Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;"

Transkript

1 MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

2 MATEMATİK İçindekiler ÜSLÜ SAYILAR Giriş Üslü Syılr Üslü İfdelerde Dört İşlem Üslü İfdenin Kuvveti Negtif Üs Üslü Denklemler Üslü Eşitsizlikler İnsnlr syılr gibidir, o insnın değeri ise o syının içinde bulunduğu syı ile ölçülür. Isc Newton

3 MATEMATİK Giriş Strncın ilk kez M.S. 570 yıllrınd Hindistn'd oynndığını biliyoruz. Rivyete göre bunu buln Brhmn rhibi Şh' bir ders vermek istemiş. "Sen ne kdr önemli bir insn olursn ol, dmlrın, vezirlerin, skerlerin olmdn hiçbir işe yrmzsın, hiçbir önemli iş ypmzsın" demek istemiş. Şh durumdn memnun görünmüş, "Peki, oyunu ve dersini beğendim. Dile benden ne dilersen" demiş. Rhip bu oly üzerine Şh'ın lmsı gereken dersi hâlâ lmdığını düşünerek "Bir miktr buğdy istiyorum" demiş. "Sn bulduğum bu oyunun birinci kresi için bir buğdy istiyorum, ikinci kresi için iki buğdy istiyorum. Üçüncü kresi için dört buğdy istiyorum. Böylece her krede, bir önceki krede ldığım buğdyın iki misli buğdy istiyorum. Sdece bu kdrcık buğdy istiyorum" demiş. Şh, kendisi gibi yüce ve kudretli bir şhtn isteye isteye üç beş tne buğdy isteyen bu rhibin, küsthlığ vrn lçkgönüllülüğüne sinirlenmiş ve on bir ders vermek istemiş. "Hesplyın. Hk ettiğinden bir tne fzl buğdy vermeyin" demiş. Ypıln hesplr göre, 64.kreye tne buğdy yni tm olrk 18 kentilyon 446 ktrilyon 744 trilyon 7 milyr 709 milyon 551 bin 616 tne buğdy demektir. (Mtemtiğin Aydınlık Dünysı ndn lıntıdır) Bu bölümde hemen her konud krşımız çıkbilecek oln üslü syı kvrmını tnıycğız.

4 4 MATEMATİK Üslü Syılr Çrpıln syılrın ynı olduğu çrpm işleminin kıs yzılışın üslü syı denir.,nn olmk üzere... n tne n Üs (kuvvet) Tbn Biçiminde n olrk gösterilir ve üssü n şeklinde okunur. Örneğin; Özel olrk sıfırdn frklı bir reel syının sıfırıncı kuvvetini 1 olrk tnımlrız. Yni 0 1 dir, 0. Ayrıc bütün reel syılrın birinci kuvveti yine kendisine eşittir. Örneğin; 0 0 1, 5 1, , 5 5, Pozitif syılrın tüm kuvvetleri pozitiftir. Negtif syılrın ise çift kuvvetleri pozitif, tek kuvvetleri negtiftir. Örneğin sıfırdn küçük oln - syısının kuvvetleri Biçiminde çift kuvvetler rtı, tek kuvvetler eksi olrk sonsuz kdr gider. 0

5 MATEMATİK 5 Üslü İfdelerde Dört İşlem Toplm-Çıkrm: Üslü syılrın toplnbilmesi vey çıkrılbilmesi için tbnlrı ve üsleri ynı olmsı gerekir. Tbnlr ynı fkt üsler frklı ise en küçük üslü syının prntezine de lınbilir. Örneğin; Çrpm: Üslü syılrın çrpılbilmesi için y tbnlrının y d üslerinin ynı olmsı gerekir. Eğer tbnlr ynı üsler frklı ise.. b c bc biçiminde üsler toplnır. Eğer üsler ynı tbnlr frklı ise biçiminde tbnlr çrpılır. Örneğin; y. z.y.z Örnek: ve 5 b olduğun göre 00 syısının ve b cinsinde eşiti nedir? Çözüm: b.b. b b b Alıştırm: ve 7 b olduğun göre 98? Alıştırm:, b ve 5 c olduğun göre 900?

