Elektromanyetik Dalga Teorisi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Elektromanyetik Dalga Teorisi"

Transkript

1 lkomanyk Dalga Tos Ds-1 Dfansyl Fomda awll Dnklml İngal Fomda awll Dnklml Fazöln Kullanımı Zamanda amonk Alanla alzm Oamı Dalga Dnklml

2 B awll Dnklmlnn Dfansyl Fomu D. D ρ. B Faaday Kanunu Amp Kanunu Gauss Kanunu anyk Gauss Kanunu

3 awll Dnklmlnn Dfansyl Fomu B D. D ρ. B D B lkk Alan Şdd [V/m] anyk Alan Şdd [A/m] lkk Akı Yoğunluğu [C/m ] anyk Akı Yoğunluğu [Wb/m ] ρ lkk Akım Yoğunluğu [Amp/m ] lkk Yük Yoğunluğu [Coulomb/m 3 ]

4 Smk awll Dnklml B D. D ρ. B Yanda vln dnklml Asmk awll Dnklmld. Smnn sağlanması çn manyk kaynak v klnmld. Bu duumda smk awll Dnklml aşağıdak gb ld dl. m ρ B D. D ρ. B m ρ

5 İngal Fomda awll Dnklml ds B d S C. ds D d S C. dv ds D v S. ρ dv ds B v m S. ρ

6 Fazöln Kullanımı B snüzodal skal nclğn önğn akımının anlık zaman-bağımlı fads b kosnüs vya b snüs fonksyonu olaak yazılabl. ğ fans olaak kosnüs fonksyonunu sçsk bulunan üm sonuçla kosnüs fonksyonuna dayanacakı. B snüzodal nclğn bllms üç paam blgs gk : Gnlk fkans v faz. I.cos φ Gnlk Açısal fkans πf Faz açısı

7 Fazöln Kullanımı y ssk snüs fonksyonu olaak da yazablz. Rfansımız kosnüs olduğu çn faza π/ kln. I.sn φ φ φ π /

8 Fazöln Kullanımı Fazöl komplks nclkln gnlk v faz blgs çn kuupsal bçmld. I.cos φ Fazö gösm I I. s φ

9 Akım fazöü I s dn anlık pks I s y l çapıp sonucun l kısmını alaak bulunabl..cos sn.cos R. R.. R R φ φ φ φ φ I I I I I I s φ s I I. Fazöln Kullanımı

10 Aşağıdak akım fonksyonlaının I s fazö fadln kosnüs fansı kullanaak yazınız. o a I.cos 3 b I.sn.π Kosnüs fansı çn R I s yazaız. [ ] a o 3 I.cos 3 R I.. I s I. 3 o I. π / 6 b [ ].π π / I.sn.π R I... I s I..π. π / I..3π o

11 Aşağıdak fazöl çn kosnüs fansını kullanaak anlık v fadln ld dnz / V b V V a s s π [ ] 4 /.cos.. R 4 / π π V V v o a [ ] cos R /3.an 1 o s v V o o b

12 Taşıdığı açısal fkansı olan anlık lkk alan aşağıdak gb yazılabl: amonk awll Dnklml.cos φ o Fazö alan; φ o. ]. R[ o

13 B D. D ρ. B m ρ amonk awll Dnklml

14 alzm Oamı Boşluğun manyk gçgnlk kasayısı 4π 1-7 [ny/m] Boşluğun dlkk kasayısı 1/36π 1 9 [Faad/m] χ lkksl duyalılık χ m anyksl duyalılık P B P D m... χ χ m χ χ lkk polazasyon vköü [C/m ] anyk polazasyon vköü [Amp/m]

15 İlknd Akım Yoğunluğu İlkn v kayıplı b oama lkk alan uygulandığında lknlk akımı mydana gl. Ohm kanununa gö lknlk akım yoğunluğu uygulanan lkk alan l oanılıdı. c σ. v σ oam paamld v sıasıyla kapas C ndükans L v kondükans G l lgld. lkk akımını aşağıdak gb yazablz. c : : c Oama dışaıdan uygulanan akım kaynağı İlknlk akım yoğunluğu

16 İlknd Akım Yoğunluğu Bçok oam bazı manyk malzml haç manyk açıdan kayıpsızdı. anyk lknlk akımı c sıfıdı. Dolayısıyla manyk akım: d. Bu duumda awll dnklmln yndn düznlsk: c σ σ σ c σ σ σ >> 1 << 1 σ σ 1 Kayıp ananı loss angn; lknlk akımının ndn olduğu n kaybının dcsn gös. s y lkn s y yalıkan

