AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI"

Transkript

1 ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm TEMEL SAYMA KLURALLARI AÇIK UÇLU SORULAR. A = {0,,, 3, 4, } kümesindeki rakamlar kullanılarak 3 basamaklı rakamları farklı kaç farklı tek sayı yazılabilir? 48. A = {0,, 3, 4,, 6} kümesinin elemanları kullanılarak 4 basamaklı rakamları farklı kaç farklı çift sayı yazılabilir? A kentinden B kentine 6 farklı yol B kentinden C kentine farklı. A = {, 4,, 6} kümesinin elemanları kullanılarak 40 den büyük rakamları farklı kaç farklı sayı yazılabilir? 40 yol vardır. B ye uğramak koşuluyla A dan C ye gidecek olan bir kişi kaç farklı yol kullanabilir? A = {0, 3,, 6, 8} kümesinin elemanları kullanılarak 3 basamaklı ile bölünebilen kaç farklı sayı yazılabilir? 7. A dan B ye 6 farklı yol, B den C ye farklı yol vardır. B ye uğramak koşuluyla A dan C ye gidip aynı şekilde B ye uğramak koşuluyla A ya geri dönecek bir kişinin kullanabileceği yolların sayısı kaçtır? sayısının rakamları kullanılarak beş basamaklı kaç farklı sayı yazılabilir? 8. 8 kişinin katıldığı sınav başarı yönünden kaç farklı şekilde sonuçlanabilir? 0 8 0

2 9. Birbirinden farklı 7 kitap bir raf üzerine yanyana kaç farklı şekilde sıralanabilir? 7! 0. 3 kız ve erkek öğrenci, kızlar ön sırada oturarak, erkekler arka sırada ayakta olmak üzere kaç farklı şekilde fotoğraf çektirebilirler?. Aralarında Yeşim ve Dila adlı öğrencilerin de bulunduğu 6 kişi birlikte yanyana fotoğraf çektireceklerdir. Yeşim ve Dila yanyana gelmek istemediklerine göre, kaç farklı şekilde fotoğraf çektirebilirler? kişilik bir grubun sınav sonucu kaç farklı şekilde sonuçlanabilir? (Not: Bir kişi için sınav sonucu kazandı ya da kazanamadı şeklindedir.) 3. A B C D İki yol A ve B şehirlerini bağlamakta, dört yol B ve C şehirlerini bağlamakta ve altı yol C ve D şehirlerini bağlamaktadır. A dan B ve C ye, sonra D şehrine gitmek için mümkün olan kaç farklı yol olduğunu bulunuz Madeni bir para atışı, bir yazı (Y) ya da bir tura (T) ile sonuçlanabilir. Bir zar atışı sonucunda ise,,3,4, ya da 6 rakamı ortaya çıkabilir. Bir madeni para 3 kez ve bir zarın ise kez atıldığı varsayılsın ve sonuç not edilsin. Kaç farklı sonucun ortaya çıkabileceğini belirleyiniz. 48. A B C D A şehri B şehrine yolla, B şehri C şehrine 4 yolla, C şehri D şehrine yolla bağlıdır. A dan hareket eden ve B ile C den geçip D ye giden biri, gittiği yolu dönüşte kullanmamak üzere A dan D ye kaç farklı şekilde gidip-dönebilir? ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm TEMEL SAYMA KLURALLARI

3 ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm TEMEL SAYMA KLURALLARI 6. Her biri seçenekli 6 çoktan seçmeli sorudan oluşan bir sınav kaç farklı şekilde cevaplanabilir? 7. Her biri 4 seçenekli çoktan seçmeli soru ve doğru - yanlış türünde 3 soru içeren bir sınav kaç farklı şekilde cevaplanabilir? 8. Yedi yarışmacının olduğu bir yarışmada birinci, ikinci ve üçüncüye kaç farklı şekilde jüri ödül verebilir? 0 9. Bir üretim sürecinde, bir ürün A, B ya da C makinelerinden birinde işlem görmekte ve sonra D ya da E bitiş makinesine girmektedir. Bu ürünün bir birimi için mümkün olan üretim yollarının sayısını bulunuz Bir üniversite, her bir öğrencinin en çok şikayetçi olduğu dört konuyu sıralamalarını gerektiren bir anket yapmaktadır. Maddeler aşağıdaki gibidir. Öğretim üyeleri Okul ücretleri Park ücretleri Sınıf büyüklükleri Kafeterya-yiyecek Yurt odaları Sıralama,, 3 ve 4 sayılarıyla gösterilecektir. en çok şikayetçi olunan konuyu ve 4 en az şikayetçi olunan konuyu gösteriyor. Bir öğrenci bu anketi kaç farklı şekilde cevaplandırabilir? 360. öğrencili bir matematik sınıfında öğretmen, 3 ve 6 ev ödevi problemlerini üç farklı öğrenciye vermek istiyor. Problemler 3 öğrenciye kaç farklı şekilde dağıtılabilir? 990. Bir ticari eşya kataloğunda bir kalemlik için siyah, kırmızı, gri ve beyaz renkler mevcuttur. Bir tanesinin siparişi için müşterilerin birinci ve ikinci renk seçimlerini göstermesi gerekmektedir. Bu seçme işlemi kaç farklı şekilde yapılabilir? 6

4 .. 3. ( n + )! = 70 ise, n kaçtır? ( n )! ( n+ )!( 3n 7)! = 0 $ ( n + ) ise, n kaçtır? ( n+ )!( 3n 8)! ( n+ )! + ( n!) = ise, n kaçtır? ( n+ )! + ( n+ )! 4. p(n, 3) + 3 p(n, ) + p(n, ) = 64 ise, n kaçtır? AÇIK UÇLU SORULAR kız, 3 erkek bir sıraya oturacaklardır. Erkekler yanyana olmayacak şekilde kaç farklı biçimde otururlar? 7. farklı mavi, 3 farklı kırmızı ve farklı beyaz boncuk bir ipe dizilecektir. Kırmızı boncuklar bir arada ve beyaz boncuklar bir arada olacak şekilde kaç farklı şekilde dizilirler? farklı fizik, 3 farklı matematik ve farklı türkçe kitabı bir rafa dizilecektir. Başta ve sonda bir türkçe kitabı olacak şekilde kaç farklı biçimde dizilir? kız ve 3 erkek yanyana oturacaklardır. İki uçta birer kız iki kız arasında da bir erkek olacak şekilde kaç farklı oturma düzeni vardır? ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm PERMÜTASYON. 7 kişi 3 kişilik bir yere üçer üçer kaç farklı biçimde oturabilir? soruluk bir testte her sorunun şıkkı vardır. Kaç farklı biçimde işaretleme yapılabilir?

