GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI"

Transkript

1 GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumund, ir Q noktsını üç outlu olrk temsil eden küik gerilme elemnı üzerinde 6 ileşeni gösterileilir: σ, σ, σ z, τ, τ z, τ z. Söz konusu küik elemn --z eksenleri erine döndürülmüş - -z eksenlerine prlel lınsdı gerilme ileşenleri; σ, σ, σ z, τ, τ z, τ z olcktı. z z Gerilme dönüşüm ğıntılrı kullnılrk --z eksen tkımındki 6 gerilme ileşeninin döndürülmüş şk ir eksen tkımındki krşılıklrı ulunur. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-1

2 Düzlem gerilme durumund dönüşüm ğıntılrı z z z 0 3 outlu küik elemn İnce ir plkd ort düzlemde etkien kuvvetlerden dolı düzlem gerilme oluşur. Ypısl ir elemnın ve mkine prçsının dış/serest üzeinde düzlem gerilme durumu (üzee ugulnmış dış kuvvet/kuvvetler oks) ort çıkr. İnce cidrlı sınçlı tnk ve tüplerde de düzlem gerilme durumu söz konusudur. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-

3 Düzlem gerilme elemnı σ τ σ τ σ σ θ n n-n httı ounc ir kesim pılırs: σ τ θ σ n 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-3

4 F 0 A Acos cos Acos Asin sin Asin cos cos sin sin sin cos K düzlemi F 0 A A cos sin A cos Asin cos Asin sin ( )sin cos (cos cos sin ) cos( 90 ) sin sin( 90 ) cos 1 cos cos 1 cos sin cos cos sin sin sin cos σ ğıntısınd θ= θ+90 zılrk: Trigonometrik dönüşüm ğıntılrı kullnılrk u denklemler şu şekilde düzenleneilir: sin cos cos cos sin cos sin cos sin sin (1) () (3) 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-4

5 Mohr Çemeri, Asl Gerilmeler ve Mksimum Km Gerilmesi (1)ve (3) nolu denklemler eniden düzenlenip kreleri lınrk trf trf toplnırs prmetrik ir dire denklemi elde edilir cos sin sin cos ort R ort ort ;R Mohr Çemerinin Çizimi Y düzlemi X düzlemi ( ) ( ) Verilen düzlem gerilme durumu için X ve Y düzlemlerindeki gerilmelere krşılık gelen noktlr σ-τ eksenlerinde işretlenir. Bu iki noktı çp kul eden ir çemer çizilir. Çemerin merkezi (C noktsı) orijinden (O noktsı) σ ort kdr uzkt er lır. min ort m K Mohr Çemeri m,min p tn ort R 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-5

6 En üük ve en küçük norml gerilmeleri (sl gerilmeler) Mohr çemerinden de rhtlıkl ulunilir: m,min Asl gerilmelerin medn geldiği düzlemlerde km gerilmeleri 0 dır. Bun göre sl gerilme doğrultulrını (θ p ) veren ğıntı: 0 tn p Gerilme elemnı üzerinde θ kdr ir dönme Mohr Çemeri üzerinde θ kdr ir dönmee krşılık gelmektedir. Burd θp rlrınd 90 o ulunn iki sl gerilme doğrultusunu göstermektedir. Mksimum km gerilmeleri m R Burd θ s rlrınd 90 o ort tn s ulunn iki mksimum km gerilme düzleminin normlini vermektedir. θ p ile θ s rsınd 45 o lik ir çı vrdır. Mksimum km gerilmeleri ortlm norml gerilme düzlemlerinde medn gelir. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-6

7 Örnek: c MP 45 MP 10 MP Ynd verilen gerilme durumu için; ) Asl gerilmeler ve doğrultulrını ulrk ir gerilme elemnı üzerinde gösteriniz, ) c düzlemindeki norml ve km gerilmelerinin değerini hesplınız. Burd nlitik çözüm verilmiştir (Mohr çemeri ile de çözüm pılilir). 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-7

8 Örnek: Eksenel ükleme için Mohr çemeri P, 0 A 45lik doğ. için Örnek: Sf urulm (pure torsion) durumu için Mohr çemeri P A 0 Tc J 45lik doğ. Tc J için The McGrw-Hill Compnies, Inc. All rights reserved. 7-8

9 Örnek: Şekildeki düzlem gerilme durumu için () sl gerilmeleri ve doğrultulrını, () mksimum km gerilmelerini ve düzlemlerini, ulunn düzlemlerdeki norml gerilmeleri ulunuz. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-9

10 Örnek: Şekildeki düzlem gerilme durumu için Mohr Çemerini çizerek () sl gerilmeleri ve doğrultulrını/düzlemlerini, () mksimum km gerilmelerini ve düzlemlerini, ulunn düzlemlerdeki norml gerilmeleri ulunuz. ort MP CF MP FX 40 MP Yrıçp: R CX MP Asl gerilmeler ve düzlemleri : m OA OC CA 0 50 m 70MP min OB OC BC 0 50 min 30 MP FX tn p CF p 6. 6 p The McGrw-Hill Compnies, Inc. All rights reserved. 7-10

11 Mksimum km gerilmeleri ve düzlemleri/doğrultulrı m R m 50 MP 45 s p ort s MP 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-11