17 Pyodk Dalga y Dalga boyu λ A gnlk T/4 T pyo

18 B dalganın mamaksl anımı B snüzodal dalga dalga fonksyonu l asv dl: Açısal fkans Dalga hızı π f f λ v y Acos[ Acos[ / v ] Acos π f / v] / v yönünd hak dn snüzodal dalga f 1/T Acos π / λ / T pyo Dalga Boyu

19 B dalganın mamaksl anımı Dalga sayısı k π / λ y Acos k

20 B dalganın mamaksl anımı Snüzodal dalgada paçacık hızı v vms cos k A y cos sn y k A y a k A y v y y ız İvm Ayıca cos y k k A k y

21 1 1 / y v y y v y k y B dalganın mamaksl anımı

22 Dalga Dnklm v Çözüml Sını dğ poblmlnn çözümünd bnc dcdn kısm dfansyl dnklml olan awll Dnklml nn çözümü kullanılı. Ancak awll dnklml bbn kupl dnklmld. Bunun anlamı h b dnklm 1 blnmyn alandan fazlasını ç. Bu sbpl bu dnklml bbn kupl olmayan. dcdn dfansyl dnklml haln dönüşü. Bu dnklml Dalga Dnklm dn. σ ρ σ ρ σ σ 1

23 Bnz şkld knc dnklm d düznlnbl. Dalga Dnklm v Çözüml m ρ σ σ σ σ 1.

24 Vkö Dalga Dnklml ρ σ 1 m ρ σ σ 1

25 Kaynaksız Oam m ρ ρ ρ σ 1 m ρ σ σ 1 σ σ

26 Kaynaksız v kayıpsız oam σ σ

27 Zamanda amonk Dalga Dnklml σ ρ 1. m σ ρ σ 1..

28 Kaynaksız oamda hamonk dalga dnklm m σ ρ σ 1.. σ ρ 1. γ γ σ γ γ σ

29 Zamanda amonk Dalga Dnklml γ γ β α β α γ σ σ γ Popagasyon yayılım Sab Zayıflama Sab Np/m Faz Sab Rad/m

30 Kayıpsız Oam β β β β β β

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi 84 lkomank Dalga Tos DRS-4 Kapl Oamda Dülm Dalgala Düşük Kapl Dlkkl İ İlknl Gup Güç v n Dülm Dalgalan Dülm Snlaa Dk Glş Kapl Oamda Dülm Dalgala ğ b oam lkn s lkk alann valğndan dola = akm akacak Bu duumda;

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi lkomank Dalga Tos DRS-4 Kapl Oamda Dülm Dalgala Düşük Kapl Dlkkl İ İlknl Gup Güç v n Dülm Dalgalan Dülm Snlaa Dk Glş Kapl Oamda Dülm Dalgala ğ b oam lkn s σ, lkk alann valğndan dola J σ akm akacak Bu duumda;

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-1 Diferansiyel Formda Maxwell Denklemleri İntegral Formda Maxwell Denklemleri Fazörlerin Kullanımı Zamanda Harmonik Alanlar Malzeme Ortamı Dalga Denklemleri Michael Faraday,

Detaylı

R DEVRESİ L DEVRESİ C DEVRESİ

R DEVRESİ L DEVRESİ C DEVRESİ 6 BÖÜM ATENATİF AKIM AIŞTIMAA - ÇÖÜME DEESİ DEESİ DEESİ f 80 4 A olu 0 snωt snπft 4vsnπ50t 4vsn00πt olu Akıın zaanla dğş dnklndn, (t) snft sn50 400 sn 4 v A olu Gln aksu dğ, 0v 0v olu Gl dnkl, (t) snft

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Noktasal Yüke Etki eden Manyetik Kuvvet Akım Elemanına Etki Eden Manyetik Kuvvet Biot-Savart Kanunu Statik Manyetik Alan Statik manyetik alan, sabit akımdan veya bir sürekli mıknatıstan

Detaylı

Hibrid Sürücülü Bir Pres Mekanizmasının Dinamik Modellemesi ve Benzetimi

Hibrid Sürücülü Bir Pres Mekanizmasının Dinamik Modellemesi ve Benzetimi Uluslaaası Kaılımlı 17. Makna Tos Smpozyumu, İzm, 1-17 Hazan 1 Hbd Süücülü B Ps Mkanzmasının Dnamk Modllms v Bnzm M. Ekan Küük * L. Canan Dülg Gazanp Ünvss Gazanp Ünvss Gazanp Gazanp Öz Çalışmada hbd süücülü

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

FİZK Ders 6. Gauss Kanunu. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü.

