ç- çe Tasarmlar Birdal eno lu ükrü Acta³ eno lu & Acta³ statistiksel Deney Tasarm Giri³ ki A³amal ç- çe Üç A³amal ç- çe l A³amal ç- çe

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ç- çe Tasarmlar Birdal eno lu ükrü Acta³ eno lu & Acta³ statistiksel Deney Tasarm Giri³ ki A³amal ç- çe Üç A³amal ç- çe l A³amal ç- çe"

Transkript

1 lar Birdal eno lu ükrü

2 çindekiler

3 A³amal tasarmlar (hierarchical designs) olarak da bilinen iç-içe tasarmlarda (nested designs), ³u ana kadar gördü ümüz tasarmlardan farkl olarak iki veya ikiden fazla "faktör" vardr.

4 Etkisi ara³trlmak istenen A ve B gibi iki tane faktörümüz oldu unu varsayalm. A faktörünün a, B faktörünün b düzeyi olsun. B faktörünün b düzeyi, A faktörünün a düzeyinin her birinin içinde yuvalanm³sa, bu tip tasarmlara iki a³amal iç-içe tasarm (two-stage nested design) denir. Bu durum, B faktörü, A faktörünün içinde yuvalanm³tr ³eklinde ifade edilir ve B(A) sembolü ile gösterilir.

5 Srasyla a, b ve c düzeye sahip olan A, B ve C gibi üç faktörümüz oldu unda, C faktörünün c düzeyi, B faktörünün b düzeyinin her birinin içinde, B faktörünün b düzeyi de A faktörünün a düzeyinin her birinin içinde yuvalanm³ ise bu tip tasarmlara da üç a³amal iç-içe tasarm (three-stage nested design) denir. Bu durum, C faktörü, B faktörünün içinde ve B faktörü de, A faktörünün içinde yuvalanm³tr ³eklinde ifade edilir ve srasyla C(B) ve B(A) sembolleriyle ifade edilir. Açktr ki, birbirlerinin içinde yuvalanm³ l tane faktörümüz varsa, bu tasarmlara da l a³amal iç-içe tasarm (l-stage nested design) denir.

6 2-a³amal iç-içe tasarmlarda, ara³trmadaki önemine göre d³taki faktör ana faktör (major factor), içteki faktör ise ikincil faktör (minor factor) olarak isimlendirilir, bkz. Berger & Maurer (2002). 3-a³amal ve l-a³amal iç-içe tasarmlarda da benzer tanmlamalar yaplabilir. Yuvalanm³ faktörün düzey says, d³taki faktörün her bir düzeyinde ayn ise ve her bir faktör kombinasyonundaki tekrar says n ise, iç-içe tasarmlara, dengeli iç-içe tasarmlar (balanced nested designs) ad verilir.

7 Burada dikkat edilmesi gereken husus, yuvalanm³ faktörün düzeyleri sadece yuvaland düzeye aittir. Bir ba³ka deyi³le, içteki faktörün düzeyleri d³taki faktörün her bir düzeyinde benzerdir ama ayn/özde³ de ildir, Montgomery (2001). Dolaysyla, faktörler arasnda etkile³im yoktur.

8 Örnek : Örnek A³a da detaylar verilen ders anlatma tekniklerinin T1 : Ders materyalini tepegöz kullanarak anlatmak, T2 : Ders materyalini tahtaya yazarak anlatmak, T3 : Ders materyalinin fotokopisini her dersin ba³nda ö rencilere da tmak ve dersi fotokopiler üzerinden anlatmak T4 : Ders materyalini, her dersten bir hafta önce internete koymak ve dersi soru, cevap a rlkl bir tart³ma ortam yaratarak anlatmak. ve bu teknikleri kullanarak ders anlatan ö retim görevlilerinin dönem sonu snf ba³ar ortalamasna olan etkileri ara³trlmak isteniyor. Bu amaçla, Ankara Üniversitesinde, birinci snf ö rencilerine açlan ve krk ³ubeden olu³an ngilizce dersi her bir tekni i iki ayr ö retim görevlisi kullanacak ³ekilde sekize bölünüyor. Her bir ö retim görevlisi be³er tane ³ubeye ders anlatyor.

9 : Örnek Bu örnekte, toplam 8 tane ö retim görevlisi vardr ve her bir ö retim görevlisi sadece ilgili teknik konusunda tecrübelidir. Dolaysyla, ö retim görevlisi faktörü sabit etkilidir. Benzer ³ekilde, tekniklerin de sabit etkili oldu u açktr. Bu durumda kullanlabilecek en uygun tasarm, iç-içe tasarmdr. Çünkü burada "Ders anlatma teknikleri" ve "Ö retim Görevlileri" olmak üzere iki ayr faktör vardr. "Ö retim Görevlileri" faktörünün iki düzeyi vardr ve bu düzeyler sadece ö retim görevlilerinin kullandklar ders anlatma tekni inin ilgili düzeyine aittir. Örne in, T1 tekni ini kullanan ö retim görevlileri sadece T1 tekni inde mevcuttur, T2, T3 ve T4 tekniklerini kullanan ö retim görevlileri farkl ki³ilerdir.

10 Matematiksel Model A ve B gibi iki faktörün oldu u, iki a³amal iç-içe tasarm için matematiksel model, y ijk = µ + τ i + γ j(i) + ε ijk, (1) i = 1, 2, a; j = 1, 2,, b; k = 1, 2,, n ³eklinde ifade edilir. Burada, y ijk, A faktörünün i inci düzeyinde yuvalanm³ B faktörünün j inci düzeyindeki k nc gözlem de erini, µ, genel ortalamay, τ i, A faktörünün i inci düzeyinin etkisini, γ j(i), A faktörünün i inci düzeyinde yuvalanm³ B faktörünün j inci düzeyinin etkisini ve ε ijk, rasgele hata terimlerini gösterir.