12 Örnek: Şekildeki düzlem gerilme durumu için () sl gerilmeleri ve doğrultulrını, () elemnın 30 derece döndürülmesile elde edilen üzelerdeki gerilmeleri ulunuz. ve R MP CF FX MP XF 48 tn p.4 CF 0 p p clockwise m m min min OA OC CA MP OA OC BC MP θ=30 deki gerilmeler OK OC KC 80 5cos5.6 OL OC CL 80 5cos5.6 KX 5sin MP MP 41.3MP 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-1

13 Örnek: 600 N luk kuvvet D noktsınd z eksenine prlel olrk şekildeki diresel kesitli dirseğe etkimektedir. Bun göre; H noktsındki ir gerilme elmnı (- düzleminde) üzerinde ) medn gelen norml ve km gerilmelerini gösteriniz, ) sl gerilmeleri ve doğrultulrını ulunuz. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-13

14 Örnek: Dış çpı 300 mm oln şekildeki çelik oru 6 mm et klınlığındki ir sçın kntılmsıl (.5 lik helis çısıl) üretilmiştir. P=160 kn ve T= 800 N.m için knğ prlel (teğet) ve dik doğrultulrdki gerilmeleri (km gerilmesi ve norml gerilme ) ulunuz. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-14

15 Örnek: 19.5 kn luk kuvvet D noktsınd şekildeki gii 60 mm çplı diresel kesitli dirseğe etkimektedir. Bun göre; H ve K noktlrındki sl gerilmeleri ve mksimum km gerilmelerini ulunuz ve doğrultulrı ile irlikte gösteriniz. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-15

16 Genel gerilme durumund dönüşüm ğıntılrı ve Mohr Çemeri z C B A ABC noktlrındn geçen ve üze normli N oln (doğrultmn kosinüsleri λ, λ, λ z ) ir düzlemde kesim pılırs: z Sttik dengeden F n 0 α, β ve γ üze normlinin (N) sırsıl, ve z eksenlerile ptığı çılr olmk üzere: λ =cos α, λ =cosβ, λ z =cos γ Herhngi ir N doğrultusundki norml gerilme (not: km gerilmeleri de enzer şekilde ulunilir) n z z z z z z 3 outlu küik gerilme elemnın etkien kuvvetler sdece norml gerilme/sl gerilme ise (ni km n c c gerilmeleri oks): 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-16

17 Üç outlu durum için Mohr Çemeri: σ c σ σ Her ir dire/çemer; küik gerilme elemnının sl gerilme eksenleri etrfınd döndürülmesile oluşn norml ve km gerilmelerini göstermektedir. Yni,şekildeki BC çemeri etrfındki ir dönmee, AC çemeri etrfındki ir dönmee, AB çemeri c etrfındki ir dönmee krşılık gelmektedir. En üük km gerilmesi üük çemerin rıçpın krşılık gelmektedir: m 1 m min Not: Dh önce düzlem gerilme durumund sl gerilme hesplnmıştı. Anck gerçekte değeri 0 d ols üçüncü ir sl gerilme de vrdır. Mohr çemerleri un göre oluşturulilir. Özellikle düzlem durum için ulunn σ m ve σ min değerlerinin ikisi de pozitif ve ikisi de negtif ise; üçüncü gerilmenin 0 olrk göz önüne lınmsı son derece önemlidir. Çünkü mksimum km gerilmesi değeri ve km düzlemi değişmektedir. τ m düzlem içi (in-plne) km neden olur. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-17

18 Örnek: Şekildeki düzlem gerilme durumu için () sl gerilmeleri ve doğrultulrını, () mksimum km gerilmelerini ulunuz. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-18

19 Akm ve Kırılm Kriterleri (Düzlem Gerilme) Eksenel olmn üklere mruz mkin prçlrınd hsrın medn gelip gelmeeceğini thmin etmek için çeşitli teoriler geliştirilmiştir. Bu teorilerde genellikle, sl gerilme ileşenleri göz önüne lınrk eşdeğer ir gerilme değeri ulunmkt ve u değer eksenel üklemedeki km ve kırılm mukvemet değerleri ile krşılştırılmktdır. 1- Sünek Mlzemeler için Akm Kriterleri Mksimum Km Gerilmesi Kriteri (Tresc Kriteri): (Mimum Shering Stress Criterion, Frnsız mühendis Henri Edourd Tresc, ) Tek eksenli ükleme durumu Y Y Bu kritere göre; çok eksenli durumdki mksimum km gerilmesi, denesel olrk elde edilen tek eksenli durumdki km km gerilmesine ulştığınd mlzemede km şlr. Emnietli sınırlr içinde klmk için m Y, ni m m Asl gerilmeler ( ve ) nı işrete shipse: Asl gerilmeler ( ve ) zıt işretli ise: min Y m m olmlıdır. or Y Y 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-19

