ÜÇGENDE AÇI-KENAR BAĞINTILARI



Benzer belgeler
G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 ( ÖSS)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

G E O M E T R İ ÖRNEK. AB = 8 br. BC = x br ÇÖZÜM. Cevap C dir. ÖRNEK. [AF] [BF] [AF açıortay BE = EC EF = 1 br AB = 7 br

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC

GeoUmetri Notları Mustafa YAĞCI, Deltoit

DOĞRUDA AÇILAR GEOMETRİ KAF01 TEMEL KAVRAMLAR NOKTA: AÇI ÖLÇÜ BİRMLERİ: DERECE: = 360 2π DOĞRU: RADYAN: KOMŞU AÇI: KAPALI DOĞRU PARÇASI: TÜMLER AÇI:

Mustafa YAĞCI, Parabolün Tepe Noktası

4. BÖLÜM: ÖZEL ÜÇGENLER VE TRİGONOMETRİ KONU ÖZETİ

YÜKSEKÖĞRETİM KURUMLARI SINAVI MATEMATİK SORU BANKASI ANKARA

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

1983 ÖYS A) 410 B) 400 C) 380 D) 370 E) işleminin sonucu kaçtır. 7. a, b, c birer pozitif tam sayıdır. a= 2 A) 9 B) 3 C) 2 E) 8 D) 4

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

5. 6 x = 3 x + 3 x x = f(x) = 2 x + 1

TYT / MATEMATİK Deneme - 6

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız.

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =?

GEOMETRİ ASF. ÜNİTE 1: AÇI VE ÜÇGEN Doğruda Açılar UYGULAMA TESTİ 1 4. [AB // [CD. 1. Tümler iki açıdan biri diğerinin 5 katına eşittir.

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

ÜÇGEN VE PİSAGOR BAĞINTISI

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu

9. log1656 x, log2 y ve log3 z

ÜÇGENDE BENZERLİK. Benzerlik. Benzerlik Oranı. Uyarı

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir.

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

HİPERBOL. Merkezi O noktası olan hiperbole merkezil hiperbol denir. F ve F' noktalarına hiperbolün odakları denir.

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?

T 35 ZAMBAK MERAKLISINA TESTLERİ(GEO): ÇÖZÜM: ŞekildeIBCI=8, IACI=4,m(B)= a,m(c)= q ve = 180 olduğuna göre IABI kaç br dir? A)4 B)5 C)6 D)8 E)10

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

Matematik Olimpiyatları İçin

2009 Soruları. c

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

a 4 b a Cevap : A Cevap : E Cevap : C

YILLAR ÖSS-YGS

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

KONİKLER KONİKLER Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2

DENKLEM ve EŞİTSİZLİKLER

1993 ÖYS. 1. Rakamları birbirinden farklı olan üç basamaklı en büyük tek sayı aşağıdakilerden hangisine kalansız bölünebilir?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

Diğer kitaplar ve testler için aşağıdaki linki tıklayınız. EĞİTİM BİLİMLERİ MERKEZİ

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

UZAYDA VEKTÖRLER / TEST-1

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

1. ABC dik üçgen. BD = 3 br DC = 5 br AC = x br. B AB = y br olduğuna göre x 2 y 2 farkı kaçtır? 2. ABC dik üçgen. AB = 3 br. DC = 5 br AC = x br

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün

LYS Matemat k Deneme Sınavı

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

LYS Matemat k Deneme Sınavı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

6 ise. = b = c = d. olsun. x 3 = 0. x = 3 için Q(3 + 2) = 6. ve sayılarının sayısına uzaklığı sayısı kadar ise c a = d. Q(5) = 6 dır.

RASYONEL SAYILAR KESİR ÇEŞİTLERİ Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

LYS Matemat k Deneme Sınavı

Geometri Notları. Kenar-Açı Bağıntıları Mustafa YAĞCI,

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

MATEMATİK 2 TESTİ (Mat 2)

Geometri Notları. Dik ve Özel Üçgenler Mustafa YAĞCI,

TYT / MATEMATİK Deneme - 2

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR

II. DERECEDEN DENKLEMLER

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

7.SINIF: PARALELKENARIN ve ÜÇGENİN ALANI


0;09 0; : işleminin sonucu kaçtır? A) ;36 0; a = 0,39 b = 9,9 c = 1,8 d = 3,7.