5 ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm PERMÜTASYON. Anne, baba ve 3 çocuk bir bankta anne - baba yan yana gelmek koşuluyla kaç farklı biçimde otururlar?. 3 farklı mektup 6 farklı posta kutusuna kaç farklı biçimde atılabilir? 3. Bir düzlemde çakışık olmayan 0 nokta veriliyor. Başlangıç ve bitim noktaları bu 0 noktadan farklı iki tanesi olmak üzere en çok kaç farklı yönlü doğru parçası oluşur? 4. A = {,, 3, 4, } kümesinin üçlü permütasyonlarının kaç tanesinde 3 elemanı bulunur? A = {a, b, c, d, e, f} kümesinin elemanlarıyla yazılacak üç harfli harfleri tekrarsız kelimelerin kaç tanesinde en az bir ünlü harf vardır? 7. kız ve 4 erkek yanyana fotoğraf çektirmek istiyorlar. Kızlar birbirinden ayrılmamak şartıyla kaç değişik biçimde fotoğraf çektirebilirler? 96 (!) 8. Aralarında Ali ve Burçak'ın bulunduğu 7 kişilik bir grup aynı sıradaki 7 koltuğa oturacaklardır. Ali ve Burçak yanyana olmamak şartıyla kaç farklı oturma düzeni elde edebilir? Ahmet, Burak ve 4 bayan arkadaşı bir sırada yanyana oturmak istiyorlar. İki uçta erkekler oturmak şartıyla kaç farklı oturma düzeni elde edilir? 36. Dört evli çift bir sırada evli çiftler yan yana oturmak koşuluyla kaç farklı şekilde oturabilirler? 0. A = {,, 3, 4,, 6} kümesinin dörtlü permütasyonlarının kaç tanesinde 6 elemanı bulunur?

6 . farklı kalem, öğrenciye herbirine birer kalem verilecek şekilde dağıtılacaktır. Bu işlem kaç farklı şekilde yapılabilir? 0. a) 8 öğrenci yanyana sıralanmış 8 koltuğa kaç türlü oturabilir? b) Bir oturma durumundan başka bir oturma durumuna geçmek için dakika gerekiyor. Bu 8 öğrencinin tüm oturma durumlarını denemeleri için kaç gün gerekir? a) 4030 b) 8 3. Bir doğru üzerinde farklı yerlerde bulunan A, B, C noktalarının birbirine göre kaç farklı konumu vardır? 6. Bir ülkede birinci lig futbol karşılaşmaları 6 takım arasında yapılıyor. Karşılaşmalar sonunda takımlar ilk 3 dereceyi kaç değişik şekilde paylaşabilirler? Bir mağaza sahibi birbirinden farklı 7 gömlekten herhangi üçünü her gün değişik sırada olmak üzere yanyana vitrine koyuyor. Bu gömleklerin vitrinde gösterilmesi kaç gün sürer? 7. A = {a, b, c, d, e, f, g} kümesinin 4 lü permütasyonlarının kaç tanesinde e elemanı bulunur? ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm PERMÜTASYON 4. kız ve erkek bir törende milli oyunlar oynuyorlar. Bir kız bir erkek ile yalnız bir kez oynuyor. a) Kaç farklı çift oyun oynayabilir? b) Tüm kızlar ve erkekler oyuna katıldığında ikişerli kaç grup oluşur? 8. Herhangi bir bayrak direğine değişik sayıda ve değişik sırada asılan bayraklarla değişik işaretler verildiğini kabul edelim. Birbirinden farklı bayrakla kaç farklı işaret verilebilir? a) b)

7 AÇIK UÇLU SORULAR. 4 kız ve 3 erkek öğrenci arasından 3 kişi seçilecektir. En az kız olacak şekilde kaç farklı biçimde seçim yapılabilir?. Yarıçap uzunlukları farklı 0 çember en çok kaç noktada kesişebilir? L M N d K. 7 farklı noktadan 3 tanesi doğrusaldır. Bu noktalardan en fazla kaç farklı üçgen oluşturulur? A B C D E F d Şekildeki d ve d doğruları üzerinde bulunan 0 noktadan kaç farklı üçgen oluşturulabilir? tanesi sabit bir A noktasından geçen 9 doğru en çok kaç noktada kesişir? 7. 6 farklı elips en çok kaç noktada kesişir? 7 60 ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm 3 KOMBİNASYON 4. Herhangi üçü doğrusal olmayan 6 nokta en çok kaç doğru belirtir? 8. Bir çember ve bir konveks altıgenin kesişmesiyle oluşan noktalar birleştirildiğinde en çok kaç doğru oluşur? 66 6

8 ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm 3 KOMBİNASYON 9. Aralarında Onur ve Burçak'ın bulunduğu 0 kişilik bir grup eşit şekilde iki gruba ayrılıyor. Onur ve Burçak'ın aynı grupta olmadığı grupların sayısı kaçtır? doktor, 3 hemşire ve 4 hasta bakıcı arasından 3 kişi seçilecektir. Seçilenlerin sadece ikisinin aynı meslekten olmaları koşuluyla kaç değişik seçim yapılır?. 7 kişilik gruptan 3 kişi bir yuvarlak masaya kaç farklı şekilde oturabilir? 3. Farklı üçgen en çok kaç noktada kesişir? kişiden en az 4 kişilik olan kaç farklı ekip oluşturulabilir?. 3 seçenekli ve 4 soruluk bir mini sınavın ardışık iki sorusunun cevabı aynı seçenek değildir. Bu testin cevap anahtarı kaç farklı şekilde oluşturulabilir? Bir kutuda 8 sarı ve 6 kırmızı top vardır. Bu torbadan si sarı ve si kırmızı olan 4 top kaç farklı şekilde alınabilir? 6. Bir üniversitede 6 seçmeli dersin 3 ü aynı saatte veriliyor. 3 ders seçmek isteyen bir kişi kaç farklı seçim yapılabilir?

9 7. 0 soruluk bir matematik sınavında, bir öğrenci herhangi 7 soruyu cevaplamak zorundadır. Bu 7 soru kaç farklı şekilde seçilebilir? (Sıralamanın önemi yok.) 0 8. Bir finans danışmanı 6 hisse senedi ve bonodan oluşan bir portföy oluşturmak istiyor. Portföy için 0 hisse senedi ve 9 bono kabul edilebilir durumda ise portföy kaç farklı şekilde oluşturulabilir? Bir firmanın AR-GE (Araştırma - Geliştirme) birimi başkanı A, B, C gibi üç farklı projede çalışacak eşdeğer düzeyde araştırmacıya sahiptir. Başkan her projeye üç araştırmacıyı kaç farklı şekilde atayabilir? Bir otomobil servisinde görevli tamirci 8 servis çağrısına gitmek zorundadır. Planlamayı kaç farklı şekilde yapabilir? Bir turistik gezide, iki tramvay turistleri panoromik bir dağa çıkarmaktadır. Bir tramvay kişi, diğeri 7 kişi almaktadır. turistten si kaç farklı şekilde bu iki tramvay ile dağa çıkabilir? (Cevabınızı kombinasyon sembolü ile yazınız.) 0 f pf p 7 3. Dört öğrenci bir lokantaya gidiyor ve bir hamburger, bir tavuklu sandviç, bir balıklı sandviç ve bir biftek siparişi veriyor. (her bir öğrenci için bir tane) Garson yemeklerle geri döndüğünde hangi öğrencinin hangi siparişi verdiğini unutuyor ve her bir öğrenciye siparişleri rastgele veriyor. Garson bunu kaç farklı biçimde yapabilir? 4 ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm 3 KOMBİNASYON 0. Bir firmada görevli kalite kontrol mühendisi elbiselik bir üretim kısmından elbiselik bir örneklem seçmek zorundadır. Bu seçme işlemi kaç farklı şekilde yapılabilir? (Cevabınızı faktöriyelli işlem olarak yazınız.) 4. Bir kulübün 0 üyesi vardır. a) Hiç bir üye birden fazla ofiste görev yapamayacaksa, başkan, başkan yardımcısı, sekreter ve veznedar ofislere kaç farklı şekilde yerleştirilebilir? b) Başkan ve başkan yardımcısı farklı üyeler olmak zorunda ise dört ofise kaç farklı şekilde yerleştirme yapılabilir?! 40! $! a) 040, b)