20 Çrpılm Şekil Değiştirme Enerjisi Kriteri (Von Mises Kriteri): (Mimum Distortion Energ Criterion, ugulmlı mtemtikçi Richrd von Mises, ) Bu kritere göre; irim hcim için, çok eksenli durumdki çrpılm şekil değiştirme enerjisi, denesel olrk elde edilen tek eksenli durumdki çrpılm şekil değiştirme enerjisine ulştığınd mlzemede km şlr. Kriter sl gerilmeler cinsinden şğıdki gii ifde edilir. Birim hcim için kullnıln şekil değiştirme enerjisi ğıntısı dh sonr çıkrılcktır. Akm olmmsı için 1 6G ud u Y olmlıdır: 1 0 Y Y 0 6G Y elips denklemi Von Mises Kriterlerindeki elips Tresc kriteri ile oluşturuln ltıgenin köşelerinden geçmektedir. Her iki kriter irirlerine çok kın sonuçlr vermektedir. Her iki kriterde ltıgen ile elips içinde kln noktlr emnietli gerilme değerlerini vermektedir. Von mises kriteri gerçekte dh doğru sonuçlr vermektedir. Bun krşılık Tresc kriterine göre pılck ir tsrımd emniet ktsısı dh üksek lınmış olur. Sdece urulm mruz ir diresel kesitli ir milde: m Tresc: Y Von Mises: ( ) Y Y 0. 5 Y min Y ( ) ( ) Y Y 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-0

21 Örnek: Şekildeki düzlem gerilme durumu, ir mkin prçsının kritik ir noktsındki gerilmeleri temsil etmektedir. Söz konusu çelik prçnın eksenel üklemedeki km gerilme değeri σ =50 MP olduğun göre, Tresc ve von Mises kriterlerine göre prçnın mevcut gerilme durumu için emniet ktsısını ulunuz. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-1

22 Örnek: Şekildeki BD çelik millinin km gerilme değeri σ =76 MP dır. Emniet ktsısını n= lrk, milin emnietli çpını mksimum km gerilmesi kriterine göre (Tresc) ulunuz. z P=44 kn 00 mm 150 mm 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-

23 - Gevrek Mlzemeler için Kırılm Kriterleri Mksimum Norml Gerilme Kriteri: Bu kritere göre; çok eksenli durumdki mksimum norml gerilme değeri, mlzemenin denesel olrk elde edilmiş tek eksenli durumdki kırılm değerine ulştığınd kırılm/hsr medn gelir. İç Sürtünme Teorisi -Coulom Kriteri: UC UC UT Bu kritere göre; mlzemenin hsr uğrmsınd mksimum gerilme ile erer iç sürtünme kuvvetleri de etkilidir. Gevrek mlzemelerin çeki ve sıdki mukvemet değerleri de (mlzeme içindeki süreksiz noktlr ve mlzeme kusurlrı nedenile, micro kırıklr gii) iririnden frklıdır. sm urulm / çekme UT Kriteri ifde eden şğıdki ğıntıd ve sırsıl mksimum km gerilmesini ve iç sürtünmeleri krkterize eden prmetrelerdir. Bu ktsılr sit çekme ve sm testleri ile ulunur. ( ) Sdece çekme durumund: UT UT UT, 0 ( UT UT 0 0 )...( )...(1) Sdece sm durumund:, 0 UC 0 ( UC ) (0 UC UC emniet için UC UT UC, olmlıdır....( 3 ) ) ( ) () ve (3) nolu denklemlerden UC UT UT UC UC UC UT UT UC UT UC UT 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-3

24 ve ifdeleri (1) nolu denklemde erine zılırs, hsr olmmsı için; UT UC 1 olmlıdır. UT UC UT Not: u ğıntı çıkrılırken UT ve UC İşretlerile erer (+ ve ) kullnıldı. Bu nedenle ğıntıd mutlk değer olrk zılmlıdır. Yni her ikisi de + olrk erlerine zılmlıdır. UT UC UT Örnek: Dökme demirden iml edilmiş şekildeki kolun çekme ve smdki mukvemet değerleri sırsıl σ UT =180 MP ve σ UC =300 MP dır. Emniet ktsısını n=3 olduğun göre, milin OA kısmının çpı için emniet kontrolü pınız. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-4

25 İçten sınc mruz ince cidrlı kplrd gerilmeler (düzlem gerilme) P iç sıncın mruz iki ucu kplı, ince cidrlı (r>>t) silindirde gerilmeler 1 = teğetsel gerilme, = eksenel gerilme Burd 1 ve nı zmns sl gerilmeleridir. Çünkü km gerilmesi ok. Teğetsel Gerilme σ 1 da p da σ 1 da σ da p da Fz t pr pr t Eksenel Gerilme rt p r 009 The McGrw-Hill Compnies, Inc. All rights reserved. F 0 pr t 1 m( inplne) 1 A ve B noktlrı sırsıl teğetsel gerilmei ( 1 ) ve eksenel gerilmei ( ) göstermektedir. Mksimum düzlem içi (in-plne) km gerilmesi: pr 4t Düzlem dışı (out-of-plne) mksimum km gerilmesi: m pr t Emniet kontrolünde ve tsrımd göz önüne lınmsı gereken km gerilme 7-5

26 P iç sıncın mruz ince cidrlı (r>>t) küresel kplrd gerilmeler 1 pr t Burd 1 ve nı zmns sl gerilmeleridir. Çünkü km gerilmesi ok. Her ikisi de Mohr çemerinde nı noktı gösterir. Bu nedenle; m(in 0 - plne) Üçüncü sl gerilme 0 olduğundn; mksimum km gerilmesi; m 1 1 pr 4t 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-6

