı

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10.

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10. MAT-1 EK SORULAR-2 1. 6. A)7 B)8 C)15.D)56 E)64 Olduğuna göre x.a)1 B)2 C)3 D)4 E)6 7. 2. Birbirinden farklı x ve y gerçek A)5.B)6 C)7 D)8 E)9 sayıları için; x 2 +2009y=y 2 +2009x eşitliği sağlandığına

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Fonksiyonlar Yük. Müh. Köksal GÜNDOĞDU 2 Fonksiyonlar Tanım: A ve B boş olmayan kümeler. A dan B ye bir f fonksiyonu f: A B ile gösterilir ve A nın her

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak Akıl LYS MATEMATİK DENEME SINAVI 0505- Ortak Akıl Adem ÇİL Ali Can GÜLLÜ Ayhan YANAĞLIBAŞ Barbaros GÜR Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN

Detaylı

Rastgele değişken nedir?

Rastgele değişken nedir? Rastgele değişken nedir? Şİmdiye kadar hep, kümelerden ve bu kümelerin alt kümelerinden (yani olaylar)dan bahsettik Bu kümelerin elemanları sayısal olmak zorunda değildi. Örneğin, yazı tura, kız erkek

Detaylı

PERMÜTASYON DERS NOTLARI. Sayma Yöntemleri. TEMEL SAYMA KURALLARI Toplama yoluyla sayma. Çarpma yoluyla sayma

PERMÜTASYON DERS NOTLARI. Sayma Yöntemleri. TEMEL SAYMA KURALLARI Toplama yoluyla sayma. Çarpma yoluyla sayma TEMEL SAYMA KURALLARI Toplama yoluyla sayma A ve B ayrık iki küme olsun. Bu iki kümenin birleşimlerinin eleman sayısı, bu kümelerin eleman sayılarının toplamına eşittir. Bu sayma yöntemine toplama yoluyla

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI 14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI - 008 SORU -1 1 0.7 0.1 0.48 = 0.018 0.8 0. eşitliğini sağlayan sayısı kaçtır? [ 0.15] SORU - c d d c a b 4 c d b b a ifadesinin i i sayısal ldeğeri

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

5. BÖLÜM EKİ SAYMANIN TEMEL PRENSİPLERİ

5. BÖLÜM EKİ SAYMANIN TEMEL PRENSİPLERİ 5 ÖLÜM EKİ SYMNIN TEMEL PRENSİPLERİ elirli bir takım deneylerde olanaklı tüm sonuçları belirlemek için geliştirilmiş tekniklere kombinasyon analizi denir Örneğin iki farklı denemede 1 denemenin m 2 denemenin

Detaylı

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar,

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar, 1. 9 2 x 2 ifadesinin açılımında sabit x terim kaç olur? A) 672 B) 84 C) 1 D) -84.E) -672 6. Ali her gün cebinde kalan parasının %20 sini harcamaktadır. Pazartesi sabahı haftalığını alan Ali ni Salı günü

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi...

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi... İÇİNDEKİLER HARFLİ İFADELER Harfli İfadeler ve Elemanları... 1 Benzer Terim... Harfli İfadenin Terimlerini Toplayıp Çıkarma... Harfli İfadelerin Terimlerini Çarpma... Harfli İfadelerde Parantez Açma...

Detaylı

Normal Alt Gruplar ve Bölüm Grupları...37

Normal Alt Gruplar ve Bölüm Grupları...37 İÇİNDEKİLER Ön Söz...2 Gruplar...3 Alt Gruplar...9 Simetrik Gruplar...13 Devirli Alt Gruplar...23 Sol ve Sağ Yan Kümeler (Kosetler)...32 Normal Alt Gruplar ve Bölüm Grupları...37 Grup Homomorfizmaları...41

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

B İ L G İ Tanım: Rasyonel olmayan, yani a b şeklinde yazılamayan sayılara irrasyonel sayı denir. İrrasyonel sayılar kümesi I harfi ile gösterilir.. Aşağıdakilerden kaç tanesi irrasyonel sayıdır? 4. x 8

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

Olasılık (Probability) Teorisi

Olasılık (Probability) Teorisi Olasılık (Probability) Teorisi akin@comu.edu.tr http://akin.houseofpala.com Genetik Olasılık, genetik Genlerin gelecek generasyona geçmesinde olasılık hesapları kullanılır Akrabalık derecesinin hesaplanmasında,

Detaylı

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir.

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir. 3.5. Bazı Kesikli Dağılımlar 3.5.1. Bernoulli Dağılımı Bir deneyde başarı ve başarısızlık diye nitelendirilen iki sonuçla ilgilenildiğinde bu deneye (iki sonuçlu) Bernoulli deneyi ya da Bernoulli denemesi

Detaylı

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA - 4 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. 4? 4 4. A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? A) 6 B) 8 C) D)

Detaylı