11 Matematiksel Model (1) modeli sabit etkili bir modeldir. Bir ba³ka deyi³le a b τ i = 0, γ j(i) = 0 (2) oldu u varsaylr. i=1 j=1

12 Veri Yaps (1) modelinde a = 3 ve b = 2 iken veri yaps a³a daki gibidir: A Faktörü A1 A2 A3 B Faktörü B1 B2 B1 B2 B1 B2 y 111 y 121 y 211 y 221 y 311 y 321 y 112 y 122 y 212 y 222 y 312 y y 11n y 12n y 21n y 22n y 31n y 32n... Burada, A1, A2 ve A3, A faktörünün; B1 ve B2 de B faktörünün düzeylerini göstermektedir.

13 Parametre Tahmini (1) modelinde parametrelerin LS tahmin edicileri, µ = ȳ (3) τ i = ȳ i ȳ (4) γ j(i) = ȳ ij ȳ i (5) olarak bulunur.

14 Burada, ȳ i = ȳ ij = Parametre Tahmini b n y ijk j=1 k=1 bn n k=1 n y ijk, i = 1, 2,, a;, j = 1, 2,, b ve N = abn olmak üzere, tüm gözlemlerin ortalamas, a b n y ijk i=1 j=1 k=1 ȳ = N dir. (6) (7)

15 Parametre Tahmini Hatann varyans σ 2 nin (yan düzeltmesi yaplm³) LS tahmin edicisi, a b n (y ijk µ τ i γ j(i) ) 2 σ 2 = = i=1 j=1 k=1 ab(n 1) a b n (y ijk ȳ ij ) 2 i=1 j=1 k=1 N ab (8) (9) dir.

16 Hipotez Testi (1) modelinde, A ve B faktörlerinin düzeyleri arasnda anlaml bir farkllk olup olmad snanr. Her bir durum için hipotezler, srasyla ve dir. H 01 : τ 1 = τ 2 = = τ a = 0 (10) H 02 : γ 1(1) = γ 1(2) = = γ b(a) = 0 (11)

17 Hipotez Testi: Genel Toplamnn Parçalan³ (1) modelinde genel kareler toplam a b n SS Toplam = (y ijk ȳ ) 2 (12) olarak tanmlanr ve i=1 j=1 k=1 ³eklinde bile³enlerine ayrlr. SS Toplam = SS A + SS B(A) + SS Hata (13)

18 Hipotez Testi: Genel Toplamnn Parçalan³ Burada, SS A = SS B(A) = SS Hata = a b n a (ȳ i ȳ ) 2 = bn (ȳ i ȳ ) 2 i=1 j=1 k=1 a b i=1 j=1 k=1 a b n (ȳ ij ȳ i ) 2 = n n (y ijk ȳ ij ) 2 i=1 a i=1 j=1 b (ȳ ij ȳ i ) 2 (14) i=1 j=1 k=1 dir.

19 Hipotez Testi: Test statistikleri (1) modelinde, (10) hipotezini snamak için F A = ve (11) hipotezini snamak için F B(A) = SS A /(a 1) SS Hata /(N ab) SS B(A) /a(b 1) SS Hata /(N ab) = MS A MS Hata (15) = MS B(A) MS Hata (16) test istatistikleri kullanlr.

20 Hipotez Testi: Test statistikleri Teorem (1) modelinde, H 0 hipotezi altnda, (i) F A test istatisti i, a 1 ve N ab serbestlik dereceli merkezi F da lmna sahiptir. (ii) F B(A) test istatisti i, a(b 1) ve N ab serbestlik dereceli merkezi F da lmna sahiptir.

21 Hipotez Testi: KARAR F A test istatisti inin de eri, α anlam düzeyinde, a 1 ve N ab serbestlik dereceli F tablo de erinden daha büyükse sfr hipotezi reddedilir. Bir ba³ka deyi³le, F A > F α;a 1;N ab ise "A faktörünün düzeyleri arasnda anlaml bir farkllk vardr " denir. F B(A) test istatisti inin de eri α anlam düzeyinde, a(b 1) ve N ab serbestlik dereceli F tablo de erinden daha büyükse sfr hipotezi reddedilir. Bir ba³ka deyi³le, F B(A) > F α;a(b 1);N ab ise "B faktörünün düzeyleri arasnda anlaml bir farkllk vardr " denir.

22 ANOVA TAblosu Yukarda elde edilen bilgiler ³ nda, iki a³amal iç-içe tasarm için ANOVA tablosu, a³a da gösterildi i gibi olu³turulur. Kaynak df SS MS F A a 1 SS A MS A F A B(A) a(b 1) SS B(A) MS B(A) F B(A) Hata N ab SS Hata MS Hata Genel N 1 SS Toplam

23 Matematiksel Model A, B ve C gibi üç faktörün oldu u, üç a³amal iç-içe tasarm için matematiksel model, y ijkl = µ + τ i + γ j(i) + δ k(ij) + ε ijkl, (17) i = 1, 2, a; j = 1, 2,, b; k = 1, 2,, c; l = 1, 2,, n ³eklinde ifade edilir. Burada δ k(ij) parametresi, A faktörünün i inci, B faktörünün j inci düzeyinde yuvalanm³ C faktörünün k nc düzeyinin etkisini gösteren model parametresidir. Di er parametrelerin yorumu, 7.2 bölümünde oldu u gibidir.

24 Matematiksel Model (17) modeli sabit etkili bir modeldir. Bir ba³ka deyi³le a b c τ i = 0, γ j(i) = 0, δ k(ij) = 0 (18) oldu u varsaylr. i=1 j=1 k=1

25 Parametre Tahmini (17) modelinde, parametrelerin LS tahmin edicileri, µ = ȳ (19) τ i = ȳ i ȳ (20) γ j(i) = ȳ ij ȳ i (21) δ k(ij) = ȳ ijk ȳ ij (22) (23) olarak bulunur.