27 Örnek: 1. MP lık iç sınc mruz ir hv tnkı silindirik ve küresel kısımlrdn oluşmktdır. Silindirik kısmın et klınlığı 10 mm küresel kısmın et klınlığı 8 mm ise; )Küresel ve silindirik kısımlrd medn gelen mksimum norml ve km gerilmelerini )Knk dikişinde medn gelen norml ve km gerilmelerini ulunuz. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-7

28 Düzlem şekil değiştirme ve dönüşüm ğıntılrı Düzlem şekil değiştirme durumund:, z, z z 0 Gerilme dönüşüm ğıntılrı ile şekil değiştirme dönüşüm ğıntılrı rsınd enzeşim vrdır.gerilme dönüşüm ğıntılrınd σ erine ε ve τ erine γ/ zılrk dönüşüm ğıntılrı elde edileilir. cos sin cos sin sin cos z 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-8

29 Düzlem şekil değiştirmede Mohr Çemeri Asl gerilme düzlemleri ile sl şekil değiştirme düzlemleri ve doğrultulrı nıdır. Çünkü km gerilmeleri ve dolısıl km şekil değiştirmeleri oktur (Hooke ğıntılrı). Düzlem şekil değiştirme durumund sl gerilmelerin üçüncüsü gerilmede olduğu gii 0 dır. Bu durum göz önüne lınrk Mohr çemeri çizilmeli ve mksimum km irim şekil değiştirmesi ulunmlıdır. ort ; R Asl irim şekil değiştirmeler ve doğrultulrı tn m Düzlem içi mksimum km irim şekil değiştirmesi p ve R; R min ve m R Düzlem gerilme durumu için sl şekil değiştirmeler: σ ve σ sl gerilmeler σ c =0 ise de ε c 0; E E E E c E The McGrw-Hill Compnies, Inc. All rights reserved. 7-9

30 Deformson Rozetleri: Strin-Gges Strin gges irim şekil değiştirme ölçümünde kullnıln dirençlerdir. 45 o lik ir rozet ile ve doğrudn, ise dollı olrk ölçülmüş olur: OB cos 45 1 OB cos 1 sin Arlrınd herhngi ir çı ulunn rozetler kullnılırs, - düzlemindeki norml ve km irim şekil değiştirmeleri 3 ilinmeenli 3 denklem kullnılrk ulunur. Burd ε 1, ε ve ε 3 strin gges lerden denesel olrk elde edilen değerlerdir. 1 sin sin cos 1 sin cos 1 1 cos sin sin cos 3 cos 3 sin 3 sin cos The McGrw-Hill Compnies, Inc. All rights reserved. 7-30

31 Örnek: Bir mkin prçsının serest üzeindeki ir noktdn strin gge ler ile pıln ölçümlerden rrlnılrk sl şekil değiştirmeler ε =+400 μ ve ε =-50 μ olrk hesplnmıştır. Ölçüm pıln mlzemenin Poisson ornı ν=0.3 olduğun göre; ) mksimum düzlem-içi irim km deformsonunu, ) gerçek mksimum irim km deformsonunu ulunuz (E=00 GP). 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-31

32 Örnek: T urulm momentine mruz şekildeki içi dolu mile pıştırıln ir strin gge den ε=+50 μ değeri okunmuştur. G=75 GP olduğun göre T nin değerini ulunuz. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-3

33 Örnek: Şekildeki ükleme durumu için A noktsındn okunn strin gge değerleri ε 1 =-60 μ, ε =+40 μ, ve ε 3 =+00 μ olrk okunmuştur. E=00 GP, G=79 GP ve ν=0.3 olduğun göre, ugulnn P ve Q kuvvetlerini ulunuz. 75 mm 75 mm 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-33

34 Örnek: 600 mm Bsınçlı gz tşımd kullnıln 600 mm çpındki ve 0 mm et klınlığındki ir tnkın üzeindeki ir nokt şekildeki gii oun ve enine pıştırıln strin gge lerden ε 1 =+55 μ ve ε =+60 değerleri okunmuştur. G=80 GP olduğun göre, ) tnk içindeki sıncı ve ) tnkın cidrındki sl gerilmeleri ve mksimum km gerilmesini ulunuz. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-34

35 Örnek: 600 mm çpındki ve 6 mm et klınlığındki silindirik ir tnkın (E=00 GP, ν=0.3) iç sıncını ölçmek için; tnkın üzeine tl β=18 lik çı pck şekilde ir strin gge pıştırılmıştır. Strin gge den okunn değer ε=80 μ olduğun göre, tnkın iç sıncını ulunuz. 009 The McGrw-Hill Compnies, Inc. All rights reserved. 7-35

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Beer Johnston DeWolf Mzurek ifthmechanics OF MATERIALS GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumund, ir Q noktsını üç outlu olrk temsil eden küik gerilme elemnı üzerinde 6

Detaylı

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI 5/6 ÖĞRETİ GÜZ R UKVEET 1 ERSİ FİN SORU VE EVPR SORU 1 8 P Şekildeki gerilme durumund; ) sl gerilmeleri ve düzlemlerini ulrk elemn üzerinde gösteriniz. ) ksimum km gerilmesi ve düzlemini ulrk elemn üzerinde

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 5-BÖÜM -UYGUAMA SORU VE ÇÖZÜMERİ 1. Aşğıd erilen dimi, iki otl ız lnını dikkte lınız: V (, ) (.66.1) i (.7.1) j B kış lnınd ir drm noktsı r mıdır? Vrs nerededir? Kller: 1. Akış dimidir.. Akış -otldr.