6 6 MATEMATİK Bölme: Üslü syılrın bölünebilmesi için çrpmdkine benzer şekilde y tbnlrının y d üslerinin ynı olmsı gerekir. Eğer tbnlr ynı üsler frklı ise b b biçiminde üsler çıkrılır. Eğer üsler ynı tbnlr frklı ise y y biçiminde ynı üs ltınd bölme ypılır. Örneğin; Örnek: ? Çözüm:

7 MATEMATİK 7 Üslü İfdenin Kuvveti Üslü syının kuvveti lınırken bütün kuvvetler çrpılrk tek bir kuvvet ltınd yzılbilir. Örneğin; y z.y.z Negtif Üs Eğer sıfırdn frklı bir reel syı ve pozitif bir tmsyı ise üssü negtif olnlr biçiminde tnımlnır. Örneğin; , 5, b b b, b Örnek: işleminin sonucu kçtır? Çözüm:

8 8 MATEMATİK Örnek: ? Çözüm: Alıştırm: 1 işlemin sonucu kçtır? Alıştırm: işlemin sonucu kçtır? Üslü Denklemler Üslü denklemleri dört durumd inceleyebiliriz. I.Durum: n 1 ise şğıdki üç durum incelenmelidir. ) 1 ve n R olmlıdır. (Tbn 1 olduğund, üs ne olurs olsun 1 çıkr) b) 1 ise n çift olmlıdır. (Tbn -1 olduğund üs çift ise, sonuç 1 çıkr) c) n 0 iken 0 olmlıdır. (Üs sıfır olduğund, sonuç 1 olur. Fkt üssü sıfır ypn değeri tbnı sıfır ypmmlıdır; çünkü yptığı tktirde krşımız belirsizliği çıkr) Örnek: 1 denklemini sğlyn değerleri toplmı kçtır? Çözüm: durumu yrı yrı inceleyelim. ) Tbn 1 ( 1 ise 4 olur) b) Tbn -1 ( 1 ise olur. Üssü çift yptığındn olur) c) Üs 0 ( 4 0 ise 4 olur. Tbnı sıfır olmdığındn -4 olur) Dolyısıyl denklemini sğlyn değerleri toplmını 4 4 buluruz.

9 MATEMATİK 9 II.Durum: y ve,yz durumund n m y ise n m 0 dır. Örnek:,yZ olmk üzere y y14 5 olduğun göre y toplmı kçtır? Çözüm: Üsler ve tbnlr eşitlenemez. Bu denklem sdece durumund sğlr. Yni iki trfınd üssü 0 olmlıdır. Burdn, 6 y 0 y y 14 0 y değerini her hngi bir denklemde yerine yzrsk bize soruln y 8 y olrk elde edilir. bulunur. Öyleyse n m III.Durum: 1, 0, 1 durumund ise n m dir. 5 Örnek: 0,15 8 olduğun göre, kçtır? 0,15 8 Çözüm:

10 10 MATEMATİK IV.Durum: y eşitliğinde, ) tek syı ise y b) çift syı ise y ve y dir. (Yni y ) 7 7 Örnek: 1 9 denkleminin çözüm kümesi nedir? Çözüm: Verilen denklemde iki trfınd üssü ynı ve tek olduğundn, Ç.K. 10 bulunur. Dolyısıyl çözüm kümesi olur. 8 8 Örnek: 1 9 denkleminin çözüm kümesi nedir? Çözüm: Verilen denklemde iki trfınd üssü ynı ve çift olduğundn, 1 9 ve bulunur. Dolyısıyl çözüm kümesi 8 Ç.K., 10 5 olur.

11 MATEMATİK 11 Üslü Eşitsizlikler Üslü eşitsizlikleri iki durumd inceleyebiliriz. b I.Durum: 1 iken b dir. Örnek: eşitsizliğinin çözüm kümesi nedir? Çözüm: Tbndki 5 syısı 1 den büyük bir syı olduğundn ynı eşitsizlik üsteki syılr içinde geçerlidir Ç.K 8, Örnek: eşitsizliğinin çözüm kümesi nedir? Çözüm: Tbndki 15 syısını 5 in kuvveti olrk düzenlersek iki trft 1 den büyük ynı syı olmuş olcktır Ç.K,4 Örnek: eşitsizliğinin çözüm kümesi nedir? Çözüm: Verilen eşitsizliğin sğ trfındki üslü syının tbnındki syıyı ters çevirirsek üssünü eksiyle çrpmmız gerekir. Dolyısıyl iki trfı d 1 den büyük syı hline getirmiş oluruz Ç.K 4,