26 Burada, y ijkl j=1 k=1 l=1 ȳ i = bcn c n y ijkl k=1 l=1 ȳ ij = cn n y ijkl l=1 ȳ ijk = n Parametre Tahmini b c n, i = 1, 2,, a;, j = 1, 2,, b;, k = 1, 2,, c ve N = abcn olmak üzere, tüm gözlemlerin ortalamas, (24) a b c n y ijkl ȳ = i=1 j=1 k=1 l=1 N (25) dir.

27 Parametre Tahmini Hatann varyans σ 2 nin (yan düzeltmesi yaplm³) LS tahmin edicisi, a b c n (y ijkl µ τ i γ j(i) δ k(ij) ) 2 σ 2 = = i=1 j=1 k=1 l=1 N abc a b c n (y ijkl ȳ ijk ) 2 i=1 j=1 k=1 l=1 N abc (26) (27) dir.

28 Hipotez Testi (17) modelinde, A, B ve C faktörlerinin düzeyleri arasnda anlaml bir farkllk olup olmad snanr. Her bir durum için hipotezler, srasyla H 01 : τ 1 = τ 2 = = τ a = 0 (28) H 02 : γ 1(1) = γ 1(2) = = γ b(a) = 0 (29) ve dr. H 03 : δ 1(1) = δ 1(2) = = δ c(b) = 0 (30)

29 Hipotez Testi: Genel Toplamnn Parçalan³ (17) modelinde genel kareler toplam a b c n SS Toplam = (y ijkl ȳ ) 2 (31) olarak tanmlanr ve i=1 j=1 k=1 l=1 SS Toplam = SS A + SS B(A) + SS C(B) + SS Hata (32) ³ekline bile³enlerine ayrlr.

30 Hipotez Testi: Genel Toplamnn Parçalan³ Burada, SS A = SS B(A) = SS C(B) = SS Hata = a b c n a (ȳ i ȳ ) 2 = bcn (ȳ i ȳ ) 2, i=1 j=1 k=1 l=1 a b c i=1 j=1 k=1 l=1 a b c i=1 j=1 k=1 l=1 a b c n (ȳ ij ȳ i ) 2 = cn n (ȳ ijk ȳ ij ) 2 = n n i=1 j=1 k=1 l=1 (y ijkl ȳ ijk ) 2 i=1 a i=1 j=1 a b (ȳ ij ȳ i ) 2, b c (ȳ ijk ȳ ij ) 2, i=1 j=1 k=1 (33) dir.

31 Hipotez Testi: Test statistikleri (17) modelinde, (28) hipotezini snamak için (29) hipotezini snamak için SS A /(a 1) F A = SS Hata /(N abc) SS B(A) /a(b 1) F B(A) = SS Hata /(N abc) = MS A MS Hata, (34) = MS B(A) MS Hata (35) ve (30) hipotezini snamak için SS C(B) /ab(c 1) F C(B) = SS Hata /(N abc) = MS C(B) MS Hata (36) test istatistikleri kullanlr.

32 Hipotez Testi: Test statistikleri Teorem (17) modelinde, H 0 hipotezi altnda, (i) F A test istatisti i, a 1 ve N abc serbestlik dereceli merkezi F da lmna sahiptir. (ii) F B(A) test istatisti i, a(b 1) ve N abc serbestlik dereceli merkezi F da lmna sahiptir. (iii) F C(B) test istatisti i, ab(c 1) ve N abc serbestlik dereceli merkezi F da lmna sahiptir.

33 Hipotez Testi: KARAR F A test istatisti inin de eri, α anlam düzeyinde, a 1 ve N abc serbestlik dereceli F tablo de erinden daha büyükse sfr hipotezi reddedilir. Bir ba³ka deyi³le, F A > F α;a 1;N abc ise "A faktörünün düzeyleri arasnda anlaml bir farkllk vardr" denir. F B(A) test istatisti inin de eri, α anlam düzeyinde, a(b 1) ve N abc serbestlik dereceli F tablo de erinden daha büyükse sfr hipotezi reddedilir. Bir ba³ka deyi³le, F B(A) > F α;a(b 1);N abc ise "B faktörünün düzeyleri arasnda anlaml bir farkllk vardr" denir. F C(B) test istatisti inin de eri, α anlam düzeyinde, ab(c 1) ve N abc serbestlik dereceli F tablo de erinden daha büyükse sfr hipotezi reddedilir. Bir ba³ka deyi³le, F C(B) > F α;ab(c 1);N abc ise "C faktörünün düzeyleri arasnda anlaml bir farkllk vardr" denir.

34 ANOVA TAblosu Yukarda elde edilen bilgiler ³ nda, üç a³amal iç-içe tasarm için ANOVA tablosu, a³a da gösterildi i gibi olu³turulur. Kaynak df SS MS F A a 1 SS A MS A F A B(A) a(b 1) SS B(A) MS B(A) F B(A) C(B) ab(c 1) SS C(B) MS C(B) F C(B) Hata N abc SS Hata MS Hata Genel N 1 SS Toplam

35 Matematiksel Model l a³amal iç-içe tasarm için matematiksel model, y ij klp = µ + τ i + γ j(i) + + δ l(ij k) + ε ij klp, (37) i = 1, 2,, a; j = 1, 2, b;... ; k = 1, 2,, t; l = 1, 2,, u, p = 1, 2,, n ³eklinde ifade edilir. Buradaki δ l(ij k) terimi, A faktörünün i inci, B faktörünün j inci,..., düzeyinde yuvalanm³ U faktörünün l inci düzeyini gösteren model parametresidir.