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu Fonksionlr Konu Özeti. Köklü fonksionlrın en geniş tnım kümesi: f( f( n f( g( fonksionun en geniş tnım kümesi, g( koşulunu sğln noktlr kümesidir. f( f( n f( g( tüm reel sılrd tnımlıdır. fonksionu g( in

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

ĠNCE CĠDARLI SĠLĠNDĠRDE GERĠLME VE ġekġl DEĞĠġTĠRME ANALĠZĠ DENEYĠ

ĠNCE CĠDARLI SĠLĠNDĠRDE GERĠLME VE ġekġl DEĞĠġTĠRME ANALĠZĠ DENEYĠ .C. ONDOKUZ MAYIS ÜNĠVRSĠSĠ MÜHNDĠSLĠK FAKÜLSĠ MAKĠNA MÜHNDĠSLĠĞĠ BÖLÜMÜ ĠNC CĠDARLI SĠLĠNDĠRD GRĠLM V ġkġl DĞĠġĠRM ANALĠZĠ DNYĠ HAZIRLAYANLAR Prf.Dr. rdem KOÇ Yrd.Dç.Dr. İrhim KLŞ Yrd.Dç.Dr. Keml YILDIZLI

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

ÜÇGENDE AÇI-KENAR BAĞINTILARI

ÜÇGENDE AÇI-KENAR BAĞINTILARI ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs,

Detaylı

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2 Sf No.........................................................8-7 Prol....................................................................... 9 - Etkinlikler.....................................................................

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI RENLER RENLER renler çlışmlrı itiriyle kvrmlr enzerler. Kvrmlr ir hreketin vey momentin diğer trf iletilmesini sğlrlr ve kıs ir süre içinde iki trftki hızlr iririne eşit olur. renler ise ir trftki hreketi

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Ders Notu: Hri ACAR İstnbul Teknik Üniveristesi Tel: 85 1 46 / 116 E-mil: crh@itu.edu.tr Web: http://tls.cc.itu.edu.tr/~crh

Detaylı

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA)

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA) ölüm Đzosttik-Hipersttik-Elstik Şekil Değiştirme TESİR ÇİZGİSİ ÖRNEKLERİ Ypı sistemlerinin mruz kldığı temel yükler sit ve hreketli yüklerdir. Sit yükler için çözümler önceki konulrd ypılmıştır. Hreketli

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z.

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z. İNTEGRAL İLE ALAN HESABI UYARI =f() =f() =f() [,] rlığınd f() işret değiştiriors, f onksi on prçlr rılır =f() Şekilde =f() eğrisile ekseni ltınd kln lnı ulmk için eğrinin ltınd kln ölgei dikdörtgenlere

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC ÜÇGNLR TRİGONOMTRİK ÖZLLİKLR. Kosinüs Teoremi: Herhngi ir üçgeninin, kenr uzunluklrı,, ise; = +... os = +... os = +... os İspt: Şekilde görüldüğü üçgeni, köşesi ile orijin, kenrı ile ekseni ile çkışk şekilde

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

TEST SORULARI Adı /Soyadı : No : İmza: STATİK FİNAL SINAVI. Öğrenci No

TEST SORULARI Adı /Soyadı : No : İmza: STATİK FİNAL SINAVI. Öğrenci No -0-00 dı /Sodı : No : İmz: STTİK FİN SINVI Öğrenci No 00000 z m Şekildeki kirişinde bğ kuvvetlerin bulunuz. =(+e)n/m, =5(+e)N m m Şekildeki ğırlıksız blok det pndül k ve noktsınd küresel mfsl ile dengededir.

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır.

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır. LİNEER CEBİR MTRİSLER: i,,,...,m ve j,,,..., n için ij sılrının. m m...... n n mn şeklindeki tblosun mn tipinde bir mtris denir. [ ij ] mn şeklinde gösterilir. m stır, n sütun sısıdır. 5 mtrisi için ;

Detaylı

DERS 3. Doğrusal Fonksiyonlar, Quadratic Fonksiyonlar, Polinomlar

DERS 3. Doğrusal Fonksiyonlar, Quadratic Fonksiyonlar, Polinomlar DERS 3 Doğrusl Fonksionlr Qudrtic Fonksionlr Polinomlr 3. Bir Fonksionun Koordint Kesişimleri(Intercepts). Bir fonksionun grfiğinin koordint eksenlerini kestiği noktlr o fonksionun koordint kesişimleri

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. YÖNLÜ

Detaylı

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan KAT CİSİMLERİN HACİMLERİ Örnek...2 : =2, =4, =2, = 5 doğrulrı rsınd kln ölgenin O ekseni etrfınd 360 o döndürülm esi le oluşck ktı cism in hcm ini ulunuz İNTEGRAL İLE HACİM HESAB 1. X EKSENİNDE DÖNDÜRMELER

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

ENERJİ METOTLARI: Eksenel Yüklemede Şekil değiştirme Enerjisi

ENERJİ METOTLARI: Eksenel Yüklemede Şekil değiştirme Enerjisi ifthmechanics OF MATERIAS Beer Johnston DeWolf Mzrek ENERJİ METOTARI: Eksenel Yükleede Şekil değiştire Enerisi d zsı için pıln iş: d d eleentr work zsı için pıln topl iş: d totl work strin energ ineer

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MATEMATİK DENEME ÇÖZÜMLERİ Deneme -. A) - - + B) - 7 - + C) 5-5 - 5 +. + m ; + me + > H + D) - 5 - + E) 7- - + Sılrın plrı eşit olduğun göre, pdsı en üük oln sı en küçüktür. Bun göre A seçeneğindeki

Detaylı

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir?