12 1 MATEMATİK II.Durum: 0 1 b iken b dir Örnek: 5 5 eşitsizliğinin çözüm kümesi nedir? Çözüm: Tbndki syılr ynı ve 0 ile 1 rsınd bir syı olduğundn Ç.K, Örnek: 1,4 eşitsizliğini sğlyn en büyük tmsyı değeri kçtır? Çözüm: Öncelikle tbnlrı ynı ypmy çlışlım , Burdn çözüme iki durumdki gibide gidebiliriz. Biz sğ trftkini ters çevirerek tbndki syıyı 0 ile 1 rsındki bir syı ypmy çlışlım Dolyısıyl bu eşitsizliği sğlyn en büyük tmsyı değeri -4 olur.

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER.

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER. Mutlk Değer YILLAR 4 6 8 9 1 11 ÖSS-YGS - - - 1 - - 1 - - 1/1 MUTLAK DEĞER ε R olmk üzere;, -, ise < ise ve b reel syı olmk üzere; 1) dır Eğer ise dır ) 14) + n n Z olmk üzere dır 1) f ( ) > g( ) f ( )

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.

Detaylı

SAYILAR TEMEL KAVRAMLAR

SAYILAR TEMEL KAVRAMLAR YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - - 1-1 - 1 Pozitif tmsyılr,negtif tmsyılr ve 0 ın ererce oluşturduğu kümeye Tmsyılr kümesi denir Z ile gösterilir SAYILAR TEMEL KAVRAMLAR Temel

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81.

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81. LOGARİTMA Test -. olduğun göre, şğıdkilerden log log log. log olduğun göre, kçtır? 6 6 8. olduğun göre, şğıdkilerden 6. logm olduğun göre, m kçtır? log log log 6 log 6. olduğun göre, şğıdkilerden log log

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS Rsonel Sılr YILLAR 00 00 00 00 00 00 00 00 00 0 ÖSS-YGS RASYONEL SAYILAR KESĐR: Z ve 0 olmk üzere şeklindeki ifdelere kesir denir p pd kesirçizgisi KESĐR ÇEŞĐTLERĐ: kesri için i) < ise kesir sit kesirdir

Detaylı

2.I. MATRİSLER ve TEMEL İŞLEMLER

2.I. MATRİSLER ve TEMEL İŞLEMLER Nzım K. Ekinci Mtemtiksel İktist Notlrı.I. MTRİSLER ve TEMEL İŞLEMLER Tnım.. Mtris. şğıdki gibi stırlr ve sütunlr biçiminde sırlnmış reel syı tblolrın mtris denir............. n n n... mtrisinin n stırı

Detaylı

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir.

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Komisyon DGS TAMAMI ÇÖZÜMLÜ 0 DENEME SINAVI ISBN 97-0--07- Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem Akdemi Bu kitın sım, yyın ve stış hklrı Pegem Akdemi Yy. Eğt. Dn. Hizm. Tic. Ltd. Şti

Detaylı

1984 ÖSS. 6. a, b, c birer pozitif sayı ve. olduğuna göre, a, b, c arasındaki bağlantılardan hangisi doğrudur? 7. a, b, c birer tamsayı olmak üzere

1984 ÖSS. 6. a, b, c birer pozitif sayı ve. olduğuna göre, a, b, c arasındaki bağlantılardan hangisi doğrudur? 7. a, b, c birer tamsayı olmak üzere 984 ÖSS 033 0. = x 0 olduğun göre x in değeri nedir? A) 0063 B) 063 C) 63 D) 63 E) 630. 6. b c birer pozitif syı ve b c = = 03 04 05 olduğun göre b c rsındki bğlntılrdn hngisi doğrudur? A) c

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

BULANIK MANTIK. Gaziosmanpaşa Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Tokat.