36 Parametre Tahmini ki a³amal ve üç a³amal iç-içe tasarmlarda oldu u gibi l a³amal tasarmda da model parametreleri LS yöntemi kullanlarak bulunur. Model parametrelerinin LS tahmin edicileri µ = ȳ (38) τ i = ȳ i ȳ (39) γ j(i) = ȳ ij ȳ i (40). =.. (41) δ l(ij k) = ȳ ij kl ȳ ij k (42) olur.

37 Parametre Tahmini Hatann varyans σ 2 nin (yan düzeltmesi yaplm³) LS tahmin edicisi a b u n (y ijk l ȳ ij kl ) 2 σ 2 = dir. i=1 j=1 l=1 p=1 N ab tu (43)

38 Hipotez Testi l a³amal iç-içe tasarmda, modeldeki faktörlerin düzeyleri arasnda anlaml bir farkllk olup olmad snanr. Genel kareler toplamnn bile³enlerine ayrlmasyla bu hipotezleri snamak için gereken test istatistikleri elde edilir. Genel kareler toplam, SS Toplam = SS A + SS B(A) + + SS U(T ) + SS Hata (44) ³eklinde bile³enlerine ayrlr.

39 Burada, Hipotez Testi SS A = b un SS B(A) = c un... SS U(T ) = n SS Hata = a i=1 j=1 a i=1 j=1 a (ȳ i ȳ ) 2 (45) i=1 a i=1 j=1 b b b (ȳ ij ȳ i ) 2 (46) u (ȳ ij kl ȳ ij k ) (47) l=1 t u k=1 l=1 p=1 n (y ijk lp ȳ ij kl ) 2 (48) dir.

40 Hipotez Testi toplamlarnn ilgili serbestlik derecesine bölünmesiyle, (37) modelindeki her bir faktör ve hata için kareler ortalamalar MS A = SS A a 1, MS B(A) = SS B(A) a(b 1),.. MS U(T ) = SS U(T ) ab t(u 1), MS Hata = SS Hata N ab tu (49) elde edilir.

41 Hipotez Testi (37) modelinde yer alan faktörlerin anlamll n snamak için F A = MS A MS Hata (50) F B(A) = MS B(A) MS Hata (51).. F U(T ) = MS U(T ) MS Hata (52) test istatistikleri kullanlr. E er hesaplanan F de erleri, ilgili serbestlik dereceleri ile F tablo de erinden daha büyükse sfr hipotezleri reddedilir.

42 (17) modelinde, A, B(A) ve C(B) faktörleri ve hata için beklenen kareler ortalamalar, bcn a i=1 τ 2 i E(MSE A ) = σ 2 + a 1 a b cn γj(i) 2 E(MSE B(A) ) = σ 2 + E(MSE C(B) ) = σ 2 + n i=1 j=1 a(b 1) a b c i=1 j=1 k=1 ab(c 1) δ 2 k(ij) (53) (54) (55) E(MSE Hata ) = σ 2 (56) olarak elde edilir.

43 (53)-(55) denklemlerinden görüldü ü gibi, sfr hipotezinin do ru olmas halinde MSE A, MSE B(A) ve MSE C(B) ifadeleri σ 2 nin yansz bir tahmin edicisidir. MSE Hata, her zaman oldu u gibi, H 0 do ru olsun ya da olmasn, σ 2 nin yansz bir tahmin edicisidir.

Bir-Yönlü ANOVA (Tamamen Rasgele Tasarm)

Bir-Yönlü ANOVA (Tamamen Rasgele Tasarm) Bir-Yönlü ANOVA (Tamamen Rasgele Tasarm) Birdal eno lu ükrü Acta³ çindekiler 1 Giri³ Giri³ 2 3 4 LS Tahmin Edicilerinin Özellikleri 5 Genel Kareler Toplamnn Parçalan³ ndirgenmi³ Model-Tam Model Yakla³m

Detaylı

Faktöriyel Tasarımlar

Faktöriyel Tasarımlar İstatistiksel Deney Tasarımı Birdal Şenoğlu & Şükrü Acıtaş 1 / 99 Kesirli 2 / 99 Fisher (1935) ve Yates (1937) tarafından önerilen Faktöriyel deneyler (factorial experiments) veya bir çok kaynakta belirtildiği

Detaylı

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır.

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. 6.5 Basit Doğrusal Regresyonda Hipotez Testleri 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. olduğu biliniyor buna göre; hipotezinin doğruluğu altında test istatistiği

Detaylı

A = i IA i = i I A = A = i IA i = {x α((α I) (x A α ))} (7.7) A = (α,β I) (α β) A α A β = (7.8) A A

A = i IA i = i I A = A = i IA i = {x α((α I) (x A α ))} (7.7) A = (α,β I) (α β) A α A β = (7.8) A A Bölüm 7 KÜME A LELER 7.1 DAMGALANMI KÜMELER E er inceledi imiz kümelerin says, alfabenin harerinden daha çok de ilse, onlara,b,...,w gibi harerle temsil edebiliriz. E er elimizde albenin harerinden daha

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

ARA SINAV II. (1) (x k ) k N, R n içinde yaknsak ve limiti x olan bir dizi olsun. {x} = oldu unu gösteriniz.