10 . erkek, 0 kadından oluşan bir toplulukta 8 erkek, kadın İngilizce bilmektedir. Bu topluluktan seçilen bir kişinin kadın veya İngilizce bilmeyen biri olma olasılığı kaçtır? AÇIK UÇLU SORULAR 7. İki kutudan birincisinde den 9 a kadar numaralandırılmış 9 kart, ikincisinde den e kadar numaralandırılmış kart vardır. Rastgele seçilen bir kutudan bir kart çekiliyor. Çekilen kartın üzerindeki sayı çift ise bunun birinci kutudan çekilme olasılığı kaçtır? kişilik bir sınıfta, 0 kişi matematikten, kişi fizikten ve 6 kişi her iki dersten başarılıdır. Bu sınıftan seçilen bir öğrencinin matematikten başarılı veya fizikten başarısız olma olasılığı kaçtır? 4. Hilesiz iki zar atılıyor. Zarların birinin geldiği bilindiğine göre, toplamlarının asal sayı olma olasılığı kaçtır? 3. 8 çift eldivenin bulunduğu bir torbadan rastgele iki eldiven alınıyor. Bunlardan birinin sağ, diğerinin sol ve aynı çiftin eşi olmama olasılığı kaçtır? 6. {0,,, 3, 4, } kümesinin elemanları kullanılarak iki ve üç basamaklı, rakamları farklı sayılar kartlara yazılarak bir torbaya konuyor. Çekilen bir kartın iki basamaklı ve in katı olma olasılığı kaçtır? Hilesiz bir madeni para arka arkaya 7 kez atılıyor. En az 4 kez yazı gelme olasılığı kaçtır? 8. Hilesiz bir çift zar aynı anda atılıyor. Zarların üst yüzüne gelen sayılar toplamının olma olasılığı nedir? ÜNİTE OLASILIK Bölüm KOŞULLU OLASILIK 7 8 9

11 ÜNİTE OLASILIK Bölüm KOŞULLU OLASILIK 9. Madeni ve hileli bir para havaya atıldığında tura gelmesi olasılığının, yazı gelmesi olasılığına oranı 8 dir. Buna göre, yazı gelmesi olasılığı kaçtır? 0. {0,,, 3, 4,, 6} kümesinin elemanları ile rakamları farklı üç basamaklı sayılar kartlara yazılıp torbaya konuluyor. Çekilen bir kartın tek sayı olma olasılığı nedir?. Bir kutuda kırmızı, mavi ve yeşil kalem vardır. Bu kutudan kalem alınırsa en az üçünün mavi olma olasılığı nedir?. Bir laboratuvar deneyinin olası üç ayrık sonucu A, B ve C dir. Deney sonucunda A veya B olma olasılığı 3, B veya C olma olasılığı 4 3 olduğuna göre, B olma olasılığı kaçtır? Bir kutuda 6 sarı, 3 mavi ve beyaz bilyeden herhangi üçü rastgele alınıyor. Her birinin farklı renkte olma olasılığı kaçtır? 4. Hilesiz iki madeni para ile hilesiz iki zar aynı anda atılıyor. 4 8 Zarların üst yüzüne gelen sayılar toplamının asal sayı ve paraların tura gelme olasılığı nedir?. 7 pozitif ve negatif sayıdan rastgele 3 sayı seçiliyor. Bu 3 sayının çarpımının negatif sayı olma olasılığı nedir? Hilesiz farklı üç madeni para atılıyor. Üçünün de aynı gelmediği bilindiğine göre, ikisinin yazı, birinin tura gelme olasılığı nedir? 96

12 7. Hilesiz bir madeni para ard arda 3 kez atılıyor. İkinci atışın tura geldiği bilindiğine göre, birinci ve üçüncü atışın yazı gelme olasılığı nedir? 8. A torbasında sarı, lacivert, B torbasında 3 sarı, 4 lacivert bilye vardır. A torbasından bir bilye alınıp rengine bakılmadan B torbasına atılıyor. Bundan sonra, B den alınan bir bilyenin lacivert olma olasılığı nedir? Siyah torbada 3 siyah, beyaz; beyaz torbada 4 siyah, 3 beyaz bilye vardır. Rastgele seçilen bir torbadan, rastgele çekilen bir bilyenin torbayla aynı renkte olma olasılığı nedir? A, B, C, D, E noktaları bir çember üzerinde çakışık olmayan noktalardır. Köşeleri bu noktalar üzerinde olan üçgenlerden rastgele bir üçgen seçilirse bu üçgenin bir köşesinin E noktası olma olasılığı nedir?. 8 anahtarın bulunduğu bir anahtarlıkta, kapıyı açan 3 anahtar vardır. Hangi anahtarın kapıyı açacağı bilinmemekte ve denenen bir daha denenmemek şartıyla, kapının 4. denemede açılma olasılığı nedir?. Hilesiz bir çift zar birlikte atılıyor. Zarlardan birinin üst yüzüne gelen sayının 3 olduğu bilindiğine göre, üst yüze gelen sayılar toplamının 8 olma olasılığı nedir? 3. 7 evli çift arasından rastgele 3 kişi seçildiğinde ikisinin evli olma olasılığı nedir? 4. Ali'nin bir sınavı kazanma olasılığı 3, Ayşe'nin aynı sınavı kazanma olasılığı 7 4 ise ikisinin birlikte bu sınavı kazanma olasılığı nedir? ÜNİTE OLASILIK Bölüm KOŞULLU OLASILIK

13 ÜNİTE OLASILIK Bölüm KOŞULLU OLASILIK. Dört öğrenci isimlerini birer karta yazıp bir torbaya atıyorlar. Bu öğrenciler birer kart çektiğinde herkesin kendi ismini çekme olasılığı nedir? kişilik bir sınıfta kayak yapanların sayısı, buz pateni yapanların sayısı 4 ve her iki sporu yapanların sayısı 6 dır. Rastgele seçilen bir öğrencinin buz pateni yapmadığı bilindiğine göre, kayak da yapmayan bir öğrenci olma olasılığı nedir? 7. Hileli bir parada tura gelme olasılığı, yazı gelme olasılığının üç katıdır. Bu para üç kez atılırsa üçünün de tura gelme olasılığı nedir? Bir şirketin idari kısmında 4 kadın, 7 erkek üye görev yapmaktadır. Bu üyelerden şer kişilik yönetici kadrosu oluşturulacaktır. Bu kadroların birinde kadın ve 3 erkek bulunma olasılığı nedir? 9. Ali'nin bir sınavı kazanma olasılığı 3, Ayşe'nin aynı sınavı kazanma olasılığı 7 4 ise bunlardan yalnız birinin sınavı kazanma olasılığı nedir? 30. Bir torbada 3 tane kutu vardır. 0. kutuda 8 sağlam, 4 bozuk,. kutuda 8 sağlam, 7 bozuk, 3. kutuda 0 sağlam, 0 bozuk ampul vardır. Torbadan rastgele çekilen bir ampulün bozuk çıkma olasılığı nedir? A, B E ve P( A) =, P( B) = dur. 3 9 A ve B bağımsız olaylar olduğuna göre p(a B) olasılığını bulunuz. 3. A ve B, E örnek uzayında iki olay P(A) = x, P(B) = 3x ve P( A+ B) = ve A ve B bağımsız iki olay olduğuna göre P(A) 7 nedir?