BULANIK MANTIK. Gaziosmanpaşa Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Tokat. Nim Çğmn, ncgmn@gop.edu.tr BLNIK MNTIK Gziosmnpş Üniversitesi, Fen Edebiyt Fkültesi, Mtemtik Bölümü, Tokt. Mtemtik deyince ilk kl gelen kesinliktir. Hlbuki günlük hytt konuşmlrımız rsınd belirsizlik içeren,

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nsıl ullnılır? Tkdim Sevgili Öğrenciler ve eğerli Öğretmenler, ğitimin temeli okullrd tılır. İyi bir okul eğitiminden geçmemiş birinin hytt bşrılı olmsı beklenemez. Hedefe ulşmks

Detaylı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı Intel Öğretmen Progrmı Ünite Plnı Şlonu Öğretmenin Adı, Soydı Okulunun Adı Okulunun Bulunduğu Mhlle Okulun Bulunduğu Ġl Ftm BAĞATARHAN Yunus Emre Andolu Lisesi Ġnönü Mhllesi Bingöl Ünit Bilgisi Ünite Bşlığı

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) ÖSS MT-1 / 008 MTMTİK 1 TSTİ (Mt 1) 1. u testte 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik 1 Testi için yrıln kısmın işretleyiniz. 1. 1 + 4 1 ( ) 4. syısı b 0 ) b syısının kç ktıdır? ) b ) b işleminin

Detaylı

DENEME 6 SAYISAL BÖLÜM ÇÖZÜMLERİ

DENEME 6 SAYISAL BÖLÜM ÇÖZÜMLERİ DENEME 6 SAYISAL BÖLÜM ÇÖZÜMLERİ. 3 3 = ( 3 ) ( 3) > > = 3 3 = 6 6. xy x = 8 xy x = 8 x.(y ) x.(y ) = 8 8 6 y (y ).(y) = 6 y = 6 y=6 y=5. 36. 8 d 8 = 6 d n 0 8 0 = 6 ( ) = 6 5 = 3 00 3. 880 ( 3) 80 0 =

Detaylı

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN ÖZEL EGE ORTAOKULU ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN HAZIRLAYAN ÖĞRENCĠLER: Olçr ÇOBAN Sevinç SAYAR DANIġMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI... 2 2. GĠRĠġ... 2 3.

Detaylı

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y ORAN ORANTI TANIM Anı irimden iki çokluğun iririle krşılştırılmsın orn denir. ornınd ve nı irimden olduğu için nin irimi oktur. ÖRNEK - 1 ve tmsıdır. = ve + = 0 olduğun göre, kçtır? A) 1 B) C) 0 9 D) 1

Detaylı

1000(1,025) t TL ödeyerek bir fon. F t SORU 2 : SORU 1 : Bahar, t=1,3,5. yılların sonunda. Bir yatırım fonu, 0 t 1. için. anlık faiz oranına göre

1000(1,025) t TL ödeyerek bir fon. F t SORU 2 : SORU 1 : Bahar, t=1,3,5. yılların sonunda. Bir yatırım fonu, 0 t 1. için. anlık faiz oranına göre SORU 1 : Bhr, t=1,3,5. yıllrın sonund 1000(1,025) t TL ödeyerek bir fon oluşturmuştur. Üç ylığ dönüştürülebilir nominl iskonto ornı 4/41 olrk verildiğine göre, bu fonun 7. yıl sonundki birikimli değeri,

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN00 BİLGİSAYAR PROGRAMLAMA YİNELEME (RECURSION) Sunu Plnı Yinelemenin nlmı Yinelemeli fonksiyon tnımınd temel ve genel durum Bsit değişken tipleriyle yinelemeli fonksiyon oluşturm Dizi prmetreleriyle

Detaylı

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI RENLER RENLER renler çlışmlrı itiriyle kvrmlr enzerler. Kvrmlr ir hreketin vey momentin diğer trf iletilmesini sğlrlr ve kıs ir süre içinde iki trftki hızlr iririne eşit olur. renler ise ir trftki hreketi

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03 ELEĐ MOOLA ve SÜÜCÜLEĐ DES 03 Özer ŞENYU Mrt 0 ELEĐ MOOLA ve SÜÜCÜLEĐ DA MOOLANN ELEĐ DEE MODELLEĐ E AAEĐSĐLEĐ ENDÜĐ DEESĐ MODELĐ Endüviye uygulnn gerilim (), zıt emk (E), endüvi srgı direni () ile temsil