MATEMATİK.

A C İ L Y A Y I N L A R I

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

12. a = log 5 7, b = log 3 2 ve c = log 2 13 sayıları arasındaki. 13. log 3 75 sayısı aşağıdaki aralıkların hangisinde bulunur?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

Bu ürünün bütün hakları. ÇÖZÜM DERGİSİ YAYINCILIK SAN. TİC. LTD. ŞTİ. ne aittir. Tamamının ya da bir kısmının ürünü yayımlayan şirketin

ÇOKGENLER HAKKINDA GENEL HATIRLATMALAR

Milli Eğitim Bakanlığı, Talim ve Terbiye Kurulu Bakanlığı'nın tarih ve 330 sayılı kararı ile kabul edilen ve Öğretim Yılından

ÜÇGENLERDE EŞLİK VE BENZERLİK Bölüm 4.1. Eşlik

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır.

Cebirsel ifadeler ve Özdeslik Föyü

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

Çevre ve Alan. İlköğretim 6. Sınıf

D) 240 E) 260 D) 240 E) 220

İkinci Dereceden Denklemler

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Temel Kavramlar. Alıştırma Şekil ile, ifade edilişini eşleştiriniz.

steme Adresi Ekstrem Yayıncılık Tlf: (0322) Belgeç : (0322) Grafik Tasar m Dizgi Ekstrem Yay nc l k

İÇİNDEKİLER ORAN VE ORANTI KESİR PROBLEMLERİ HAVUZ VE İŞ PROBLEMLERİ

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm

Soru 1- Köşegenleri dik kesişen bir dikdörtgende köşegenlerin uzunlukları toplamı 12 ise bu dörtgenin alanı en çok kaç olabilir?

4. x ve y pozitif tam sayıları için,

Örnek...3 : Örnek...1 : ABCD yamuk [AC] köşegen E [AC] [AB] // [CD] AB = AE. Örnek...2 : ABCD yamuk [AB] // [CD] BC = CE AE = BE. Örnek...

Transkript:

ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs, m ( ) > m ( ) > m ( ) ğıntısı vrdır. ) [] ) [] ) [] ) [] ) [] ve irer dik üçgen [] [] [] [] = m = m Yukrıdki verilere göre, nun kç tmsı değeri vrdır? ) 1 ) ) 3 ) ) www.unkpni.om.tr 3 3 Üçgenlerdeki tüm çılr erleştirilirse, üçgeninde, < < dur. üçgeninde, < < dur. 1 3 8 dik üçgeninin en üük çısı dik çı olduğundn, en üük kenr [] dır. urdn, > m dir. dik üçgeninin en üük çısı dik çı olduğundn, en üük kenr [] dır. < m dir. urdn, < < ulunur. nun lileeği tmsı değerleri, 8,, 1 dur. Üç frklı değer lilir. oğru Seçenek: üçgeninde, < < dur. urdn, en uzun kenr, [] dır. 1 o Yukrıdki verilere göre, küçük tmsı değerleri toplmı kçtır? oğru Seçenek: ir üçgen [] ve [] çıortlr. m() = = m = 1m m() nın en üük ve en ) 8 ) 8 ) 88 ) 8 )