ARA SINAV II. (1) (x k ) k N, R n içinde yaknsak ve limiti x olan bir dizi olsun. {x} = oldu unu gösteriniz. MC 411/ANAL Z IV ARA SINAV II ÇÖZÜMLER 1 x k k N, R n içinde yaknsak iti x olan bir dizi olsun. {x} = {x m m k} k=1 Çözüm. Her k N için A k := {x m m k} olsun. x k k N dizisinin iti x oldu undan, A k =

Detaylı

18.702 Cebir II 2008 Bahar

18.702 Cebir II 2008 Bahar MIT Açk Ders Malzemeleri http://ocw.mit.edu 18.702 Cebir II 2008 Bahar Bu materyallerden alnt yapmak veya Kullanm artlar hakknda bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

B A. A = B [(A B) (B A)] (2)

B A. A = B [(A B) (B A)] (2) Bölüm 5 KÜMELER CEB R Do a olaylarnn ya da sosyal olaylarn açklanmas için, bazan, matematiksel modelleme yaplr. Bunu yapmak demek, incelenecek olaya etki eden etmenleri içine alan matematiksel formülleri

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER (1) A³a daki her bir önermenin do ru mu yanl³ m oldu unu belirleyiniz. Do ruysa, gerekçe gösteriniz; yanl³sa, bir kar³-örnek veriniz. (a) (a n ) n N dizisi yaknsak

Detaylı

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar 7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar Y = X β + ε Lineer Modeli pekçok özel hallere sahiptir. Bunlar, ε nun dağılımına, Cov( ε ) kovaryans

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

x = [x] = [x] β = {y (x,y) β} (8.5) X = {x x X}. x,y X [(x = y) (x y = )]. b(b [x]) b [y] [x] [y] (8.8)

x = [x] = [x] β = {y (x,y) β} (8.5) X = {x x X}. x,y X [(x = y) (x y = )]. b(b [x]) b [y] [x] [y] (8.8) Bölüm 8 DENKL K BA INTILARI 8.1 DENKL K BA INTISI 8.1.1 E³itlik Kavramnn Genelle³mesi Matematikte ve ba³ka bilim dallarnda, birbirlerine e³it olmayan, ama e³itli e benzer niteliklere sahip nesnelerle sk

Detaylı

ndrgemel Dzler Ders Notlar

ndrgemel Dzler Ders Notlar ndrgemel Dzler Ders Notlar c wwww.sbelian.wordpress.com Bu ders notunda diziler konusunun bir alt konusu olan First Order Recursions ve Second Order Recursions konular anlatlm³ ve bu konularla alakal örnekler

Detaylı

(i) (0,2], (ii) (0,1], (iii) [1,2), (iv) (1,2]

(i) (0,2], (ii) (0,1], (iii) [1,2), (iv) (1,2] Bölüm 5 KOM ULUKLAR 5.1 KOM ULUKLAR Tanm 5.1.1. (X, T ) bir topolojik uzay ve A ile N kümeleri X uzaynn iki alt-kümesi olsun. E er A T N olacak ³ekilde her hangi bir T T varsa, N kümesine A nn bir kom³ulu

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 1 BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 Belli bir özelliğe yönelik yapılandırılmış gözlemlerle elde edilen ölçme sonuçları üzerinde bir çok istatistiksel işlem yapılabilmektedir. Bu işlemlerin bir kısmı

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler 1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009 XIV. Ulusal ntalya Matematk Olmpyat rnc ³ama Snav Sorular -009 c www.sbelian.wordpress.com sbelianwordpress@gmail.com Soru 1. dar açl üçgeninde m() = 45 'dir. 'dan 'ye indirilmi³ dikmenin aya E ve 'den

Detaylı

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI ANADOLU ÜNİVERSİTESİ Deney Tasarımı ve Regresyon Analizi Regresyonda Güven Aralıkları ve Hipotez Testleri Doç. Dr. Nihal ERGİNEL-2015 REGRESYON KATSAYILARININ GÜVEN ARALIĞI + in güven aralığı : i-) n 30

Detaylı

Çarpm ve Bölüm Uzaylar

Çarpm ve Bölüm Uzaylar 1 Ksm I Çarpm ve Bölüm Uzaylar ÇARPIM UZAYLARI 1 ÇARPIM TOPOLOJ S 2 KARMA P R O B E M L E R 1. A ile B, srasyla, (X, T )X ile (Y, S ) topolojik uzaylarnn birer alt-kümesi olsunlar. (a) (A B) = A B (b)

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

BÖLÜM 1. Matematiksel ndüksiyon Prensibi

BÖLÜM 1. Matematiksel ndüksiyon Prensibi BÖLÜM 1 Matematiksel ndüksiyon Prensibi Matematiksel indüksiyon prensibini kullanarak a³a daki e³it(siz)liklerin her n N için gerçeklendi ini ispatlaynz. 1. 1 2 + 2 2 + 3 2 + + n 2 = n(n+1)(2n+1) 6 2.

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir.

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. BÖLÜM 1 0, Q 1. f() = 1, R/Q, Fonksiyonlar - Özellikleri ve Limit Kavram ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. Buna göre a³a da verilen tanm bölgeleri altnda görüntü cümlelerini

Detaylı

0 = ρ(x,x) ρ(x,y)+ρ(y,x) = 2ρ(x,y) 0, x = y δ(x,y) = κ(z 1,z 2 ) = z 1 z 2, (z 1,z 2 C) (17.27)

0 = ρ(x,x) ρ(x,y)+ρ(y,x) = 2ρ(x,y) 0, x = y δ(x,y) = κ(z 1,z 2 ) = z 1 z 2, (z 1,z 2 C) (17.27) 230 BÖLÜM 17. METR K UZAYLAR 17.2 METR K METR K UZAY KAVRAMI Normlanm³ bir uzay, her³eyden önce bir vektör uzaydr, yani (X, ) normlanm³ bir uzay ise, X kümesi üzerinde bir vektör uzay yaps vardr. Oysa,