Detaylı

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU 63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU www.omk.com.tr 01.08.2014 V3185 / V4185 VARİL ISITICISI KULLANIM KILAVUZU OMAK MAKİNA SANAYİİ ve TİCARET LİMİTED ŞİRKETİ DR. MEDİHA ELDEM

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı T.C. MİLLÎ EĞİTİM BKNLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve çıköğretim Kurumlrı Dire Bşknlığı KİTPÇIK TÜRÜ T.C. SĞLIK BKNLIĞI PERSONELİNİN UNVN DEĞİŞİKLİĞİ SINVI 43. GRUP: ELEKTRİK

Detaylı

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100 22 ORTA ÖĞRETİ URUARI ÖĞRECİ EÇE VE YEREŞTİRE IAVI ATEATİ TETİ 1. 3 2 1 1. 1 1. 1 : işleminin sonucu 7 1. 1 1 şğıdkilerden hngisidir? A),1 B),1 C) 1 D) 1 2. O P R T U V Yukrıdki syı doğrusund birbirine

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

Yüksek sayıda makalelerin sırrı

Yüksek sayıda makalelerin sırrı Yüksek syıd mklelerin sırrı Prof. Dr. Metin Blcı Türk ilim cmisının 2010 yılınd en çok yyın yptığı ilk 10 ilimsel derginin nlizini yptı. Bun göre toplm 21.529 mklenin %10 unun çok düşük düzeyde ve üstelik

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

Yerel Topluluklar ve Yönetimler Arasında Sınır-Ötesi Đşbirliği Avrupa Çerçeve Sözleşmesine Ek Protokol

Yerel Topluluklar ve Yönetimler Arasında Sınır-Ötesi Đşbirliği Avrupa Çerçeve Sözleşmesine Ek Protokol Yerel Topluluklr ve Yönetimler Arsınd Sınır-Ötesi Đşirliği Avrup Çerçeve Sözleşmesine Ek Protokol Strsourg 9 Xl 1995 Avrup Antlşmlrı Serisi/159 Yerel Topluluklr vey Yönetimler rsınd Sınır-ötesi Đşirliği

Detaylı

3.4 İşlem. 3.4.1 İşlem Kavramı. Etkinlik 3.53. Etkinlik 3.52

3.4 İşlem. 3.4.1 İşlem Kavramı. Etkinlik 3.53. Etkinlik 3.52 . İşlm.. İşlm Kvrmı Etkinlik.5 A,,, B,, v C,,5, kümlri vriliyor.. AxB kümsini yzınız.. AxB n C y f ğıntısı f x, y x il y n, küçük olmynı içimin tnımlnıyor. AxB f C f ğıntısını ynki gii ir Vnn şmsı il göstriniz.

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri İlişkisel Veri Modeli İlişkisel Cebir İşlemleri Veri işleme (Mnipultion) işlemleri (İlişkisel Cebir İşlemleri) Seçme (select) işlemi Projeksiyon (project) işlemi Krtezyen çrpım (crtesin product) işlemi

Detaylı

1.Hafta. Statik ve temel prensipler. Kuvvet. Moment. Statik-Mukavemet MEKANİK

1.Hafta. Statik ve temel prensipler. Kuvvet. Moment. Statik-Mukavemet MEKANİK Ders Notlrı 1.hft 1.Hft Sttik ve temel prensipler Kuvvet Moment MEKNİK Kuvvetlerin etkisi ltınd kln cisimlerin denge ve hreket şrtlrını nltn ve inceleyen bilim dlıdır. Meknikte incelenen cisimler Rijit

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

Tablo 1: anket sorularına verilen cevapların % de dağılımı Anket soruları. % c. % a. % b

Tablo 1: anket sorularına verilen cevapların % de dağılımı Anket soruları. % c. % a. % b PROJENİN ADI: Kimy Öğretiminde Alterntif Öğretim Metodu PROJE AMACI: Kimy öğretiminde lterntif uygulm olrk nimsyon sunumu tekniğinin uygulnilirliğini örneklerle göstermek ve dh iyi nsıl öğreteilirim sorusun

Detaylı

TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ

TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ Gzi Üniv. Müh. Mim. Fk. Der. J. Fc. Eng. Arch. Gzi Univ. Cilt 4, No, 9-36, 009 Vol 4, No, 9-36, 009 TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ

Detaylı

Mantık ve Muhakeme Soruları. 1. Bir uçağın rüzgara karşı hızı 2A km/s, rüzgar yönündeki hızı ise B km/s ise rüzgarın hızı kaç km/s'dır?