ve irer üçgen çevre() = 3 m() = = 1m o o o 1 [] iç çıort ve [] dış çıort olduğundn, m() = ve m() = tir. üçgeninde, < olduğundn, < tir. urdn, 33 < tir. en z 3 dir. m()+ = dir. urdn, < 1 Yukrıdki verilere göre, değeri kçtır? o m() nın en küçük tmsı ) ) ) ) ) ulunur. urdn, en çok dir. urdn, + 3 = dir. oğru Seçenek: Üçgende ir kenr uzunluğu; diğer iki kenrın uzunluklrı toplmındn küçük, frklrının mutlk değerinden üüktür. < < + 1 3+ < < + < < + ir üçgen = 1m = 3 + = 1 www.unkpni.om.tr Unkpnı Yınılık 1 üçgeninde, < + dir. şitsizliğin her iki trfın ekleelim; + < + + < Çevre() Çevre() 3 < = = 1 ulunur. urdn, < olduğundn, m ( ) > dir. m() = ulunur. o oğru Seçenek: -1 Yukrıdki verilere göre, nun en üük tmsı değeri kç m dir? ) 1 ) ) 3 ) ) üçgeninde, 3 + ( 1) < 1 < 3 + + 1 dir. urdn, + < 1 ve1 < + 3 dir. urdn, < ve < ulunur. = 3 + olduğundn, 3 < 1ve = 3 + < ulunur. urdn, = ulunur. ir üçgende ir kenr uzunluğu dim çevrenin rısındn küçüktür. Çevre( ) Çevre( ) <, < ve Çevre( ) < dir. 3

ve irer üçgen = m = m = 1m = 13m = ir dörtgen [] [] [] [] = m = m = + = olduğun göre, in tmsı değerleri Yukrıdki verilere göre, = in değer rlığı şğıdkilerden hngisidir? ) 3 < < 1 ) < < 1 toplmı kçtır? ) ) 1 ) 3 ) ) 8 ) < < 1 ) < < 1 ) < < 1 üçgeninde, 1 < < 1 + dır. üçgeninde, 13 < < 13 + tür. urdn, < < 1 ve < < 1 ulunur. şitsizlikler ortk çözülürse, < < 1 ulunur. oğru Seçenek: ir üçgen [ ] [ ] = = m = in değer rlığı (,k) olduğun göre, nun en üük değeri için k kçtır? ) 1 ) ) 3 ) ) www.unkpni.om.tr Unkpnı Yınılık = ve = olk şekilde noktsı llım. urdn, = = m ve = = m dir. üçgeninde, < < + urdn, < < 1 ulunur. in değerleri toplmı; 3+ +... + = 3 ulunur. F 1 oğru Seçenek: ir üçgen F ir dik üçgen [ F] [ ] = 1 m = m = Yukrıdki verilere göre, in en üük tmsı değeri kçtır? ) 1 ) 1 ) 1 ) 1 ) 3 [] çizilirse, = = ulunur. üçgeninde, 1 < < + dır.urdn, = ve + = k ulunur. = ise, F = 3 m ve = 1 m ulunur. = 1 m için, k = 1 + = ulunur. oğru Seçenek:

F = F = olsun. üçgeninde, 1 < < + 1 urdn, 3 < < 1 ulunur. F dik üçgeninde, < olduğundn, < 1 dir. = 1 m ulunur. üçgeninde; oğru Seçenek: ir üçgen = = m = m = Yukrıdki verilere göre, in en küçük tmsı değeri kçtır? ) ) 8 ) ) 1 ) m()> ise > + m()< ise < + m() = ise = + dir. ir üçgende uzunluklrın dışınd frklı ir veri (ikizkenrlık, çıort, vs.) vrs u veri çı hkkınd fikir edineilmek için kullnılmlıdır. ir üçgen [] ve [] çıortlr = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) ) ) ) ) 8 www.unkpni.om.tr Unkpnı Yınılık α üçgeninde, m() = m() = α < dir. urdn, β > ulunur. üçgeninde, ve ulunur > + >. en z 8 m ulunur. α β oğru Seçenek: ir üçgen, diklik merkezi = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) ) ) ) 3 ) m ( ) üçgeninde,m() = + > dir. üçgeninde, m() > olduğundn, > + urdn, < ulunur. < < + olduğundn, < < ulunur. < ve < tır. in değerleri, 3,, ve dır. dört tmsı değeri lır. oğru Seçenek: üçgeninin diklik merkezi üçgenin içinde olduğundn, üçgen dr çılı ir üçgendir. m()< olduğundn, < + dir. < ulunur. m()< olduğundn, < + dir. < 1 ulunur. 1 dır. < < ; 8, ve 1 değerlerini lilir. Üç frklı değeri vrdır. oğru Seçenek:

F ir üçgen [ ] çıort m ( ) = m ( ) = m = m F = P üçgeninde P ir iç nokt ise, < P < { ve nun üük olnı} dır. Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) 3 ) ) ) ) ir üçgen + + F m() = m() =,m() = m() = olsun. m(f) = m() = + ulunur.urdn, F = = m ulunur. F ikizkenr üçgeninde, + < olduğundn, > dir. F üçgeninde > + urdn, < ve - < < +, < < 18 ulunur. indeğerleri;,,,8 dir. oğru Seçenek: ir üçgende kenrlr ile rdımı doğrulr rsınd ters ir ğıntı (kenr üüdükçe rdımı doğrulr küçülür, kenr küçüldükçe rdımı doğrulr üür.) vrdır. üçgeninde, >>ise h <h <h n <n <n v <v <v dir. Üçgende ir kenr it ükseklik çıort ve kenrort rsınd; www.unkpni.om.tr Unkpnı Yınılık Çevre() = m dir. P un göre, P nun en üük tmsı değeri kçtır? ) ) 1 ) ) 1 ) 1 üçgeninde, < P < { ve nun üükolnı} olduğundn, en uzun kenr olsun. üçgeninde < olduğundn P < < ulunur. urdn P = 1m ulunur. oğru Seçenek: ir üçgen ir iç nokt üçgeninin çevresi tmsı olrk en çok 3 m olduğun göre, + toplmı tmsı olrk en z kçtır? ) ) 1 ) ) 1 ) 1 h n v h n v h n v ğıntısı vrdır. üçgeninde, < + < + olduğundn, < + ve + < + dir. urdn, + + = 3 < ( + ) P z üçgeninde P ir iç nokt ise, Çevre() < + + z < Çevre() dir. =,= ve = olsun. ulunur. 18 < + dir. + = 1 m ulunur. oğru Seçenek:

ir üçgen [ ] 1 m 1. (u test için tvsie edilen süre 3 dkikdır) Yukrıdki verilere göre, üçgeninin çevresi şğıdkilerden hngisi olmz? ) 3 ) 31 ) 3 ) 33 ) 3 üçgeninde [ ] olduğundn, { } ve nun üük olnı ğıntısı vrdır. - 1 ir üçgen = = + 3 = 1 m +3 Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) 1 ) ) 3 ) ) urdn, > kul edersek, 1 m ulunur. üçgeninde, + > olduğundn, + > 1 ulunur. üçgeninin çevresi 3 m den üüktür. oğru Seçenek: ir üçgen [] ükseklik, [] kenrort ve [] çıortdır. = = www.unkpni.om.tr Unkpnı Yınılık. ir üçgen Çevre() = 1 m dir. un göre, nin kç tmsı değeri vrdır? ) ) 8 ) ) 1 ) Yukrıdki verilere göre, üçgeninin kenrlrı rsındki sırlm şğıdkilerden hngisidir? ) < < ) < < ) < < ) < < ) < < h = v = n verilior. üçgeninde, h < n < v, h < n < v ve h < n < v olduğundn, h = v < v urdn, > ve v = n < v urdn, > ve h = n < n urdn, > ulunur. urdn, > > elde edilir. oğru Seçenek: 3. + ir üçgen m()<m() = m = = + - Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) ) ) ) 8 ). hmet, kn ve Levent ir noktdn herhngi ikisi nı doğru üzerinde olmmk şrtıl sırsıl m, 1m ve m hreket ediorlr. un göre, Levent in hmet ve kn uzklıklrı toplmı tmsı olrk en çok kç m olilir? ) 3 ) ) 1 ) ) 3