14 33. A atıcısının hedefi vurma olasılığı 6 B atıcısının ise 3 tür. A ile B nin birlikte ateş etmesi durumunda hedefin en az bir kez isabet alma olasılığı nedir? A ve B, E örnek uzayında iki olay olsun. P(A) = x, P(B) = 3x ve P( A+ B) = dır. A ile B bağımsız olaylar ise P(A B) nedir? 6 3. A ve B, E örnek uzayında iki olaydır. P( Bl ) = ve P( A / B) = olduğuna göre P(A B) olasılığını 4 bulun. 36. Hilesiz iki zar aynı anda atılıyor. Zarların üst yüzüne gelen sayılar toplamının 6 olduğu bilindiğine göre zarlardan birinin gelme olasılığı nedir? Hilesiz bir madeni para 3 kez atılıyor. A olayı ilk atış yazı; B olayı ikinci atış yazı, C olayı ilk iki atış yazı olarak tanımlanıyor. a) A ve B bağımsız olaylar mıdır? b) B ve C bağımsız olaylar mıdır? 38. A ve B, E örnek uzayında iki olay olsun. a) Bağımsız, b) Bağımlı 3 P( A) = ve P( B) = ve P( A+ B) = olduğuna göre, aşağıdaki olasılıkları 0 0 hesaplayınız. a) P(A / B) b) P(B / A) c) P(Aʹ / B) d) P(A / Bʹ) e) P(Bʹ / Aʹ) f) P(Aʹ / Bʹ) 3 4 a) b) c) d) e) f) Bir fabrikada üretilen malları %60 ı A, %30 u B ve %0 u C makinesinde üretiliyor. Bu makinelerdeki bozuk üretim oranları sırasıyla %, %3 ve % dir. Bu fabrikada üretilen bir al rastgele alınmıştır ve bu mal bozuktur. Bu malın A makinesinde üretilmiş olma olasılığını bulunuz. ÜNİTE OLASILIK Bölüm KOŞULLU OLASILIK 6 99

15 3. fa p açılımında baştan 9. teriminin katsayısı kaçtır? a 6 6. cx m açılımında baştan 4. terimin katsayısı kaçtır? x (x - y) açılımında x 4 y 3 teriminin katsayısı kaçtır? 80 AÇIK UÇLU SORULAR n. f3a 4 p açılımında katsayılar toplamı 64 olduğuna göre a sabit terim kaçtır? 6. ca m a n açılımında. ve 9. terimlerin katsayıları eşit olduğuna göre, sabit terim kaçtır? f a p açılımında ortanca terimi bulunuz. a 3. 0 f p 3 a ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm 4 BİNOM AÇILIMI ( - ) açılımındaki rasyonel terimlerin toplamı kaçtır? 0 k 8. fa + 3 p açılımında sabit terim 0 olduğuna göre k nın a pozitif değeri kaçtır? 4 77

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir?

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 9. 4 çocuklu bir aile yan yana poz verecektir. Çocukların soldan sağa doğru boy sırasında olduğu kaç durum

Detaylı

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız.

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız. OLASILIK (İHTİMALLER HESABI) Olasılık kavram ı ilk önceleri şans oyunları ile başlamıştır. Örneğin bir oyunda kazanıp kazanmama, bir paranın atılmasıyla tura gelip gelmemesi gibi. Bu gün bu kavramın birçok

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

PERMÜTASYON DERS NOTLARI. Sayma Yöntemleri. TEMEL SAYMA KURALLARI Toplama yoluyla sayma. Çarpma yoluyla sayma

PERMÜTASYON DERS NOTLARI. Sayma Yöntemleri. TEMEL SAYMA KURALLARI Toplama yoluyla sayma. Çarpma yoluyla sayma TEMEL SAYMA KURALLARI Toplama yoluyla sayma A ve B ayrık iki küme olsun. Bu iki kümenin birleşimlerinin eleman sayısı, bu kümelerin eleman sayılarının toplamına eşittir. Bu sayma yöntemine toplama yoluyla

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

PERMÜTASYON DÜZEY: 1 TEST : P(6, n) = 6! 1. P(6, 2) + P(4, 3)

PERMÜTASYON DÜZEY: 1 TEST : P(6, n) = 6! 1. P(6, 2) + P(4, 3) PERMÜTASYON DÜZEY: 1 TEST : 1 1. P(6, 2) + P(4, 3) işleminin sonucu kaçtır? A) 30 B) 44 C) 50 D) 54 5. P(6, n) = 6! eşitliğini sağlayan n doğal sayılarının kümesi aşağıdakilerden hangisidir? A) {7} B)

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

Örnek...5 : A = { a, b, c, d, e, f } kümesinin 4 lü perm ütas yonlarının kaç tanesinde,

Örnek...5 : A = { a, b, c, d, e, f } kümesinin 4 lü perm ütas yonlarının kaç tanesinde, PERMÜTASYON ( SIRALAMA OLAYI ) Birbirinden farklı n tane nesnenin r tanesinin farklı her dizilişine (sıralanışına) n nesnenin r li permütasyonları denir ve P(n,r)= n! (r n) (n r)! biçim inde gösterilir.

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER. ÜNİTE SAYMA Sıralama ve Seçme... 4 Toplama Yolu ile Sayma... 4 Çarpma Yolu ile Sayma... 4 Permütasyon (Sıralama)... 5 Konu Testleri - -... 9 Kombinasyon (Seçme)... 4 Konu Testleri

Detaylı

OLASILIK. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

OLASILIK.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) OLASILIK 46 0 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları Ocak 20 0. Teorik Olasılık 0.. Deney ve Çıktı 4. Bir zar ile

Detaylı

İstenen Durum Olasılık Tüm Durum 12

İstenen Durum Olasılık Tüm Durum 12 OLASILIK ÇIKMIŞ SORULAR 1.SORU İçinde top bulunan iki torbadan birincisinde beyaz, siyah ve ikincisinde beyaz, 5 siyah top vardır. Birinci torbadan bir top çekilip rengine bakılmadan ikinci torbaya atılıyor.