Mantık ve Muhakeme Soruları. 1. Bir uçağın rüzgara karşı hızı 2A km/s, rüzgar yönündeki hızı ise B km/s ise rüzgarın hızı kaç km/s'dır? Mntık ve 1. Bir uçğın rüzgr krşı hızı 2A km/s, rüzgr yönündeki hızı ise B km/s ise rüzgrın hızı kç km/s'dır? A) (2A B)/2 B) 2A B C) B 2A D) (B 2A)/2 E) (2A + B)/2 2. Bir tord 8 yeşil, 9 mvi, 10 kırmızı

Detaylı

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a.

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a. MTEMTİK BÖLÜM 5 Tşkın, Çetin, bdullyev MTRİS ve DETERMİNNTLR 5 MTRİSLER Tnım : mni,,, j + olmk üzere tüm ij reel syılrdn oluşn m m n n mn tblosun m x n tipinde bir mtrisi denir ve kısc şeklinde gösterilir

Detaylı

Telekomünikasyon, bilginin haberleşme amaçlı

Telekomünikasyon, bilginin haberleşme amaçlı GÜNÜMÜZ HABERLEŞME TEKNOLOJİLERİNE KISA BİR BAKIŞ Mehmet Okty ELDEM Elektronik Y. Mühendisi EMO Ankr Şubesi Üyesi okty.eldem@gmil.com Telekomüniksyon, bilginin hberleşme mçlı olrk dikkte değer bir mesfeye

Detaylı

DENEY 6. İki Kapılı Devreler

DENEY 6. İki Kapılı Devreler 004 hr ULUDĞ ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ ELN04 Elektrik Devreleri Lorturı II 004 hr DENEY 6 İki Kpılı Devreler Deneyi Ypnın Değerlendirme dı Soydı : Ön Hzırlık

Detaylı

YGS GEOMETRİ KONU ANLATIMLI SORU BANKASI

YGS GEOMETRİ KONU ANLATIMLI SORU BANKASI YGS GMTRİ NU NLTIMLI SRU NSI u kitb n her hkk skl d r ve kstrem Y nc l k ittir. itb it metin ve sorulr, knk gösterilerek de ols kulln lmz. itb n hz rln fl öntemi tklit edilemez. ISN : 978 0 0 7 0 steme

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 5-BÖÜM -UYGUAMA SORU VE ÇÖZÜMERİ 1. Aşğıd erilen dimi, iki otl ız lnını dikkte lınız: V (, ) (.66.1) i (.7.1) j B kış lnınd ir drm noktsı r mıdır? Vrs nerededir? Kller: 1. Akış dimidir.. Akış -otldr.

Detaylı

ÜÇGEN VE PİSAGOR BAĞINTISI

ÜÇGEN VE PİSAGOR BAĞINTISI ÜÇGEN VE PİSGOR ĞINTISI KZNIMLR Üçgen kvrmı Üçgen çizimi Üçgenin kenrlrı rsındki ğıntılr Üçgen eşitsizliği Üçgenlerde yükseklik Üçgenlerde kenrorty Üçgenlerde çıorty Kenr ort dikme kvrmı Pisgor ğıntısı

Detaylı

2013 YILI TÜRKİYE RADYO VE TELEVİZYON YAYINCILIĞI SEKTÖR RAPORU

2013 YILI TÜRKİYE RADYO VE TELEVİZYON YAYINCILIĞI SEKTÖR RAPORU 2 0 1 3YI L I R KL AMV Rİ L Rİ YL T ÜRKİ Y RADY OVT L Vİ ZY ONY A YI NCI L I ĞI S KT ÖRRAPORU R A T M R A D Y OT L V İ Z Y O NY A Y I N C I L A R I M S L KB İ R L İ Ğ İ L e y l ks o k kmu r t İ ş Me r