FİZK Ders 6. Gauss Kanunu. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü. FİZK 14- Des 6 Gauss Kanunu D. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynakla: -Fizik. Cilt (SWAY) -Fiziğin Temellei.Kitap (HALLIDAY & SNIK) -Ünivesite Fiziği (Cilt ) (SAS ve ZMANSKY) http://fizk14.aovgun.com www.aovgun.com

Detaylı

DENGELEME HESABI-I DERS NOTLARI

DENGELEME HESABI-I DERS NOTLARI DENGELEME HESABI-I DERS NOTLARI Ağırlık ve Ters Ağırlık (Kofaktör) Prof. Dr. Mualla YALÇINKAYA Yrd. Doç. Dr. Emine TANIR KAYIKÇI Karadeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü Trabzon, 016 AĞIRLIK

Detaylı

kısıtlanmamış hareket radyal mesafe ve açısal konum cinsinden ölçüldüğünde polar koordinatları kullanmak uygun olur.

kısıtlanmamış hareket radyal mesafe ve açısal konum cinsinden ölçüldüğünde polar koordinatları kullanmak uygun olur. Düzlmd ğisl haktin üçüncü tanımı pola koodinatlada yapılı; buada paçacık sabit bi başlangıç noktasından msaf uzaktadı bu adyal doğu açısıyla ölçülmktdi. Hakt adyal bi msaf açısal bi konum il kısıtlı olduğunda

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

DENEY 5: FREKANS MODÜLASYONU

DENEY 5: FREKANS MODÜLASYONU DENEY 5: FREKANS MODÜLASYONU AMAÇ: Malab da rekans modülasyonunun uygulanması ve nelenmes. ÖN HAZIRLIK 1. TEMEL TANIMLAR Açı modülasyonu, az ve rekans modülasyonunu kasamakadır. Taşıyıının rekansı veya

Detaylı

SİSTEM DİNAMİĞİ VE KONTROL

SİSTEM DİNAMİĞİ VE KONTROL ABANT İZZET BAYSA ÜNİVERSİTESİ MÜHENDİSİK MİMARIK FAKÜTESİ MAKİNE MÜHENDİSİĞİ BÖÜMÜ SİSTEM DİNAMİĞİ VE KONTRO. aplac Dönüşümli Yd. Doç. D. Tuan ŞİŞMAN - BOU . APACE DÖNÜŞÜMERİ.. Giiş Doğual dianiyl dnklmlin

Detaylı

Soru No Puan Program Çıktısı 1,3,10 1,3,10 1,3,10

Soru No Puan Program Çıktısı 1,3,10 1,3,10 1,3,10 OREN000 Final Sınavı 0.06.206 0:30 Süre: 00 dakika Öğrenci Nuarası İza Progra Adı ve Soyadı SORU. Bir silindir içerisinde 27 0 C sıcaklıkta kg hava 5 bar sabit basınçta 0.2 litre haciden 0.8 litre hace

Detaylı

FİZ102 FİZİK-II. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu Bahar Yarıyılı Bölüm-III Ankara. A.

FİZ102 FİZİK-II. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu Bahar Yarıyılı Bölüm-III Ankara. A. FİZ12 FİZİK-II Ankaa Ünivesitesi Fen Fakültesi Kimya Bölümü B-Gubu 214-215 Baha Yaıyılı Bölüm-III Ankaa A. Ozansoy Bölüm-III: Gauss Kanunu 1. lektik Akısı 2. Gauss Kanunu 3. Gauss Kanununun Uygulamalaı

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin

Detaylı

İĞİ ğ ş. ğ ş ğ ğ ğ Ş İ. ş ş. ş ğ ğ. ş ş ğ ş ş ş. ğ ş ş İ İ İ. ş ş

İĞİ ğ ş. ğ ş ğ ğ ğ Ş İ. ş ş. ş ğ ğ. ş ş ğ ş ş ş. ğ ş ş İ İ İ. ş ş İĞİ ğ ş ğ ş ğ ğ ğ ğ ş ş ş Ş İ İ İ İ ş ş ş ğ ğ ş ş ğ ş ş ş ğ ş ş ş ğ ş ş ş ş ş İ İ İ ş ş ş ğ İ ş ş ş ğ ş ş ğ ş ş ş ğ ğ ş ş ş ğ ş ş ş ğ ğ ş ş ğ ş ğ ğ ğ ş ş ğ ğ ş ş ğ ş ğ ğ ş ğ İ ğ ğ ş ğ ğ ş ş ğ ş ğ ğ ş ş