Detaylı

Permütasyon Kombinasyon Binom Olasılık

Permütasyon Kombinasyon Binom Olasılık Permütasyon Kombinasyon Binom Olasılık Saymanın Temel İlkesi: A1, A2,..., A n kümeleri için s( A1 ) = a1, s( A2 ) = a2,.., s( An ) A xa x xa Kartezyen çarpımının eleman sayısı; s( A xa x... xa ) = s( A

Detaylı

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,,

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,, BİNOM AÇILIMI Binom Açılımı n doğal sayı olmak üzere, (x+y) n ifadesinin açılımını pascal üçgeni yardımıyla öğrenmiştik. Pascal üçgenindeki katsayılar; (x+y) n ifadesi 1. Sütun: (x+y) n açılımındaki katsayılar

Detaylı

Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı

Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı LYS Matematik Olasılık Tanım: Bir deneyde çıkabilecek tüm sonuçların kümesine örnek uzay denir ve E ile gösterilir. Örnek uzayın herhangi bir elemanına da örnek nokta denir. Örnek: Bir zarın atılması deneyinde

Detaylı

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK ve İSTATİSTİK ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT Permütasyon. Kazanım : Eşleme, toplama ve çarpma yoluyla sayma yöntemlerini açıklar. 2. Kazanım : n elemanlı

Detaylı

4. Bir tabakta 3 elma, 4 armut ve 5 portakal vardır.

4. Bir tabakta 3 elma, 4 armut ve 5 portakal vardır. Saymanın Temel İlkesi Birinci elemanı A 1 kümesinden, ikinci elemanı A 2 kümesinden,..., n inci elemanı A n kümesinden alınmak koşulu ile; kaç değişik sıralı n li yazılabilir? 1. Aşağıdaki problemleri,

Detaylı

PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK

PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS - - - ÖYS PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK TEMEL SAYMA KURALLARI Örnek ( ) adet hediyeden üçü üç kişiye, her birine birer hediye vermek kaydıyla kaç değişik

Detaylı

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir?

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir? İSTATİSTİK SORU VE CEVAPLARI 1)Tabloda 500 kişinin sahip oldukları akıllı telefon markalarını gösteren bilgiler verilmiştir.bu tabloda ki bilgileri yansıtan daire grafiği aşağıdakilerden hangisidir? TELEFON

Detaylı

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar,

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar, 1. 9 2 x 2 ifadesinin açılımında sabit x terim kaç olur? A) 672 B) 84 C) 1 D) -84.E) -672 6. Ali her gün cebinde kalan parasının %20 sini harcamaktadır. Pazartesi sabahı haftalığını alan Ali ni Salı günü

Detaylı

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 10. Sınıf Matemat k Ders İşleme Defter OLASILIK Altın Kalem Yayınları KOŞULLU OLASILIK Bas t olayların olma olasılıklarını 9. sınıf matemat k konularında şlem şt k. Ş md yapacağımız se daha karmaşık olayların

Detaylı

10. Hilesiz iki zar birlikte atılıyor. Üst yüze gelen sayıların toplamı 6 olduğuna göre bunlardan birinin 1 olma olasılığı kaçtır?

10. Hilesiz iki zar birlikte atılıyor. Üst yüze gelen sayıların toplamı 6 olduğuna göre bunlardan birinin 1 olma olasılığı kaçtır? . kız ve 5 erkek arasınan kişilik bir ekip seçilecektir. n çok birinin kız olması olasılığı kaçtır? ( 5 ). 6 evli çift arasınan rasgele kişi seçiliyor. Seçilen bu kişi arasına evli bulunmama olasılığı

Detaylı

2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur?

2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur? Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız. Sınavın ilk 30 dakikasında sınıftan çıkılmayacaktır.

Detaylı

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir.

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir. BÖLÜM 1 KÜMELER CEBİRİ Küme, iyi tanımlanmış ve farklı olan nesneler topluluğudur. Yani küme, belli bir kurala göre verilmiş nesnelerin listesidir. Nesneler reel veya kavramsal olabilir. Kümede bulunan

Detaylı

PERMÜTASYON - KOMBİNASYON

PERMÜTASYON - KOMBİNASYON PERMÜTASYON - KOMBİNASYON Sayma Yöntemleri Saymanın çeşitli yöntemleri vardır. Bunlardan biri eşleme yolu ile saymadır. Eşleme yolu ile sayma yönteminde sayma sayıları kümesinin elemanları sayılacak nesneler

Detaylı

A) 18 B) 19 C) 20 D) 21 A) 1226 B) 1225 C) 1224 D) 1223

A) 18 B) 19 C) 20 D) 21 A) 1226 B) 1225 C) 1224 D) 1223 . İlk 2 pozitif doğal sayıdan oluşan {, 2, 3,,...,, 2} kümesi veriliyor. u kümeden 3 eleman çıkartıldığında geriye kalan elemanların sayı değerleri çarpımı tam kare oluyor. una göre, çıkartılan sayıların

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI TAKIM SEÇME SINAVI

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI TAKIM SEÇME SINAVI ÖZEL YUNUS GÜNER FEN ve NDOLU LĐSESĐ MTEMTĐK OLĐMPĐYTI TKIM SEÇME SINVI Süre: 90 dakika ÖĞRENĐNĐN DI SOYDI: SINVL ĐLGĐLĐ UYRILR: u sınav çoktan seçmeli 32 sorudan oluşmaktadır. Her sorunun sadece bir doğru

Detaylı

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması

Detaylı

2. (x 1 + x 2 + x 3 + x 4 + x 5 ) 10 ifadesinin açılımında kaç terim vardır?

2. (x 1 + x 2 + x 3 + x 4 + x 5 ) 10 ifadesinin açılımında kaç terim vardır? Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız. Sınavın ilk 30 dakikasında sınıftan çıkılmayacaktır.

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

YGS MATEMATİK SORULARI !+7! 6! 5! işleminin sonucu kaçtır? A) 24 B)32 C)42 D)48 E)56. ifadesinin eşiti hangisidir?

YGS MATEMATİK SORULARI !+7! 6! 5! işleminin sonucu kaçtır? A) 24 B)32 C)42 D)48 E)56. ifadesinin eşiti hangisidir? 2017 YGS MATEMATİK SORULARI 1. 4. 4.7!+7! 6! 5! işleminin sonucu kaçtır? ifadesinin eşiti hangisidir? A) 24 B)32 C)42 D)48 E)56 A)1/2 B)1/4 C)1/6 D)1/8 E)1/12 2. 2 9 5.2 4 12 3 işleminin sonucu kaçtır?

Detaylı

2000 Birinci Aşama Sınav Soruları

2000 Birinci Aşama Sınav Soruları 2000 irinci şama Sınav Soruları Lise 1 Soruları 1 369 sayısı bir kaç ardışık doğal sayının toplamı olarak kaç farklı biçimde yazılabilir? )2 )3 )4 )5 )7 2 ve sayıları 2000 sayısının pozitif bölenleri olmak

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI TEST SORULARI 3. (abc) üç basamaklı, (bc) iki basamaklı doğal sayılardır.

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI TEST SORULARI 3. (abc) üç basamaklı, (bc) iki basamaklı doğal sayılardır. . A = {,,,4,5,6 } kümesinin boş olmayan bütün alt kümelerindeki en küçük elemanların aritmetik ortalaması kaçtır? 6 7 8 9 40 A) B) C) D) E) 9 0 0 ÖZEL EGE LİSESİ. MATEMATİK YARIŞMASI. (abc) üç basamaklı,

Detaylı

A) 0 B) 1 C) 2 D) 3 Hilesiz bir çift madeni para havaya atılıyor. A) 10 B) 8 C) 7 D) 6 Hilesiz bir çift zar havaya atılıyor.