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

1. YAPISAL KIRILMA TESTLERİ

1. YAPISAL KIRILMA TESTLERİ 1. YAPISAL KIRILMA TESTLERİ Yapısal kırılmanın araştırılması için CUSUM, CUSUMSquare ve CHOW testleri bize gerekli bilgileri sağlayabilmektedir. 1.1. CUSUM Testi (Cumulative Sum of the recursive residuals

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

ALPHA ALTIN RAPORU ÖZET 26 Ocak 2016

ALPHA ALTIN RAPORU ÖZET 26 Ocak 2016 ALPHA ALTIN RAPORU ÖZET 26 Ocak 2016 19 Ocak 2016 tarihli Alpha Altın raporumuzda paylaştığımız görüşümüz; Kısa dönemde 144 günlük ortalama $1110.82 trend değişimi için referans takip seviyesi olabilir.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Doç. Dr. Mehmet Durdu KARSLI Sakarya Üniversitesi E itim fakültesi Doç. Dr. I k ifa ÜSTÜNER Akdeniz Üniversitesi E itim Fakültesi

Doç. Dr. Mehmet Durdu KARSLI Sakarya Üniversitesi E itim fakültesi Doç. Dr. I k ifa ÜSTÜNER Akdeniz Üniversitesi E itim Fakültesi ÜN VERS TEYE G R SINAV S STEM NDEK SON DE KL E L K N Ö RENC LER N ALGILARI Doç. Dr. Mehmet Durdu KARSLI Sakarya Üniversitesi E itim fakültesi Doç. Dr. I k ifa ÜSTÜNER Akdeniz Üniversitesi E itim Fakültesi

Detaylı

Soru Toplam Puanlama Alnan Puan

Soru Toplam Puanlama Alnan Puan ..04 No: Ad-Soyad: mza: Soru.. 3. 4. 5. 6. 7. 8. Toplam Puanlama 0 0 0 5 0 0 0 0 00 Alnan Puan 04043006. CEB RSEL TOPOLOJ ARASINAVI CEVAP ANAHTARI ( K NC Ö RET M) Not: Süre 90 Dakika. stedi iniz 7 soruyu

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

ALPHA ALTIN RAPORU ÖZET 10 Kasım 2015

ALPHA ALTIN RAPORU ÖZET 10 Kasım 2015 ALPHA ALTIN RAPORU ÖZET 10 Kasım 2015 3 Kasım 2015 tarihli Alpha Altın raporumuzda paylaştığımız görüşümüz; RSI indikatörü genel olarak dip/tepe fiyatlamalarında başarılı sonuçlar vermektedir. Günlük bazda

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

f( F) f(f) K = K F f 1 f( F) f 1 (K) = F F f 1 (S ) = [f 1 (S)] f(x) S V

f( F) f(f) K = K F f 1 f( F) f 1 (K) = F F f 1 (S ) = [f 1 (S)] f(x) S V Bölüm 6 SÜREKL FONKS YONLAR 6.1 YEREL SÜREKL L K Tanm 6.1.1. (X, T ) ve (Y, S) topolojik uzaylar ile f : X Y fonksiyonu verilsin. E er f(x 0 ) ö esinin her V kom³ulu una kar³lk f(u) V olacak ³ekilde x

Detaylı

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir

Detaylı

Parametrik Olmayan İstatistik

Parametrik Olmayan İstatistik Parametrik Olmayan İstatistik 2 Anakütlenin Karşılaştırılması İki Anakütlenin Karşılaştırılması Bağımsız Örnekler Eşleştirilmiş Örnekler Wilcoxon Mertebe Toplam Testi İşaret Testi Wilcoxon İşaretli Mertebe

Detaylı

KATEGORİSEL VERİ ANALİZİ (χ 2 testi)

KATEGORİSEL VERİ ANALİZİ (χ 2 testi) KATEGORİSEL VERİ ANALİZİ (χ 2 testi) 1 Giriş.. Değişkenleri nitel ve nicel değişkenler olarak iki kısımda inceleyebiliriz. Şimdiye kadar hep nicel değişkenler için hesaplamalar ve testler yaptık. Fakat

Detaylı

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? 9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.

Detaylı

ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler

ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler ÜN TE II L M T Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler MATEMAT K 5 BU BÖLÜM NELER AMAÇLIYOR? Bu bölümü çal flt n zda (bitirdi inizde), *Bir

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

Deneysel Verilerin Değerlendirilmesi

Deneysel Verilerin Değerlendirilmesi Deneysel Verilerin Değerlendirilmesi Ölçme-Birimler-Anlamlı Rakamlar Ölçme: Bir nesnenin bazı özelliklerini (kütle, uzunluk vs..) standart olarak belirlenmiş birimlere göre belirlenmesi işlemidir (ölçüm,

Detaylı

1: DENEYLERİN TASARIMI VE ANALİZİ...

1: DENEYLERİN TASARIMI VE ANALİZİ... İÇİNDEKİLER Bölüm 1: DENEYLERİN TASARIMI VE ANALİZİ... 1 1.1. Deneyin Stratejisi... 1 1.2. Deneysel Tasarımın Bazı Tipik Örnekleri... 11 1.3. Temel Kurallar... 16 1.4. Deneyleri Tasarlama Prensipleri...

Detaylı

POL NOMLAR. Polinomlar

POL NOMLAR. Polinomlar POL NOMLAR ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN T POL NOMLAR Polinomlar 1. Kazan m: Gerçek kat say l ve tek de i kenli polinom kavram n örneklerle aç klar, polinomun derecesini, ba kat say s n, sabit

Detaylı

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır.