Detaylı

ö Ö ğ

ö Ö ğ Ü ö ö ö Ğ ğ Ü Ğ Ğ Ö ğ ö ö ğ «ö Ö ğ Ü Ü Ü Ğ Ö Ö Ü Ğ ğ ö ö Ö ğ ğ ğ ğ ö ğ ğ Ü ğ ğ ğ ö ğ Ü ğ ğ ö ğ ğ ğ ğ Ü Ü ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ö ğ ğ Ö ö ğ ğ ö ğ ğ ö» ğ ö ğ ğ ğ ğ ö ğ ğ ö ö ö ö ğ Ö ğ Ğ ğ ö

Detaylı

Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç ç ç ç İ ğ ç ğ ç ğ ç ç ğ

Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç ç ç ç İ ğ ç ğ ç ğ ç ç ğ İ Ü İ İ İ ç ğ ğ ç ç Ğ «Ö Ğ ğ ç ğ ç ğ ç ç ğ ğ ç ğ ç ğ ç ğ ç ğ ç ç Ö ğ Ö ğ ç Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç

Detaylı

ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç ü ö ğ ç ç ö ç ğ ğ ç ç ö ç ö ü ğ ü Ş Ü Ü ö

ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç ü ö ğ ç ç ö ç ğ ğ ç ç ö ç ö ü ğ ü Ş Ü Ü ö ö Ş ü ö ü ö ğ ç ü Ç ç ü ğ ü ü ğ ç ö ğ ö ç ö ç ü ö ü ö ğ ü ç ö ğ ö ö ğ ğ ğ ç ö ğ ö ç ö «Ö ö ü ğ Ç ğ ğ ç ü ç ö ö ö ğ ç ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç

Detaylı

ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ

ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ ö ö ö ö ö ö ö ö ö ö ö ö ö Ş Ş ö ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ ö ö Ç Ş Ğ Ç Ş Ş Ğ ö Ü Ğ ö Ü ö ö Ü Ü Ç Ü Ç ö ö ö ö Ç ö ö ö ö Ö Ü Ö ö ö ö ö ö ö ö Ö Ü ö ö ö ö ö ö ö ö ö Ü ö ö Ö ö ö ö ö Ö ö ö ö ö Ş ö

Detaylı

Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş

Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş İ İ Ğ Ğ İ İ ş Ğ Ğ «Ğ İ Ğ ş ş ş ş ş Ç ş ş İ ş Ç ş İ İ İ ş Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş Ğ İ İ Ş Ğ ş ş İ ş ş Ş ş İ İ ş Ğ ş ş ş Ü ş ş ş İ ş Ğ ş ş ş Ş ş İ ş İ İ ş İ İ ş İ İ Ö Ü ş Ö ş ş ş İ ş ş ş ş İ ş

Detaylı

ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ

ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ İ İ İ İ İ İ İ İ İ İ Ö İ İ İ Ö İ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ Ö ğ ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ İ ğ ğ ğ Ö ğ ğ Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ Ç ğ ğ

Detaylı

ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö

ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö Ğ Ğ Ğ Ğ Ğ Ğ ş ş ş ş ş ş ş ş ş ş ş ç ç ş ş ç ö ş ö ö ş ö ö ş ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö Ğ Ğ Ğ Ğ ş Ğ ş ş ş ş ş ş ş ş ş ş ş ş ş ş ş ç ş ç ş ş ç ö ö ş ö ö ş ş ş ş ö ş ş ö Ğ Ğ Ğ Ğ ş Ğ ş Ğ ş ş ş ş ş ş

Detaylı

Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü

Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü Ü ğ ğ ğ ğ ğ ğ Ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ

Detaylı

Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ

Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ğ İ Ü Ş İ İ Ş İ Ş Ğ Ç Ö İĞİ Ç Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ İ ğ ğ ğ ğ ğ ğ Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü Ü İŞ İ İ ğ İ

Detaylı

ç ç ç ç ç

ç ç ç ç ç Ğ Ö Ş ç ç ç ç ç ç ç Ç Ş Ü Ş Ü ç ç ç ç Ö ç ç ç ç ç ç ç Ş ç ç Ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ö ç ç ç Ş ç ç ç Ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