Detaylı

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. 5 k 3

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. 5 k 3 Ö.Y.S. 997 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ.,,, k olduğun göre, k kçtır? A) B) C) D) E) Çözüm,,, k k k 7 k. [( ) ( )] [ (9 ) ( )] işleminin sonucu kçtır? A) B) C) D) 9 E) 6 Çözüm [( ) ( )] [ (9 ) ( )] [.(

Detaylı

Veliler Anketi. Standart denetlemesi Matematik 4. sınıf 2013

Veliler Anketi. Standart denetlemesi Matematik 4. sınıf 2013 Veliler Anketi Stndrt denetlemesi Mtemtik 4. sınıf 2013 Sevgili Anne ve Bblr, Sevgili Veliler, Çocuğunuzun sınıfı bu öğretim yılınd 4.sınıf Mtemtik dersinde ilk stndrt denetlenmesi uygulmsın ktılcktır.

Detaylı

2.Hafta: Kristal Yapı

2.Hafta: Kristal Yapı MALZEME BİLİMİ MAL0.Hft: Kristl Ypı Mlzemeler tmlrın bir ry gelmesi ile luşur. Bu ypı içerisinde tmlrı bir rd tutn kuvvete tmlr rsı bğ denir. Ypı içerisinde birrd bulunn tmlr frklı düzenlerde bulunbilir.

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ 3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ BİRİNCİ BÖLÜM Aç, Kps, Dynk, Tnılr ve Kısltlr Aç MADDE 1 (1) Bu Tebliğin cı, IMT 2000/UMTS Altypılrının Kurulsı

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

III. 6.ELEKTROMOTOR KUVVET VE DOĞRU AKIM DEVRELERİ.

III. 6.ELEKTROMOTOR KUVVET VE DOĞRU AKIM DEVRELERİ. 103. 6.ELEKTOMOTO KUVVET VE DOĞU AKM DEVELEİ..6.0l. ELEKTOMOTO KUVVET VE ELEKTİK DEVESİ. Bir iletkende devmlı olrk kım tutilmek için, iletkenin iki uçun potnsiyel frkı uygulnmsı gerekir. Bu potnsiyel frkı

Detaylı

on8 S İ G O R T A C I L I K S E K T Ö R Ü K U R U M S A L W E B S İ T E L E R İ G E N E L A N A L İ Z Ç A L I Ş M A S I

on8 S İ G O R T A C I L I K S E K T Ö R Ü K U R U M S A L W E B S İ T E L E R İ G E N E L A N A L İ Z Ç A L I Ş M A S I on8 S İ G O R T A C I L I K S E K T Ö R Ü K U R U M S A L W E B S İ T E L E R İ G E N E L A N A L İ Z Ç A L I Ş M A S I Kurumsl web sitelerinin en büyük hedefi; kullnıcılrı müşteri, müşterileri kullnıcı

Detaylı

ORAN VE ORANTI Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 Uygulama Zamanı 1 Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 KESİR PROBLEMLERİ

ORAN VE ORANTI Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 Uygulama Zamanı 1 Tekrar Zamanı Çözümlü Test 1 Çözümlü Test 2 KESİR PROBLEMLERİ İÇİNDEKİLER ORAN VE ORANTI Orn Kvrmı... Orntı Kvrmı... Orntı Elemnlrının Yer Değiştirmesi... İçler Dışlr Çrpımı Prolemleri...4 Orntıyı Sitleme-I... Orntıyı Sitleme-II...6 Orntıyı Sitleme-III...7 Uygulm

Detaylı

www.mustafayagci.com.tr, 2013 Geometri Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Küp

www.mustafayagci.com.tr, 2013 Geometri Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Küp www.mustfygci.com.tr, 0 Geometri Notlrı Mustf YĞI, ygcimustf@yhoo.com üp ütün yüzleri kre oln bir prizmy, diğer deyişle tüm yrıtlrı eş oln dikdörtgenler prizmsın küp denir. üp, nihyetinde bir dikdörtgenler

Detaylı

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ BÖLÜM : RASLANTI DEĞİŞKENLERİ (Rndom Vribles Giriş: Bölüm de olsılık fonksionu, denein örneklem uzını oluşurn sonuçlrın erimleri ile belirleniordu. Örneğin; iki zr ıldığınd, P gelen 6 olsı sırlı ikilinin