A) 0 B) 1 C) 2 D) 3 Hilesiz bir çift madeni para havaya atılıyor. A) 10 B) 8 C) 7 D) 6 Hilesiz bir çift zar havaya atılıyor. Olasılık. Sınıf Matematik Soru Bankası TEST. Havaya atılan hilesiz bir paranın yere düşmesi ile karşılaşılacak olası durumlar kaç tanedir?. A) 0 B) C) D) Hilesiz bir çift madeni para havaya atılıyor. Olası

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA 00 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. + + 5 0 + + + 0 40 toplamının sonucu kaçtır? A) 5 B) C) D) E) + 4. a,b,c Z olmak üzere, a + b + c 7 = 6 ise, a.b.c kaçtır? A) 6 B) 8 C) D) 6 E) 8 y.

Detaylı

KONTROL TESTİ - 4. 1. Birinci galeride A markasından 4, B markasından 6 araç; ikinci geleride ise A markasından 8, B markasından 4 araç vardır.

KONTROL TESTİ - 4. 1. Birinci galeride A markasından 4, B markasından 6 araç; ikinci geleride ise A markasından 8, B markasından 4 araç vardır. KONTROL TESTİ - 4. Birinci galeride A markasından 4, B markasından 6 araç; ikinci geleride ise A markasından 8, B markasından 4 araç vardır. Bu galerilerden rastgele alınan bir aracın A markasından olduğu

Detaylı

LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM)

LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM) LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM) Permütasyon Kombinasyon Binom Açýlýmý Bu yayýnýn her hakký saklýdýr. Tüm haklarý bry Birey Eðitim Yayýncýlýk Pazarlama Ltd. Þti. e aittir. Kýsmen de

Detaylı

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 2017 LİSE MATEMATİK SINAVI. 10 Mayıs 2017 Çarşamba,

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 2017 LİSE MATEMATİK SINAVI. 10 Mayıs 2017 Çarşamba, İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 07 LİSE MATEMATİK SINAVI 0 Mayıs 07 Çarşamba, 09.30 -.30 Öğrencinin, Adı Soyadı : T.C. Kimlik No : Okulu / Sınıfı : Sınav Merkezi : . Bir

Detaylı

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 7. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 7. SINIF ELEME SINAVI TEST SORULARI . a,b,c negatif tam sayılardır. (a + 3).b b< c< a ve; = 6 olduğuna c göre, a+b+c toplamının en büyük değeri 4. 50 kişinin çalıştığı bir şirkette 25 kişi İngilizce, 6 kişi Fransızca biliyor. En çok bir

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 4: OLASILIK TEORİSİ Giriş Bu bölüm sonunda öğreneceğiniz konular: Rastgele Olay Örnek Uzayı Olasılık Aksiyomları Bağımsız ve Ayrık Olaylar Olasılık Kuralları Koşullu Olasılık

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 11 Mayıs Matematik Soruları ve Çözümleri E) 2.

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 11 Mayıs Matematik Soruları ve Çözümleri E) 2. Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal I / Mayıs 2008 Matematik Soruları ve Çözümleri 3 3. + : 7 4 7 4 işleminin sonucu kaçtır? A) 4 3 B) 4 5 C) 7 4 D) 5 7 E) 2

Detaylı

1. BÖLÜM: PERMÜTASYON (SIRALAMA) BÖLÜM: KOMBİNASYON (SEÇME) A. SEÇME (KOMBİNASYON) B. KOMBİNASYON GEOMETRİ İLİŞKİSİ

1. BÖLÜM: PERMÜTASYON (SIRALAMA) BÖLÜM: KOMBİNASYON (SEÇME) A. SEÇME (KOMBİNASYON) B. KOMBİNASYON GEOMETRİ İLİŞKİSİ İçindekiler 1. BÖLÜM: PERMÜTASYON (SIRALAMA)... 10 A. SAYMA KURALLARI... 10 B. FAKTÖRİYEL... 14 C. n ELEMANLI BİR KÜMENİN r Lİ PERMÜTASYONLARI (Dizilişleri)... 17 Ölçme ve Değerlendirme...20 Kazanım Değerlendirme

Detaylı

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA - 4 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. 4? 4 4. A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? A) 6 B) 8 C) D)

Detaylı

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Öğrenci Adı Soyadı Sınıfı Ödev Teslim Tarihi Öğretmen Görüşü Soru 1 Aşağıda sayma pulları ile modellenen matematik işlemlerini bulunuz. Soru 2 Aşağıda

Detaylı

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2 Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S

Detaylı

ÖSYM M TEMEL MATEMATİK TESTİ YGS / MAT. Diğer sayfaya geçiniz. 1. Bu testte 40 soru vardır.

ÖSYM M TEMEL MATEMATİK TESTİ YGS / MAT. Diğer sayfaya geçiniz. 1. Bu testte 40 soru vardır. TEMEL MATEMATİK TESTİ 2011 - YGS / MAT M9991.01001 1. Bu testte 40 soru vardır. 1. 2. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. işleminin sonucu kaçtır?

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

2013 YGS MATEMATİK. a a olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A) 1 2 C) 1 4 E) 4 9 B) 3 2 D) 1 9 A) 3 B) 4 C) 5 D) 6 E) 7

2013 YGS MATEMATİK. a a olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A) 1 2 C) 1 4 E) 4 9 B) 3 2 D) 1 9 A) 3 B) 4 C) 5 D) 6 E) 7 0 YGS MATEMATİK. m olduğuna göre, m kaçtır?. a a a a olduğuna göre, a kaçtır? A) B) ) D) 6 E) 7 A) B) ) D) 9 E) 9.. (0,) (0,) işleminin sonucu kaçtır? A) 0,06 B) 0,08 ) 0, D) 0, E) 0, A B B D B A BD 9?

Detaylı

Toplam Olasılık Prensibi

Toplam Olasılık Prensibi 1 Toplam Olasılık Prensibi A 1, A 2,, A n karşılıklı kapsamayan ve birlikte tamamlayan olaylar kümesi olsun: A k A A j 0 = 0 k j j nn j j 1 = 1 B, S içinde herhangi bir olay ise k j AA j = ise S ise Pr[A

Detaylı

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde 1. Aşağıdaki kümelerden hangisi sonsuz küme belirtir? A) A = { x 4 < x < 36,x N} B) B = { x 19 < x,x asal sayı} C) C = { x x = 5k,0 < x < 100,k Z} D) D = { x x = 5, x Z} E) E = { x x < 19,x N}. A, B ve

Detaylı

ÇARPANLAR VE KATLAR I sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden A) B) C) D)

ÇARPANLAR VE KATLAR I sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden A) B) C) D) 8. Sınıf MATEMATİK ÇARPANLAR VE KATLAR I. Aşağıdakilerden hangisi 6 nın çarpanlarından biridir? A) 3 B) 6 C) 8 D) TEST. 360 sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden hangisidir? A) 3. 3.

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür.

Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür. 1 Olasılık Örnekler 1. Bir çantada 4 beyaz 8 siyah top vardır. Bir siyah top çekilmesi olasılığı nedir? Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür. 2.