ELEKTRİK DEVRELERİ VE DEVRE TEORİSİ

ELEKTRİK DEVRELERİ VE DEVRE TEORİSİ ELEKTRİK DEVRELERİ VE DEVRE TEORİSİ 1. Devre Elemanları ve Devre Yasaları 2. AC Devre Analizi DEVRE TEORİSİ 1 Birim Sistemleri Tarihsel süreçte CGS ve MKS gibi çeşitli birim sistemleri kullanılmış olsa

Detaylı

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble. 1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t

Detaylı

Bölüm 2: Akışkanların özellikleri. Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü

Bölüm 2: Akışkanların özellikleri. Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü Bölüm 2: Akışkanların özellikleri Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü Giriş Bir sistemin herhangi bir karakteristiğine özellik denir. Bilinenler: basınç P, sıcaklıkt,

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Amper Kanunu Manyetik Vektör Potansiyeli Maxwell in diverjans eşitliği Endüktans 1 Amper Kanununun İntegral Formu 2 Amper Kanununun İntegral Formu z- ekseni boyunca uzanan çok uzun

Detaylı

Açık Poligon Dizisinde Koordinat Hesabı

Açık Poligon Dizisinde Koordinat Hesabı Açık Polon Dzsnde Koordnat Hesabı Problem ve numaralı noktalar arasında açılacak tüneln doğrultusunu belrlemek amacıyla,,3,4, noktalarını çeren açık polon dzs tess edlmş ve şu ölçme değerler elde edlmştr.

Detaylı

NOKTA TEMASLI TRANSĐSTÖR(Bipolar Junction Transistor-BJT) ÖZEĞRĐLERĐ ve KÜÇÜK SĐNYAL MODELLENMESĐ

NOKTA TEMASLI TRANSĐSTÖR(Bipolar Junction Transistor-BJT) ÖZEĞRĐLERĐ ve KÜÇÜK SĐNYAL MODELLENMESĐ DNY NO: NOKTA TMASL TRANSĐSTÖR(ipola Junction TansistoJT ÖZĞRĐLRĐ v KÜÇÜK SĐNYAL MODLLNMSĐ DNYĐN AMA: JT lin özğilinin dnysl olaak ld dilmsinin öğnilmsi v bu ğildn mlz paamtlinin çıkaılması. DNY MALZMSĐ

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri FZM45 leko-ok 7.Hafa Feel şlkle 28 HSaı 1 7. Hafa De İçeğ Feel şlkle Yaıma Kıılma lekomayek dalgaı dalga özellkle kullaaak ışığı faklı kıılma de ah yüzeydek davaışı celeecek 28 HSaı 2 Feel şlkle-1 Şekldek

Detaylı

ş ş ğ Ö ş Ç ş ö Ü Ü Ö Ü Ç Ö ö ö ş ğ ğ Ç ğ ş Ö ş ş ğ ş ö ö ş ş ğ Ö ş ş ş Ç ğ ğ ğ ğ ş ğ ş ğ ğ ğ ö ş ğ ş ğ Ç ğ ş ş ö ğ ö ğ ş ö ğ ş ö ğ ş ş Ç ğ ö ö ş ş ğ

ş ş ğ Ö ş Ç ş ö Ü Ü Ö Ü Ç Ö ö ö ş ğ ğ Ç ğ ş Ö ş ş ğ ş ö ö ş ş ğ Ö ş ş ş Ç ğ ğ ğ ğ ş ğ ş ğ ğ ğ ö ş ğ ş ğ Ç ğ ş ş ö ğ ö ğ ş ö ğ ş ö ğ ş ş Ç ğ ö ö ş ş ğ ş ş ğ Ö ş Ç ş ö ş ğ ğ ğ ğ ş ğ ö ğ ş ş ş ğ ş ş ş ğ ş ş ğ Ü ş ş ö öş Ü ö ğ ö ğ ş ğ ş ö Ç ğ ş ö ğ ğ ş ş ş ö ş ö ğ ö ş ğ ş Ç ğ ş ş ö ş ğ ğ ş ö ş ğ Ü ş ş ğ ğ ö Ö Ç ş ö Ç ş ö Ç ş ö ş ş ö ş ö ğ ş ş ö ş ş ş ğ