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir? 98 ÜYS Sorulrı. r top kumşın önce, sonr d klnın ü 5 stılıor. Gere 6 m kumş kldığın göre, kumşın tümü kç metredr? ) 7 ) 65 ) 6 ) 55 ) 5 4. r şekln, u brm uzunluğun göre ln ölçüsü, v brm uzunluğun göre ln

Detaylı

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

İntegralin Uygulamaları

İntegralin Uygulamaları Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini

Detaylı

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş Mukavemet-II Yrd.Doç.Dr. Akın Ataş Bölüm 7 Gerilme ve Şekil Değiştirme Dönüşümleri Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University CHAPTER BÖLÜM MECHANICS MUKAVEMET OF I MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Basit Eğilme Lecture Notes: J. Walt Oler Teas Tech Universit Düzenleen: Era Arslan 2002 The McGraw-Hill

Detaylı

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c.

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c. Syıl Devreler (Lojik Devreleri) Tümleştirilmiş Kominezonl Devre Elemnlrı Syıl itemlerin gerçekleştirilmeinde çokç kullnıln lojik devreler, klik ğlçlrın ir ry getirilmeiyle tümleştirilmiş devre olrk üretilirler

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

BÖLÜM 6: KABLOLAR 6.1. KABLOLAR

BÖLÜM 6: KABLOLAR 6.1. KABLOLAR ÖLÜM 6 KLOLR ÖLÜM 6: KLOLR 6.. KLOLR Kllr, mühendislikte kullnıln tşııcı sistemlerden iridir. rihe kıldığınd çk önceleri kullnılmış ln ir tşııcı sistem lduğu görülmektedir. Kllr,. sm köprülerde. Enerji

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

Kırılma Hipotezleri. Makine Elemanları. Eşdeğer Gerilme ve Hasar (Kırılma ve Akma) Hipotezleri

Kırılma Hipotezleri. Makine Elemanları. Eşdeğer Gerilme ve Hasar (Kırılma ve Akma) Hipotezleri Makine Elemanları Eşdeğer Gerilme ve Hasar (Kırılma ve Akma) Hipotezleri BİLEŞİK GERİLMELER Kırılma Hipotezleri İki veya üç eksenli değişik gerilme hallerinde meydana gelen zorlanmalardır. En fazla rastlanılan

Detaylı

AKMA VE KIRILMA KRİTERLERİ

AKMA VE KIRILMA KRİTERLERİ AKMA VE KIRILMA KRİERLERİ Bir malzemenin herhangi bir noktasında gerilme değerlerinin tümü belli iken, o noktada hasar oluşup oluşmayacağına dair farklı teoriler ve kriterler vardır. Malzeme sünek ise

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS)

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS) BOYU ANAİZİ- (IMENSIONA ANAYSIS Boyut nlizi deneysel ölçümlerde ğımlı ve ğımsız deney değişkenleri rsındki krmşık ifdeleri elirlemekte kullnıln ir yöntemdir. eneylerde ölçülen tüm fiziksel üyüklükler temel

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

2010 Ağustos. MİLLER ve KİRİŞLER. 06a. Özet. M. Güven KUTAY

2010 Ağustos.  MİLLER ve KİRİŞLER. 06a. Özet. M. Güven KUTAY 00 ğustos www.guven-kut.ch İR ve KİRİŞR 0 Özet. Güven KUTY İ Ç İ N D K İ R Ortdn tek kuvvet etkisindeki klsik kiriş... simetrik tek kuvvet etkisindeki klsik kiriş... 5 Simetrik iki kuvvet etkisindeki klsik

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS Rsonel Sılr YILLAR 00 00 00 00 00 00 00 00 00 0 ÖSS-YGS RASYONEL SAYILAR KESĐR: Z ve 0 olmk üzere şeklindeki ifdelere kesir denir p pd kesirçizgisi KESĐR ÇEŞĐTLERĐ: kesri için i) < ise kesir sit kesirdir

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS 009 he MGraw-Hill Companies, In. All rights reserved. - Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS ( τ ) df da Uygulanan

Detaylı

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR ORTÖĞRETĐM ÖĞRENĐLERĐ RSI RŞTIRM ROJELERĐ YRIŞMSI (2008 2009) ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTLR rojeyi Hzırlyn Öğrencilerin dı Soydı : Sinem ÇKIR Sınıf ve Şuesi : 11- dı Soydı : Fund ERDĐ Sınıf ve Şuesi

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

9. SINIF GEOMETRİ KONU ANLATIMLI SORU BANKASI

9. SINIF GEOMETRİ KONU ANLATIMLI SORU BANKASI 9. SINI GMTRİ NU NLTIMLI SRU NSI u kitb n her hkk skl d r ve kstrem Y nc l k ittir. itb it metin ve sorulr, knk gösterilerek de ols kulln lmz. itb n hz rln fl öntemi tklit edilemez. ISN : 978 0 7 0 steme

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ TÜNEL DERSİ

YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ TÜNEL DERSİ YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ TÜNEL DERSİ TÜNELLERDE STABİLİTE ANALİZİNİN KAYA KÜTLESİNİN TEK EKSENLİ BASINÇ DAYANIM KAVRAMI ile BELİRLENMESİ ve HOEK vd. YENİLME ÖLÇÜTÜNÜN KAYMA

Detaylı

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır.