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır. Hipotez testleri-oran testi Oran Testi Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır Örnek: Yüz defa atılan bir para 34 defa yazı gelmiştir Paranın yazı gelme olasılığının

Detaylı

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006 ĐŞLE 5 ĐSTATĐSTĐK ARA SINAV Mayıs 00 Adı Soyadı: No: [0 puan] -Bir Üniversitede okutulan derslerin öğrenciler tarafından değerlendirilmesi amacı ile hazırlanan bir anket formundaki sorulardan biri: Aldığınız

Detaylı

SOYUT MATEMAT K DERS NOTLARI. Yrd. Doç. Dr. Hüseyin B LG Ç

SOYUT MATEMAT K DERS NOTLARI. Yrd. Doç. Dr. Hüseyin B LG Ç SOYUT MATEMAT K DERS NOTLARI Yrd. Doç. Dr. Hüseyin B LG Ç Kahramanmara³ Sütçü mam Üniversitesi FenEdebiyat Fakültesi Matematik Bölümü Eylül 2010 çindekiler 1 Önermeler ve spat Yöntemleri 1 2 Kümeler 13

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

DOĞAL SAYILAR. 728 514 039, 30 960 425, 4 518 825 bölük bölük bölük bölük bölük bölük bölük bölük bölük

DOĞAL SAYILAR. 728 514 039, 30 960 425, 4 518 825 bölük bölük bölük bölük bölük bölük bölük bölük bölük MATEMATİ O ON NU UA AN NL L A A T T I I ML ML I I F F A AS S İ İ Ü ÜL LS S E E T T İ İ TEMALARI NA GÖREAYRI LMI Ş FASİ ÜL. SI NI F DOĞAL SAYILAR Günlük hayatta pek çok durumda sayıları kullanırız: Saymak,

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

Ders 2: Aktüerya. Ankara Üniversitesi. İST424 Aktüeryal Risk Analizi Ders Notları. Doç.Dr. Fatih Tank. Sigortacılığın.

Ders 2: Aktüerya. Ankara Üniversitesi. İST424 Aktüeryal Risk Analizi Ders Notları. Doç.Dr. Fatih Tank. Sigortacılığın. yal ya yal Ders 2: ya Ankara Üniversitesi Giriş yal ya yal ya Tanım (5.1.1 Risk) Hasar oluşumundaki belirsizliğe risk denir. Objektif Risk Risk Subjektif Risk Tanım (5.1.2 Objektif Risk) Gerçekleşen hasarın

Detaylı

f 1 (H ) T f 1 (H ) = T

f 1 (H ) T f 1 (H ) = T Bölüm 15 TIKIZLIK 15.1 TIKIZ UZAYLAR 15.1.1 Problemler 1. Her sonlu topolojik uzay tkzdr. 2. Ayrk bir topolojik uzayn tkz olmas için gerekli ve yeterli ko³ul sonlu olmasdr. 3. Ayn bir küme üzerinde S T

Detaylı

RİSK ANALİZİ VE. İşletme Doktorası

RİSK ANALİZİ VE. İşletme Doktorası RİSK ANALİZİ VE MODELLEME İşletme Doktorası Programı Bölüm - 1 Portföy Teorisi Bağlamında Risk Yönetimi ile İlgili Temel Kavramlar 1 F23 F1 Risk Kavramı ve Riskin Ölçülmesi Risk istenmeyen bir olayın olma

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

İstatistiksel Tahmin ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Ahmet ÖZMEN

İstatistiksel Tahmin ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Ahmet ÖZMEN İstatistiksel Tahmin Yazar Doç.Dr. Ahmet ÖZMEN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; evren parametreleri hakkında yorum yapmayla ilgili iki yöntemden birisi olan evren parametrelerinin tahmin edilmesine

Detaylı

ortalama ve ˆ ˆ, j 0,1,..., k

ortalama ve ˆ ˆ, j 0,1,..., k ÇOKLU REGRESYONDA GÜVEN ARALIKLARI Regresyon Katsayılarının Güven Aralıkları y ( i,,..., n) gözlemlerinin, xi ortalama ve i k ve normal dağıldığı varsayılsın. Herhangi bir ortalamalı ve C varyanslı normal

Detaylı

1) Öğrenci kendi başına proje yapma becerisini kazanır. 1,3,4 1,2

1) Öğrenci kendi başına proje yapma becerisini kazanır. 1,3,4 1,2 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Bitirme Projesi BIL401 7 0+4 2 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Seçmeli / Yüz Yüze Dersin

Detaylı

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde

Detaylı

TG 12 ÖABT İLKÖĞRETİM MATEMATİK

TG 12 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Levent ÖZBEK Fikri ÖZTÜRK Ankara Üniversitesi Fen Fakültesi İstatistik Bölümü Sistem Modelleme ve Simülasyon Laboratuvarı 61 Tandoğan/Ankara

Detaylı

A EKONOMETRİ. n iken de aynı sonuç geçerliyse, β hangi. A) β nın sabit olması. D) Xβ nın normal dağılımlı olması. E) n olması. dur?

A EKONOMETRİ. n iken de aynı sonuç geçerliyse, β hangi. A) β nın sabit olması. D) Xβ nın normal dağılımlı olması. E) n olması. dur? EKONOMETRİ KPSS-AB-PÖ/007 1. 6. SORULARI AŞAĞIDAKİ BİLGİLERE β β β ( ) Y i = 1 + x + + i k x ik+ u i i = 1,, n denkleminin matrislerle ifadesi Y = X + u dur. Y( nx1 ), β ( kx1 ), X( nxk) ve β u nx1 boyutludur

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

ÖLÇÜM VARYASYONUNU BEL RLEMEK Ç N B R ÇALI MA

ÖLÇÜM VARYASYONUNU BEL RLEMEK Ç N B R ÇALI MA ÖLÇÜM VARYASYNUNU BL RLMK Ç N B R ÇALI MA Bahar SNNAR LU Marmara Üniversitesi Özlem YURTSVR Marmara Üniversitesi ÖZT lerin istenilen kalite özelliklerine uygunlu unu kontrol etmek için üretim hatlar ndan