Detaylı

ALES / İLKBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ

ALES / İLKBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL- TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal Ağırlıklı ALES Puanınızın (ALES-SAY)

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

YGS MATEMAT K DENEME SINAVI

YGS MATEMAT K DENEME SINAVI MATEMAT K DENEME SINAVI I Muharrem ŞAHİN muharrem49@gmail.com Maatteemaatti ikk Deeneemee Sınaavvı I Muhaarrrreem Şaahi in. 9 8 0 0 0 0 5 işleminin sonucu kaçtır? x x 3. 0, 0, 3 0, 0, olduğuna göre, x

Detaylı

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI KTS 1

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI KTS 1 ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI KTS 1 Süre: 150 dakika ÖĞRENCĐNĐN ADI SOYADI: SINAVLA ĐLGĐLĐ UYARILAR: Bu sınav çoktan seçmeli 36 sorudan oluşmaktadır. Her sorunun sadece bir

Detaylı

B İ L G İ Tanım: Rasyonel olmayan, yani a b şeklinde yazılamayan sayılara irrasyonel sayı denir. İrrasyonel sayılar kümesi I harfi ile gösterilir.. Aşağıdakilerden kaç tanesi irrasyonel sayıdır? 4. x 8

Detaylı

SİVAS FEN LİSESİ. Soru Kitapçığı Türü. 25 Nisan 2015 Cumartesi, 9:30 12:30

SİVAS FEN LİSESİ. Soru Kitapçığı Türü. 25 Nisan 2015 Cumartesi, 9:30 12:30 SİVAS FEN LİSESİ SİVAS İL MERKEZİ ORTAOKUL 1. MATEMATİK OLİMPİYATI SINAVI 015 ÖĞRENCİNİN ADI SOYADI : T.C. KİMLİK NO : OKUL / SINIFI : SINAVLA İLGİLİ UYARILAR: Soru Kitapçığı Türü A 5 Nisan 015 Cumartesi,

Detaylı

ÖZEL SAMANYOLU LİSELERİ

ÖZEL SAMANYOLU LİSELERİ ÖZEL SAMANYOLU LİSELERİ SAMANYOLU 10. ULUSAL MATEMATİK YARIŞMASI 22 MART 2014 A KİTAPÇIĞI Bu sınav çoktan seçmeli 40 Test sorusundan oluşmaktadır. Süresi 120 dakikadır. Sınavla İlgili Uyarılar Cevap kağıdınıza,

Detaylı

OLASILIK PROBLEMLERİ I (BAĞIMSIZ OLAYLAR, KOLMOGOROV BELİTLERİ VE KOŞULLU OLASILIK)

OLASILIK PROBLEMLERİ I (BAĞIMSIZ OLAYLAR, KOLMOGOROV BELİTLERİ VE KOŞULLU OLASILIK) İST65-0-02-OLASILIK I (BAĞIMSIZ OLAYLAR, KOLMOGOROV BELİTLERİ VE KOŞULLU OLASILIK). A ve B olayları ayrık olaylar ve olasılıkları sıfırdan farklı ise, bu olayların bağımlı olduklarını tanıtlayınız. A ve

Detaylı

TEMEL MATEMATİK YGS DENEME SINAVI - 1 YGS AYHAN YANAĞLIBAŞ

TEMEL MATEMATİK YGS DENEME SINAVI - 1 YGS AYHAN YANAĞLIBAŞ TEMEL MATEMATİK YGS DENEME SINAVI - YGS AYHAN YANAĞLIAŞ 05-06 u çalışmanın her aşamasında emeğini esirgemeyen öğretmen arkadaşlarıma teşekkür ederim. Aralık-05 TEMEL MATEMATİK TESTİ YGS-. 06, ^04, h -

Detaylı

İÇİNDEKİLER TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 02-03 FAKTÖRİYEL...65-66...

İÇİNDEKİLER TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 02-03 FAKTÖRİYEL...65-66... İÇİNDEKİLER Sayfa No Test No 3-PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 0-03 FAKTÖRİYEL...65-66...

Detaylı

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10.

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10. MAT-1 EK SORULAR-2 1. 6. A)7 B)8 C)15.D)56 E)64 Olduğuna göre x.a)1 B)2 C)3 D)4 E)6 7. 2. Birbirinden farklı x ve y gerçek A)5.B)6 C)7 D)8 E)9 sayıları için; x 2 +2009y=y 2 +2009x eşitliği sağlandığına

Detaylı

TEMEL KAVRAMLAR TEST x, y, z sıfırdan farklı gerçel sayılar ve x y = a ve b gerçel sayılar olmak üzere, a + 3b = 18. y + z = 0.

TEMEL KAVRAMLAR TEST x, y, z sıfırdan farklı gerçel sayılar ve x y = a ve b gerçel sayılar olmak üzere, a + 3b = 18. y + z = 0. TEST - 3 TEMEL KAVRAMLAR. x, y, z sıfırdan farklı gerçel sayılar ve x y 0 4. a ve b gerçel sayılar olmak üzere, a + 3b 8 y + z 0 olduğuna göre, aşağıdakilerden hangisi doğrudur? A) x.z > 0 B) z.y < 0 C)

Detaylı

ÖZEL EGE LİSESİ 12. OKULLAR ARASI MATEMATİK YARIŞMASI 6. SINIF ELEME SINAVI TEST SORULARI A) B) X C) 2X D) 3X

ÖZEL EGE LİSESİ 12. OKULLAR ARASI MATEMATİK YARIŞMASI 6. SINIF ELEME SINAVI TEST SORULARI A) B) X C) 2X D) 3X . < a < b < < c 2 sıralamasında birbirini izleyen sayılar arasındaki farklar eşittir. Buna göre, a+c toplamı kaçtır? 3. X=.+3.3+5.5+ +5.5 Y=.3+3.9+5.5+ +5.53 ise Y X farkının X cinsinden değeri kaçtır?

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 9.SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 9.SINIF ELEME SINAVI TEST SORULARI x 5 6. 0 x 4x 5 x denklemin çözüm kümesi aşağıdakilerden hangisidir? 5 5 4. 6 6... a ise, a kaçtır? A) B) 4 C) 6 D) 8 E) 0 A) B), C) 5, D) 5 E) 5. m 9m m m işleminin sonucu kaçtır?. (6) x x y y (4. ) eşitliği

Detaylı

Ünite 1: SAYMA Konu : Sıralama ve seçme Alt Konu : Toplama ve çarpma yolu ile sayma Neler öğreneceksiniz? Olayların gerçekleşme sayılarını toplama ve çarpma prensiplerini kullanarak hesaplamayı öğreneceksiniz.

Detaylı

HADİ BAKALIM KOLAY GELSİN ZOR GİBİ GÖRÜNEN BASİT BİR TOPLAMA

HADİ BAKALIM KOLAY GELSİN ZOR GİBİ GÖRÜNEN BASİT BİR TOPLAMA HADİ BAKALIM KOLAY GELSİN ZOR GİBİ GÖRÜNEN BASİT BİR TOPLAMA 1 2 + 3 4 + 5 6 + 7 8 + 9... 1000 toplamının sonucunu bulmak zor gelir mi size bilemeyiz? Dikkatli bakarsanız kalemsiz de çözmeniz mümkün. 1

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 İLKÖĞRETİM - PROBLEMLERİ c Copyright Titu Andreescu and Jonathan Kane Çeviri Sibel Kılıçarslan CANSU ve Fatih Kürşat CANSU Problem 1 Eğer 125 + n + 135 + 2n

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

Boş bırakılan soruların değerlendirmede olumlu ya da olumsuz bir etkisi olmayacaktır.