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır. YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS /LYS - - - 0/ 0/ ĐŞLEM ( ) ( ) (+ ) ( ) 7 6 76+ bulunur ve e bğlı bütün tnımlı fonksionlr bir işlem belirtir i göstermek için +,,*, gibi işretler kullnılır

Detaylı

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır? 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21.

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21. Deneme - / Mt MATMATİK DNMSİ. - + -. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur.. + + ulunur. ( ) c m + c m. cc m m. c m.. ulunur. evp evp. Sekiz smklı herhngi ir özel syı cdefgh

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı

TEST 17-1 KONU KÜRESEL AYNALAR. Çözümlerİ ÇÖZÜMLERİ 6. K Çukur aynada cisim merkezin dışında ise görüntü

TEST 17-1 KONU KÜRESEL AYNALAR. Çözümlerİ ÇÖZÜMLERİ 6. K Çukur aynada cisim merkezin dışında ise görüntü OU 17 ÜRS R - - - - Çözümler S 17-1 ÇÖÜR 5. α 1. - - - - ve ynlış çizilmiş olup doğru çizimleri yukrıd verilmiştir.. sü ise doğru çizilmiştir. Cevp: Odk nin sğınddır. den çizilen doğru normldir. Bundn

Detaylı

YGS GEOMETRİ KONU ANLATIMLI SORU BANKASI

YGS GEOMETRİ KONU ANLATIMLI SORU BANKASI YGS GMTRİ NU NLTIMLI SRU NSI u kitb n her hkk skl d r ve kstrem Y nc l k ittir. itb it metin ve sorulr, knk gösterilerek de ols kulln lmz. itb n hz rln fl öntemi tklit edilemez. ISN : 978 0 0 7 0 steme

Detaylı

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Nisn 99 Mtemtik Sorulrı ve Çözümleri (0,0 0,8) işleminin sonucu kçtır? 0,00 A) 00 B) 0 C) D), E) 0, Çözüm (0,0 0,00 0,8) 0, 0,00 0, 0,00 0 işleminin sonucu kçtır? A) B) C)

Detaylı

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ

Detaylı

İkinci Dereceden Denklemler

İkinci Dereceden Denklemler İkini Dereeden Denkleler İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :,, R ve olk üzere + + denkleine, ikini dereeden ir ilineyenli denkle denir Bu denkledeki,, gerçel syılrın ktsyılr, e ilineyen

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı.,, z rdışık pozitif tmsılr ve z olmk üzere; z olduğun göre, kçtır? C). olduğun göre, ifdesinin değeri şğıdkilerden hngisidir? C) 8 6., b, c Z olmk üzere; b c bc c b olduğun göre,,

Detaylı

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Gerilme ve Şekil değiştirme bileşenlerinin lineer ilişkileri Hooke Yasası olarak bilinir. Elastisite Modülü (Young Modülü) Tek boyutlu Hooke

Detaylı

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir. FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle

Detaylı

Çekme testi ve gerilme-birim uzama diyagramı

Çekme testi ve gerilme-birim uzama diyagramı MCHANICS OF MATRIALS Beer Johnston DeWolf Maurek Çekme testi ve gerilme-birim uama diagramı Sünek bir maleme için çekme testi diagramı P P Lo P 2009 The McGraw-Hill Companies, Inc All rights reserved -

Detaylı

DENEY 2 Wheatstone Köprüsü

DENEY 2 Wheatstone Köprüsü 0-05 Güz ULUDĞ ÜNİESİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTİK-ELEKTONİK MÜHENDİSLİĞİ ÖLÜMÜ EEM0 Elektrik Devreleri Lorturı I 0-05 DENEY Whetstone Köprüsü Deneyi Ypnın Değerlendirme dı Soydı : Deney Sonuçlrı (0/00)

Detaylı

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir? MTEMTİK TESTİ 1 1 1 1 1. + 4 4 1 ) 0 ) 4 işleminin sonucu kçtır? ) 1 ) 1., irer gerçek syı ve + < 3tür. u syılrın syı doğrusund gösterilişi şğıdkilerden hngisindeki gii olilir? ) -3 - -1 0 1 3 ) -3 - -1

Detaylı

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160 8 ÖSS. Bir çiftlikte 800 koun 00 inek ve 600 mnd vrdır. Bu hvnlrın tümü bir dire grfikle gösterilirse ineklerle ilgili dilimin merkez çısı kç derece olur? A) 60 B) 0 C) 0 D) 0 E) 60 6. 0 - =p olduğun göre

Detaylı

1.BÖLÜM SORU. (x+3) (4x 2 13) = 3(x+3) denklemini sa layan x de- erlerinin çarp m kaçt r? x+3 kümesi afla dakilerden hangisidir?