Detaylı

SÜREKLİ REJİM ENERJİ DENGESİ MODELİNE GÖRE ISIL KONFOR BÖLGELERİ

SÜREKLİ REJİM ENERJİ DENGESİ MODELİNE GÖRE ISIL KONFOR BÖLGELERİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2003 : 9 : 1 : 23-30 SÜREKLİ

Detaylı

BÖLÜM 7.5 YÜKLEME, BOŞALTMA VE ELLEÇLEMEYE İLİŞKİN HÜKÜMLER

BÖLÜM 7.5 YÜKLEME, BOŞALTMA VE ELLEÇLEMEYE İLİŞKİN HÜKÜMLER BÖLÜM 7.5 YÜKLEME, BOŞALTMA VE ELLEÇLEMEYE İLİŞKİN HÜKÜMLER 7.5.1 Yüklemeye, boşltmy ve elleçlemeye ilişkin genel hükümler NOT: Bu bşlık kpsmınd bir konteynerin, dökme konteynerin, tnk konteynerinin vey

Detaylı

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c.

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c. Syıl Devreler (Lojik Devreleri) Tümleştirilmiş Kominezonl Devre Elemnlrı Syıl itemlerin gerçekleştirilmeinde çokç kullnıln lojik devreler, klik ğlçlrın ir ry getirilmeiyle tümleştirilmiş devre olrk üretilirler

Detaylı

Velilere Yönelik Soru Formu

Velilere Yönelik Soru Formu Velilere Yönelik Soru Formu Eğitim Stndrtlrı Pilot Çlışmsı 4. Sınıf Mtemtik Okul Sınıf Öğrenci Sevgili veliler, Sevgili velyet shipleri, Çocuğunuzun sınıfı, mtemtik eğitim stndrtlrın ilişkin bir pilot

Detaylı

Ö rendiklerimizi Nerelerde Kullanabiliriz? Alan tahmin etmede kullanabiliriz.

Ö rendiklerimizi Nerelerde Kullanabiliriz? Alan tahmin etmede kullanabiliriz. 4.1 Aln Neler Ö renece iz? Geometrik flekillerin lnlr n hesplyc z. Ö rendiklerimizi Nerelerde Kullnbiliriz? Aln thmin etmede kullnbiliriz. Söz Vrl Prlelkenrsl bölge Bir y içinde yklfl k lt metre krelik

Detaylı

9. SINIF GEOMETRİ KONU ANLATIMLI SORU BANKASI

9. SINIF GEOMETRİ KONU ANLATIMLI SORU BANKASI 9. SINI GMTRİ NU NLTIMLI SRU NSI u kitb n her hkk skl d r ve kstrem Y nc l k ittir. itb it metin ve sorulr, knk gösterilerek de ols kulln lmz. itb n hz rln fl öntemi tklit edilemez. ISN : 978 0 7 0 steme

Detaylı

YAPI ELEMANI OLARAK YERİNDE DÖKME BETONARME KAZIKLAR

YAPI ELEMANI OLARAK YERİNDE DÖKME BETONARME KAZIKLAR TMMOB İNŞAAT MÜHENDİLERİ ODAI İTANBUL ŞUBEİ YAPI TAARIM KURLARI YAPI ELEMANI OLARAK YERİNDE DÖKME BETONARME KAZIKLAR Prof. Dr. Zeki Cele İstnbul Teknik Üniversitesi, İnşt Fkültesi Betonrme Yılr ve Derem

Detaylı

1.6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK

1.6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK .6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK İki uundn potnsiyel frk uygulnmış metl iletkenlerde, serest elektronlr iletkenin yüksek potnsiyeline doğru çekilirler. Elektrik kımını oluşturn, elektronlrın u

Detaylı

TG 10 ÖABT KİMYA. KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ KİMYA ÖĞRETMENLİĞİ 29 Haziran 2014 Pazar

TG 10 ÖABT KİMYA. KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ KİMYA ÖĞRETMENLİĞİ 29 Haziran 2014 Pazar KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ KİMYA ÖĞRETMENLİĞİ 9 Hzirn 4 Pzr TG ÖABT KİMYA Bu testlerin her hkkı sklıdır. Hngi mçl olurs olsun, testlerin tmmının vey bir kısmının İhtiyç Yyıncılık

Detaylı