Boş bırakılan soruların değerlendirmede olumlu ya da olumsuz bir etkisi olmayacaktır. SINAVLA İLGİLİ UYARILAR Bu sınav 20 adet çoktan seçmeli ve 3 adet klasik sorudan oluşmakta ve 20 şer dakikalık iki kısımdan oluşmaktadır. İlk 20 dakika test aşaması, ikinci 20 dakika ise klasik sorular

Detaylı

ÖZEL SERVERGAZİ LİSELERİ

ÖZEL SERVERGAZİ LİSELERİ S R İ M Y ÖZL SRVRGZİ LİSLRİ VI. İ L K Ö Ğ R T İ M OKU L L R I R S I MT M Tİ K YRIŞMSI ÇIKLMLR u sınav çoktan seçmeli 5 ve klasik sorudan oluşmaktadır. Sınav süresi 50 dakikadır. Tavsiye edilen süre (5*=05

Detaylı

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu Üretken Fonksiyonlar Ali İlker Bağrıaçık Üretken fonksiyonlar sayma problemlerinin çözümünde kullanılan önemli yöntemlerden biridir. Üretken fonksiyonların temeli Moivre nin 1720 yıllarındaki çalışmalarına

Detaylı

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 18. ULUSL NTLY MTEMTİK OLİMPİYTLRI BİRİNCİ ŞM SORULRI SINV TRİHİ VESTİ:30 MRT 2013 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav süresi 150 dakikadır. SINVL İLGİLİ

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

KPSS 2009 GY-(31) YAPRAK TEST SORU KONU ANLATIM SAYFA SORU x olduğuna göre, x kaçtır? A) 5 B) 4 C) 3 D) 2 E) 1

KPSS 2009 GY-(31) YAPRAK TEST SORU KONU ANLATIM SAYFA SORU x olduğuna göre, x kaçtır? A) 5 B) 4 C) 3 D) 2 E) 1 KPSS 009 GY-(31) YAPRAK TEST-17 19. SORU 31. x 1 3 9 1 x 1 7 9 olduğuna göre, x kaçtır? A) 3 B) C) 1 19. x 6 x 1 3 9 olduğuna göre, x kaçtır? A) 5 B) 4 C) 3 D) E) 1 D) 1 E) KONU ANLATIM SAYFA 194 15. SORU

Detaylı

OLASILIK. P(A) = şeklinde ifade edilir.

OLASILIK. P(A) = şeklinde ifade edilir. OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya

Detaylı

19. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI A A A A A A A

19. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 19. ULUSL NTLY MTEMTİK OLİMPİYTI SORULRI DI SOYDI :...CEP TEL :... OKUL...ŞEHİR :... SINIF :...ÖĞRETMEN :... eposta :... İMZ :... SINV TRİHİ VESTİ:4Mayıs 2014 - Pazar 10.00-12.30 Bu

Detaylı

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI 14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI - 008 SORU -1 1 0.7 0.1 0.48 = 0.018 0.8 0. eşitliğini sağlayan sayısı kaçtır? [ 0.15] SORU - c d d c a b 4 c d b b a ifadesinin i i sayısal ldeğeri

Detaylı

2011 YGS MATEMATİK Soruları

2011 YGS MATEMATİK Soruları 0 YGS MTEMTİK Soruları. + + ) 8 ) 0 ) 6 ) E). a = 6 b = ( a)b olduğuna göre, ifadesinin değeri kaçtır? ) ) 6 ) 9 ) 8 E). (.0 ) ) 0, ) 0, ) 0, ) E) 6. x = y = 8 z = 6 olduğuna göre, aşağıdaki sıralamalardan

Detaylı

18 ÞUBAT 2016 6. kontrol

18 ÞUBAT 2016 6. kontrol 18 ÞUBAT 2016 6. kontrol 3 puanlýk sorular 1. Dört sayýnýn ortalamasý 9 dur. Bu sayýlardan üçü 5, 9, 12 olduðuna göre dördüncü sayý aþaðýdakilerden hangisidir? A) 6 B) 8 C) 9 D) 10 E) 36 2. Aþaðýdakilerden

Detaylı

TEST-8. Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D)

TEST-8. Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D) TEST-8 Matematik Yarışmalarına Hazırlık 1 Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D) 2 Yandaki kareden çizgiler boyunca kesilerek çeşitli şekiller

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç Not: Starboard programında dosya aç kısmından dosyayı seçerek açabilirsiniz. Yazı karakterlerinde bozulma oluyorsa program kapatılıp tekrar açıldığında yazı düzelecektir. Ben yaptığımda düzelmişti. Andropi

Detaylı

TEST. Tam Sayılar 1. ( 36) : (+12).( 3) : ( 2) 3 + [( 6) ( 2)] işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) 9 B) 1 C) 1 D) 9

TEST. Tam Sayılar 1. ( 36) : (+12).( 3) : ( 2) 3 + [( 6) ( 2)] işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) 9 B) 1 C) 1 D) 9 Tam Sayılar 1. ( 6) : (+12).( ) 7. Sınıf Matematik Soru Bankası 5. 4 2 : () + [( 6) ()] TEST 1 A) 9 B) C) 1 D) 9 A) B) 4 C) D) 2. 6. Yukarıdaki sayı doğrusu üzerinde modellenen işlem aşağıdakilerden (

Detaylı

16. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

16. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A AKDENİZ ÜNİVERSİTESİ 16. ULUSAL ANTALYA MATEMATİK OLİMPİYATLARI BİRİNCİ AŞAMA SORULARI A A A A A A A SINAV TARİHİ VESAATİ:16 NİSAN 2011 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav

Detaylı

5. A ve B gibi iki cümleden A nın bir, B nin iki elemanı A B cümlesinin elemanı değildir. dışında A. 9. A ve B iki kümedir.

5. A ve B gibi iki cümleden A nın bir, B nin iki elemanı A B cümlesinin elemanı değildir. dışında A. 9. A ve B iki kümedir. 1. KÜMELER 5. A ve B gibi iki cümleden A nın bir, B nin iki elemanı A B cümlesinin elemanı değildir. dışında A B nin alt cümleleri sayısı 63 olduğuna göre, A B cümlesinin alt cümleleri sayısı kaçtır? (51)

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Kombinasyon

Mustafa YAĞCI, yagcimustafa@yahoo.com Kombinasyon Mustafa YAĞCI www.mustafayagci.com.tr, 2011 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Kombinasyon K ombinasyon. n tane farklı elemandan oluşan bir kümenin altkümelerine birer kombinasyon denir.

Detaylı

Yukarıdaki dikdörtgen şeklindeki fayansları kullanarak elde edebileceğimiz en küçük karenin çevresi kaç cm dir?

Yukarıdaki dikdörtgen şeklindeki fayansları kullanarak elde edebileceğimiz en küçük karenin çevresi kaç cm dir? 1) Zehranaz yeni doğan kardeşine mama yedirmeyi çok sevmektedir. Kardeşi Furkan ın mamasının 1 kutusu 510 gr dır ve her 3 saatte bir 10 gr yemesi gerekmektedir. Buna göre; Çarşamba sabah saat 08.15 de

Detaylı

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme Türkiye Ulusal Matematik Olimpiyatları Birinci Aşama Zor Deneme Sınavı 11 Haziran 2016 DENEME SINAVI 4. Deneme Soru Sayısı: 32 Sınav Süresi: 210 dakika Başarılar Dileriz... Page 1 of 9 DENEME SINAVI (4.

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 GİRİŞ Olasılık Teorisi: Matematiğin belirsizlik taşıyan

Detaylı