1.BÖLÜM SORU. (x+3) (4x 2 13) = 3(x+3) denklemini sa layan x de- erlerinin çarp m kaçt r? x+3 kümesi afla dakilerden hangisidir? 1.BÖLÜM MATEMAT K Derginin u s s nd kinci Dereceden Denklemler, Eflitsizlikler ve Prol konusund çözümlü sorulr er lmktd r. Bu konud, ÖSS de ç kn sorulr n çözümü için gerekli temel ilgileri ve prtik ollr,

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı T.C. MİLLÎ EĞİTİM BKNLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve çıköğretim Kurumlrı Dire Bşknlığı KİTPÇIK TÜRÜ T.C. SĞLIK BKNLIĞI PERSONELİNİN UNVN DEĞİŞİKLİĞİ SINVI 43. GRUP: ELEKTRİK

Detaylı

Harita Dik Koordinat Sistemi

Harita Dik Koordinat Sistemi Hrit Dik Koordint Sistemi Noktlrın ir düzlem içinde irirlerine göre konumlrını elirlemek için, iririni dik çı ltınd kesen iki doğru kullnılır. Bun dik koordint sistemi denir. + X (sis) Açı üyütme Yönü

Detaylı

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q Elektrosttik(Özet) Coulomb Yssı Noktsl bir q yükünün kendisinden r kdr uzktki bir Q yüküne uyguldığı kuvvet, şğıdki Coulomb yssı ile ifde edilir: F = 1 qq ˆr (1) r2 burd boşluğun elektriksel geçirgenlik

Detaylı

ÜNİTE - 9 GEOMETRİK CİSİMLER

ÜNİTE - 9 GEOMETRİK CİSİMLER ÜNİ - 9 GMRİK İSİMLR KI İSİMLRİN YÜZY LNLRI V İMLRİ RİZMLR Q ve Q birbirine prlel iki düzlem olsun. iri, diğeri Q düzlemindeki birbirine eş iki çokgenin köşeleri krşılıklı olrk birleştirilirse elde edilen

Detaylı

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır? 987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı

Detaylı

1.Hafta. Statik ve temel prensipler. Kuvvet. Moment. Statik-Mukavemet MEKANİK

1.Hafta. Statik ve temel prensipler. Kuvvet. Moment. Statik-Mukavemet MEKANİK Ders Notlrı 1.hft 1.Hft Sttik ve temel prensipler Kuvvet Moment MEKNİK Kuvvetlerin etkisi ltınd kln cisimlerin denge ve hreket şrtlrını nltn ve inceleyen bilim dlıdır. Meknikte incelenen cisimler Rijit

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

MATERIALS. Değiştirme Dönüşümleri. (Kitapta Bölüm 7) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf

MATERIALS. Değiştirme Dönüşümleri. (Kitapta Bölüm 7) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf 00 The McGraw-Hill Companies, Inc. All rights reserved. Third E CHAPTER BÖLÜM 8 Gerilme MECHANICS MUKAVEMET OF II MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt

Detaylı

STATİK-MUKAVEMET 1. YIL İÇİ SINAVI m m. 4.5 m

STATİK-MUKAVEMET 1. YIL İÇİ SINAVI m m. 4.5 m dı /Soadı : No : İmza: STTİK-MUKVEMET 1. YI İÇİ SINVI 06-11-2013 Örnek Öğrenci No 010030403 abcd DF deki çekme kuvveti 15(a+c)kN olduğuna göre E noktasındaki bağ kuvvetlerini 20 kn 20 kn 20 kn 20 kn h

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

M b. bh 12. I x

M b. bh 12. I x dı /Soadı : No : İmza: MUKVEMET. YL İÇİ SNV --00 Örnek Öğrenci No 00030403 ---------------acde aşap cm 6cm cm G d Şekildeki rijit çuuğu, noktasında mafsallı ağlı, ile noktası arasında q aılı kuvveti etkimektedir.

Detaylı

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ DENEY NO: 4 THÉENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DERE PARAMETRELERİ Mlzeme ve Cihz Litei:. 330 direnç det. k direnç 3 det 3.. k direnç det 4. 3.3 k direnç det 5. 5.6 k direnç det 6. 0 k direnç det

Detaylı

LYS1 / 1.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ

LYS1 / 1.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ .. (,! Z ) min için! `, j LYS /.NM MTMTİK TSTİ ÇÖZÜMLRİ evp:. {,,,,,, 7,, 9} Z/'te $ 7,,. $,,. $ 9,,. k ve k ve k ve k f p f p f p f pf pf p evp:. ` j! k 7 ` j! ` j` j 7 ` j!! `-j! `- j!!!.. b. c b c b

Detaylı

2. BÖLÜM AKIŞKANLARIN STATİĞİ

2. BÖLÜM AKIŞKANLARIN STATİĞİ . BÖLÜM AKIŞKANLARIN STATİĞİ Akışknlr mekniğinin birçok probleminde reket yoktur. Bu tip problemlerde durn bir kışkn içinde bsınç dğılımı ve bu bsınç dğılımının ktı yüzeylere ve yüzen vey dlmış cisimlere

Detaylı