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

YAPI FİZİĞİ UZMANLIK UYGULAMALARI

YAPI FİZİĞİ UZMANLIK UYGULAMALARI YAPI FİZİĞİ UZMANLIK UYGULAMALARI San. ve Tic. A.Ş. Vefabayırı Sok. No.38, 34349 Istanbul-TURKEY - Tel.:+90 212 275 3588, Fax: +90 212 267 3962, e-mail: yfu@yfu.com GONYOFOTOMETRİK ÖLÇME RAPORU Firma YFU

Detaylı

KONUM ÖLÇMELERİ DERS-3

KONUM ÖLÇMELERİ DERS-3 KONUM ÖLÇMELERİ DERS-3 Doç. Dr. Ayhan CEYLAN Yrd. Doç. Dr. İsmail ŞANLIOĞLU S.Ü. Müh. Fak. Harita Mühendisliği Bölümü, Ölçme Tekniği A.B.D. A Blok Oda no:306 Tel:3 1933 aceylan@selcuk.edu.tr 3. NİRENGİ

Detaylı

BÖLÜM 1 ELEKTRİK ALANLARI

BÖLÜM 1 ELEKTRİK ALANLARI BÖLÜM 1 ELEKTRİK ALANLARI 1.1. ELEKTRİK YÜKLERİNİN ÖZELLİKLERİ Elektk yükü aşağıdak özellklee sahpt: 1. Doğada atı ve eks olmak üzee k tü yük bulunmaktadı. Aynı yükle bblen tele, faklı yükle se bblen çekele.

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

BTZ Kara Deliği ve Grafen

BTZ Kara Deliği ve Grafen BTZ Kaa Deliği ve Gafen Ankaa YEF Günlei 015 1-14 Şubat 015, ODTÜ Ümit Etem ve B. S. Kandemi BTZ Kaa Deliği Gafen ve Eği Uzay-zamanla Beltami Tompeti ve Diac Hamiltonyeni Eneji Değelei ve Gafen Paametelei

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 5 ÖÜ EEREİ İDÜSİ DE SRU - DEİ SRURI ÇÖZÜERİ anyetk akı değşm DU = U U = 0 Wb/m olur 40cm 50cm - uçlarında oluşan ndüksyon emk sı f D DU t ( ) = 4V olur 05 Çerçevenn alanı = ab = 4050 = 000 cm = 0 m olur

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu Eylül Deneme Sınavı (Prof.Dr.Ventsslav Dmtrov) Konu: Elektrk Devrelernde İndüktans Soru. Şekldek gösterlen devrede lk anda K ve K anahtarları açıktır. K anahtarı kapatılıyor ve kondansatörün gerlm U ε/

Detaylı

Sabit Ayak. Sabit ayak konstrüksiyonu ve hesabı: Portal vinç kiriş altı sabit ayak

Sabit Ayak. Sabit ayak konstrüksiyonu ve hesabı: Portal vinç kiriş altı sabit ayak İlk aın tarihi:.7.7 www.guven-kuta.ch 5.8.7 Portal vinç kiriş altı sabit aak 4 Reference:C:\\4 PV_kN_8 Giris.cd Reference:C:\\4 PV_kN_8 Kiris_ve_UB_Genel.cd Reference:C:\\4 PV_kN_8 ak_ondegerleri.cd Sabit

Detaylı

KUANTUM, ATOM VE MOLEKÜL FİZİĞİ PROBLEMLER-1

KUANTUM, ATOM VE MOLEKÜL FİZİĞİ PROBLEMLER-1 KUANTUM, ATOM VE MOLEKÜL FİZİĞİ PROBLEMLER-1 TEST-1 1)Bir elektronun kinetik enerjisi durgun enerjisinin 4 katı olduğuna göre, elektronun hızı kaç c dir? (c:ışığın boşluktaki hızı) a) 1 b) 6 5 c) d) e)

Detaylı

Adnan GÖRÜR Duran dalga 1 / 21 DURAN DALGA

Adnan GÖRÜR Duran dalga 1 / 21 DURAN DALGA Anan GÖRÜR Duran alga 1 / 21 DURAN DAGA Uygulamalara, iletim hattı boyunca fazör voltaj veya akımının genliğini çizmek çok kolayır. Bunlara kısaca uran alga (DD) enir ve Kayıpsız Hat Kayıplı Hat V ( )