. 8. ir üçgen ir ikizkenr üçgen Çevre() = m 8 geniş çı m() = m() = 8 m üçgeninin kenr uzunluklrı tmsı olduğun göre, kç frklı üçgeni çizileilir? Yukrıdki verilere göre, üçgeninin çevresinin en küçük tmsı değeri kç m dir? ) 1 ) 3 ) ) ) 8 ) 3 ) ) ) ). - 1 ir üçgen = = 3 + 3 = 1 m Ζ 3+3 Yukrıdki verilere göre, üçgeninin çevresi en çok kç m dir? ) ) 13 ) 1 ) 1 ) www.unkpni.om.tr Unkpnı Yınılık. ir üçgen, üçgeninin diklik merkezi = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) ) ) ) ) 8. - 1 ir üçgen = = 3 + 3 = 1 m 3+3 Yukrıdki verilere göre, üçgeninin çevresinin en üük tmsı değeri kç m dir? ) 1 ) ) ) ) 8 1. ir üçgen [] ve [] çıortlr = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) 3 ) ) ) ) 8

. 1. ir üçgen [] ve [] dışçıortlr = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) 3 ) ) ) ) ir diküçgen = 1 = + 1 = 1 m +1 Yukrıdki verilere göre, in en üük tmsı değeri kçtır? ) ) ) 8 ) ) 1 www.unkpni.om.tr Unkpnı Yınılık 1. ir üçgen ir dik üçgen [ ] [ ] Çevre( ) = m = Yukrıdki verilere göre, in en üük tmsı değeri kçtır? ) 8 ) ) 1 ) ) 1 1. α β ir üçgen [ ] çıort m() = α m() = β = 18 m α > β = Yukrıdki verilere göre, üçgeninin çevresi en küçük tmsı değerini ldığınd in en üük tmsı değeri kçtır? ) ) 1 ) ) 1 ) 13 1. 8 13 ir üçgen ve P irer iç nokt = 8 m P = 13 m 13. ir üçgen [] ükseklik, [] çıort α = m() = m() = α Yukrıdki verilere göre, α nın en üük tmsı değeri kçtır? ) 8 ) ) 1 ) ) un göre, ve P noktlrı rsındki uzklık tmsı olrk en çok kç m dir? ) ) 1 ) 1 ) 18 ) 1. 1 1 ir üçgen ir iç nokt = 1 m = 1 m Yukrıdki verilere göre, ve üçgenlerinin çevreleri toplmının en üük tmsı değeri kçtır? ) 1 ) 1 ) 13 ) 1 )

18. 1 α ir üçgen [ ] [ ] = = 1 m = m = α > olduğun göre, in kç tmsı değeri vrdır? ) 3 ) ) ) ).,, irer üçgen = m = m = m = m Yukrıdki verilere göre, eşgeninin çevresinin en üük tmsı değeri kçtır? ) 33 ) 3 ) 3 ) 3 ) 3 1. 1 ve irer üçgen = 1 m = 8 m = m = Yukrıdki verilere göre, in en üük tmsı değeri kçtır? ) ) 3 ) ) ). 1 1 8 ve irer üçgen = 1 m = 1 m = m = 8 m = Yukrıdki verilere göre, in değer rlığı şğıdkilerden hngisidir? ) 3 < < ) < < 1 ) < < ) 3 < < 1 ) < < 1 1. 8 1 z ir üçgen ir iç nokt = 8 m = m = 1 m Yukrıdki verilere göre, + + z toplmının en üük tmsı değeri kçtır? ) ) ) ) 3 ) 3 www.unkpni.om.tr Unkpnı Yınılık 3. 8 1 [ ] [ ] = 8 m = 1 m = m = Yukrıdki verilere göre, in en üük değeri kç m dir? ) ) 3 ) ) ). F Yukrıdki verilere göre, küçük tmsı değeri kç m dir? ir geniş çılı üçgen [ ] [ ] [ F] [ ] = + F = m = m F + toplmının en ) ) ) 8 ) ) 1 1- - 3- - - - - 8- - 1- - 1-13- 1-1- 1-1- 18-1- - 1- - 3- - 3