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

Merkezi Limit Teoremi

Merkezi Limit Teoremi Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi

Detaylı

Tekrar ve Düzeltmenin Erişiye Etkisi Fusun G. Alacapınar

Tekrar ve Düzeltmenin Erişiye Etkisi Fusun G. Alacapınar Journal of Language and Linguistic Studies Vol.2, No.2, October 2006 Tekrar ve Düzeltmenin Erişiye Etkisi Fusun G. Alacapınar Öz Problem durumu:tekrar, düzeltme ile başarı ve erişi arasında anlamlı bir

Detaylı

FORMAL AFET EĞİTİMLERİNİN FARKINDALIK ve TUTUM ÜZERİNE ETKİLERİNİN KOCAELİ ÜNİVERSİTESİ ÖĞRENCİLERİ ÜZERİNDE ARAŞTIRILMASI

FORMAL AFET EĞİTİMLERİNİN FARKINDALIK ve TUTUM ÜZERİNE ETKİLERİNİN KOCAELİ ÜNİVERSİTESİ ÖĞRENCİLERİ ÜZERİNDE ARAŞTIRILMASI FORMAL AFET EĞİTİMLERİNİN FARKINDALIK ve TUTUM ÜZERİNE ETKİLERİNİN KOCAELİ ÜNİVERSİTESİ ÖĞRENCİLERİ ÜZERİNDE ARAŞTIRILMASI Serpil GERDAN Oya YAZICI ÇAKIN Kocaeli Üniversitesi 2009 1/15 CEVAP ARANAN SORULAR

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ ALES İlkbahar 007 SAY DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL- TESTİ Sınavın bu testinden alacağınız standart puan, Sayısal Ağırlıklı

Detaylı

Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız)

Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız) Kalitatif Veri 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız). Ölçüm kategorideki veri sayısını yansıtır 3. Nominal yada Ordinal ölçek Multinomial Deneyler

Detaylı

S = {T Y, X S T T, S S} (9.1)

S = {T Y, X S T T, S S} (9.1) Bölüm 9 ÇARPIM UZAYLARI 9.1 ÇARPIM TOPOLOJ S Bo³ olmayan kümelerden olu³an bo³ olmayan bir ailenin kartezyen çarpmnn da bo³ olmad n, Seçme Aksiyomu [13],[20], [8] ile kabul ediyoruz. imdi verilen aileye

Detaylı

6. SINIF MATEMAT K DERS ÜN TELEND R LM fi YILLIK PLAN

6. SINIF MATEMAT K DERS ÜN TELEND R LM fi YILLIK PLAN SAYLAR Do al Say lar Parças ve fl n 6. SNF MATEMAT K DERS ÜN TELEND R LM fi YLLK PLAN Süre/ KAZANMLAR Ders AÇKLAMALAR 1. Do al say larla ifllemler yapmay gerektiren problemleri çözer ve kurar. Do al say

Detaylı

Z Diyagram Di er Grafik Türleri SORULAR...42

Z Diyagram Di er Grafik Türleri SORULAR...42 Ç N D E K L E R BÖLÜM I 1. STAT ST K KAVRAMI 1-20 1.1. STAT ST K KEL MES N N ANLAMI...3 1.2. STAT ST K KEL MES N N KÖKÜ...5 1.3. STAT ST N TANIMI...5 1.4. STAT ST N KONUSU...5 1.5. BÜYÜK SAYILAR KANUNU...6

Detaylı

BULUŞ BİLDİRİM FORMU / APARAT

BULUŞ BİLDİRİM FORMU / APARAT Sayfa 1/ 6 / APARAT Bu forma uygun olarak yapacağınız çalışma, Buluşunuzun tarafımızdan en iyi şekilde tanımlanabilmesi ve İleride hukuk önünde istenen korumanın elde edebilmesi için temel teşkil edecektir.

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

3. Ders Parametre Tahmini Lineer Tahmin Edilebilme Yeniden Parametrelendirme Lineer Parametrik Kısıtlamalar

3. Ders Parametre Tahmini Lineer Tahmin Edilebilme Yeniden Parametrelendirme Lineer Parametrik Kısıtlamalar 3. Ders Parametre Tahmini Lineer Tahmin Edilebilme eniden Parametrelendirme Lineer Parametrik Kısıtlamalar Bir Deney Tasarımı Modeli, X matrisi (veya bir kısmı) özel yapılandırılmış, = X β + biçiminde

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek T testi Kazanımlar Z puanları yerine T istatistiğini ne 1 zaman kullanacağını bilmek 2 t istatistiği ile hipotez test etmek 3 Cohen ind sini ve etki büyüklüğünü hesaplamak 1 9.1 T İstatistiği: zalternatifi

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

http://acikogretimx.com

http://acikogretimx.com 09 S 0- İstatistik sorularının cevaplanmasında gerekli olabilecek tablolar ve ormüller bu kitapçığın sonunda verilmiştir.. şağıdakilerden hangisi istatistik birimi değildir? ) Doğum B) ile C) Traik kazası

Detaylı

Yrd. Doç.Dr. Neşet Demirci, Balıkesir Üniversitesi, NEF, Fizik Eğitimi. Hipotez Testine Giriş

Yrd. Doç.Dr. Neşet Demirci, Balıkesir Üniversitesi, NEF, Fizik Eğitimi. Hipotez Testine Giriş Yrd. Doç.Dr. Neşet Demirci, Balıkesir Üniversitesi, NEF, Fizik Eğitimi 5. ders Hipotez Testine Giriş Yrd. Doç.Dr. Neşet Demirci, Balıkesir Üniversitesi, NEF, Fizik Eğitimi Hipotez Yazma Popülasyon hakkındaki

Detaylı