Detaylı

10 7,5 5 2,5 1,5 1 0,7 0,5 0,3 0,1 0,05 0, ,3 10 2,2 0,8 0,3

10 7,5 5 2,5 1,5 1 0,7 0,5 0,3 0,1 0,05 0, ,3 10 2,2 0,8 0,3 DENGE VERİLERİNİN HESAPLANMASI 15 C deki SO2 kısmi basınçları 100 H2O daki SO2 SO2 kısmi basıncı (mm- Hg 10 7,5 5 2,5 1,5 1 0,7 0,5 0,3 0,1 0,05 0,02 567 419 270 127 71 44 28 19,3 10 2,2 0,8 0,3 [Kütle

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için ÖRNEK mm çapında, mm uzunluğundaki bi kaymalı yatakta, muylu 9 d/dk hızla dönmekte ve kn bi adyal yükle zolanmaktadı. Radyal boşluğu. mm alaak SAE,, ve yağlaı için güç kayıplaını hesaplayınız. Çalışma

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS edinand P. Bee E. Russell Johnston, J. Des Notu: Hai ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

Sistem Özellikleri 10/7/2014. Basınç, P Sıcaklık, T. Hacim, V Kütle, m Vizkozite Isıl İletkenlik Elastik Modülü

Sistem Özellikleri 10/7/2014. Basınç, P Sıcaklık, T. Hacim, V Kütle, m Vizkozite Isıl İletkenlik Elastik Modülü 2. AKIŞKANLARIN ÖZELLİKLERİ Doç.Dr. Özgül GERÇEL Doç.Dr. Serdar GÖNCÜ (Eylül 2012) Sistem Özellikleri Basınç, Sıcaklık, emel Özellikler Hacim, V Kütle, m Vizkozite Isıl İletkenlik Elastik Modülü Diğer

Detaylı

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır? . Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de

Detaylı

KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ

KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ Uçağı havada tutan kanadın oluşturduğu taşıma kuvvetidir. Taşıma kuvvetinin hesaplanması, hangi parametrelere bağlı olarak değiştiğinin belirlenmesi önemlidir.

Detaylı

İSTATİSTİK TERMODİNAMİK

İSTATİSTİK TERMODİNAMİK MI OpnCoursWar http://ocw.mt.du 5.60 hrmodnamk v Kntk ahar 008 u malzmlr atıfta bulunmak vya kullanım şartlarını öğrnmk çn http://ocw.mt.du/trms stsn zyart dnz İSİSİK ERMODİMİK Makroskopk trmodnamk sonuçların

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

MIT Açık Ders Malzemesi İstatistiksel Mekanik II: Alanların İstatistiksel Fiziği 2008 Bahar

MIT Açık Ders Malzemesi İstatistiksel Mekanik II: Alanların İstatistiksel Fiziği 2008 Bahar MIT Açık Ders Malzemesi http://ocw.mit.edu 8.334 İstatistiksel Mekanik II: Alanların İstatistiksel Fiziği 2008 Bahar Bu malzemeye atıfta bulunmak ve ullanım Şartlarımızla ilgili bilgi almak için http://ocw.mit.edu/terms

Detaylı

FİZK Ders 5. Elektrik Alanları. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü.

FİZK Ders 5. Elektrik Alanları. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü. FİZK 104-0 Ders 5 Elektrik Alanları Dr. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynaklar: -Fizik. Cilt (SERWAY) -Fiziğin Temelleri.Kitap (HALLIDAY & RESNIK) -Üniversite Fiziği (Cilt ) (SEARS ve ZEMANSKY) http://fizk104.aovgun.com

Detaylı

z Hertz dipolü, çok küçük ve ince olduğu için üzerindeki akım sabit kabul edilir. jkr d R l / 2 l / 2 jkr z jkr z jkr z

z Hertz dipolü, çok küçük ve ince olduğu için üzerindeki akım sabit kabul edilir. jkr d R l / 2 l / 2 jkr z jkr z jkr z İnc Antnl Çaplaı boylaına gö küçük olan antnl inc antnl dni Alanlaın hsabında antnlin sonsu inc kabul dilmsi kolaylık sağla Ancak antn mpdansı bulunmak istndiğind kalınlığın iş katılması gki Ht Dipolü

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı ITAP Fizik Olimpiyat Okulu 11 Seçme Sınavı 1. Dikey yönde atılan bir taş hareketin son saniyesinde tüm yolun yarısını geçmektedir. Buna göre taşın uçuş süresinin en fazla olması için taşın zeminden ne

Detaylı

ÇOK FAZLI DEVRELER EBE-212, Ö.F.BAY 1

ÇOK FAZLI DEVRELER EBE-212, Ö.F.BAY 1 ÇOK FAL DERELER EBE-212, Ö.F.BAY 1 Üç Fazlı Devreler EBE-212, Ö.F.BAY 2 Eğer gerilim kaynaklarının genlikleri aynı ve aralarında 12 faz farkı var ise böyle bir kaynağa dengeli üç fazlı gerilim kaynağı

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Özellikler Harita Projeksiyonları Bölüm 3: Silindirik Projeksiyonlar İzdüşüm yüzeyi, küreyi saran ya da kesen bir silindir seçilir. Silindirik projeksiyonlar genellikle normal konumda ekvator bölgesinde

Detaylı

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU T.C. MARMARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU Mehmet SUCU (Teknik Öğretmen, BSc.)

Detaylı

3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri,

3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri, . ÖÜ EETİ ODE SOU - DEİ SOUN ÇÖZÜEİ. Teln kest alanı, 400 mm 4.0 4 m. a a a a n boyu,, a n kest alanı, a.a a a a Teln drenc se, ρ., 500 4.0 6. 4 5 Ω dur. 40. Telden geçen akım, ohm kanunundan, 40 48 amper

Detaylı

YAYLAR. d r =, 2 FD T =, 2. 8FD τ = , C= d. C: yay indeksi, genel olarak 6 ile 12 arasında değişen bir değerdir. : Kayma gerilmesi düzeltme faktörü

YAYLAR. d r =, 2 FD T =, 2. 8FD τ = , C= d. C: yay indeksi, genel olarak 6 ile 12 arasında değişen bir değerdir. : Kayma gerilmesi düzeltme faktörü YAYLAR τ ± Tr F max J + A, FD T, r, J, A τ F + π, C D C: yay ineksi, genel olarak 6 ile 1 arasına eğişen bir eğerir. 0.5 τ 1+ ve C τ s yazılabilir. s C + 1 C s : ayma gerilmesi üzeltme faktörü higley s

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik II Dersi Birinci Ara Sınavı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik II Dersi Birinci Ara Sınavı Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik II Dersi Birinci Ara Sınavı 27 Mart 2010 Hazırlayan: Yamaç Pehlivan Başlama saati: 11:00 Bitiş Saati: 12:20 Toplam Süre: 80 Dakika Lütfen adınızı

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI IV. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI IV. DENEY FÖYÜ EEKTİK DEEEİ-2 ABOATUAI I. DENEY FÖYÜ ATENATİF AKIM ATINDA DEE ANAİİ Amaç: Alternatif akım altında seri devresinin analizi ve deneysel olarak incelenmesi Gerekli Ekipmanlar: Güç Kaynağı, Ampermetre, oltmetre,

Detaylı

Ders 08. Elektronik Devre Tasarımı. Güç Elektroniği 1. Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir.

Ders 08. Elektronik Devre Tasarımı. Güç Elektroniği 1. Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir. Elektronik Devre Tasarımı Ders 08 Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir. www.ozersenyurt.net www.orbeetech.com / 1 AC AC DÖNÜŞTÜRÜCÜLER AC kıyıcılar (AC-AC

Detaylı

İSTATİSTİK TERMODİNAMİK

İSTATİSTİK TERMODİNAMİK MIT OpnCoursWar http://ocw.mt.du 5.60 Thrmodnamk v Kntk Bahar 2008 Bu malzmlr atıfta bulunmak vya kullanım şartlarını öğrnmk çn http://ocw.mt.du/trms stsn zyart dnz İSTATİSTİK TERMODİAMİK İstatstk mkanğn

Detaylı

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ 11. SINIF KONU ANLATIMLI. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ 4 Manyetzma 1.. Ünte 4. Konu (Manyetzma) A nın Çözümle P 1 1 3. Üzenen akımı geen yaıçaplı b halkanın

Detaylı

Yüksek lisans tezimi yöneten ve çalışmalarımda bana her türlü desteği ve ilgiyi gösteren

Yüksek lisans tezimi yöneten ve çalışmalarımda bana her türlü desteği ve ilgiyi gösteren ÖNSÖZ Yüs ss m yö v çışmım b h üü sğ v gy gös hocm Y Doç D Yş Pooğu, yımıı sgmy hocm Y Doç D Au Ş v h m yım ouıı b sıy hss m sosu şüm suım İÇİNDEKİLER ŞEKİL LİSTESİ SEMOL LİSTESİ ÖZET SUMMARY v v v v GİRİŞ

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt. ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik AC ve DC Empedans RMS değeri Bobin ve kondansatörün

Detaylı