MAT223 AYRIK MATEMATİK

Benzer belgeler
MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK

2. (x 1 + x 2 + x 3 + x 4 + x 5 ) 10 ifadesinin açılımında kaç terim vardır?

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK

2. K 6 tam çizgesinde kaç farklı mükemmel eşleme vardır? 4. Düzlemsel kodu (planar code) olan ağacın kaç köşe noktası vardır?

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK

= 646 ] (n+2) 2 1 = n 2 + 4n+4 1 = (n 2 1)+4(n+1) MAT223 AYRIK MATEMATİK DERSİ 2.ARA SINAVI ÇÖZÜMLER

Sevdiğim Birkaç Soru

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız.

2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur?

SAYILAR DOĞAL VE TAM SAYILAR

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

MAT223 AYRIK MATEMATİK

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

MAT223 AYRIK MATEMATİK

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10.

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

23. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI B B B B B B B

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

3. Herhangi bir G çizgesi için aşağıdaki önermelerden hangi(ler)si her zaman doğrudur?

19. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI A A A A A A A

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

MAT223 AYRIK MATEMATİK

23. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI A A A A A A A

10. DİREKT ÇARPIMLAR

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 13 Mayıs Matematik Sorularının Çözümleri

Özdeğer ve Özvektörler

Olimpiyat Eğitimi CANSU DENEME SINAVI

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35

İKİNCİ DERECEDEN DENKLEMLER

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek)

Özdeşlikler, Denklemler ve Eşitsizlikler

A GRUBU Her bir yüzü düzgün beşgen olan düzgün 12-yüzlünün kaç ayrıtı vardır? A) 30 B) 24 C) 12 D) 36 E) 48

MAT223 AYRIK MATEMATİK

13.Konu Reel sayılar

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar Bölüm 2 : Doğal Sayılar Bölüm 3 : Doğal Sayı Problemleri... 30

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

MATEMATİK ÜSLÜ SAYILAR. Tam Sayıların Tam Sayı Kuvveti. Üslü sayı, bir sayının kendisi ile tekrarlı çarpımıdır.

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

HOMOGEN OLMAYAN DENKLEMLER

SINAV YÖNERGESİ. Numarası : CEVAP. Adı Soyadı : ANAHTARI A) 512 B) 513 C) 256 D) 1024 E) 1025 A) 252 B) 256 C) 3024 D) 126 E) =?

OYAK ADANA - BALIKESİR - BATMAN - BOLU - DÜZCE HATAY - KAHRAMANMARAŞ - MARDİN - ORDU RİZE - SAKARYA - SİVAS - TEKİRDAĞ - ZONGULDAK 7 NİSAN 2012

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

Leyla Bugay Doktora Nisan, 2011

SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI. 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin. ÇÖZÜM: 1000a 10b 1000.a b 1.

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK

A GRUBU Noktaları adlandırılmış K 6 tam çizgesinin tam olarak 3 noktalı kaç tane alt çizgesi vardır? A) 9 B) 20 C) 24 D) 60 E) 160

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu

Önermeler mantığındaki biçimsel kanıtlar

1994 ÖYS. 6. x, y, z sıfırdan büyük birer tam sayı ve 2x+3y-z=94 olduğuna göre, x in en küçük değeri kaçtır?

Temel Matematik Testi - 3

MAT239 AYRIK MATEMATİK

10.Konu Tam sayıların inşası

TEMEL SAYMA KURALLARI

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim.

Singapur Matematik Olimpiyatı Soruları

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 2017 LİSE MATEMATİK SINAVI. 10 Mayıs 2017 Çarşamba,

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL

Konu Anlatımı Açık Uçlu Sorular Çoktan Seçmeli Sorular Doğru Yanlış Soruları Boşluk Doldurmalı Sorular Çıkmış Sorular

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

AB AB. A noktasından çıkıp B noktasından geçen ışın [AB] nin uzunluǧu AB, CD ye paralel

14 Nisan 2012 Cumartesi,

14 Nisan 2012 Cumartesi,

8. SINIF MATEMATİK ÜSLÜ İFADELER

8.SINIF CEBirsel ifadeler

MATEMATİK ve DOĞA. Ayşe AYRAN Prof. Dr. Neşet AYDIN Çanakkale Onsekiz Mart Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü

KPSS soruda SORU GENEL YETENEK - GENEL KÜLTÜR MATEMATİK GEOMETRİ TAMAMI ÇÖZÜMLÜ SORU BANKASI

MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR?

X. Ulusal İlköğretim Matematik Olimpiyatı

TEMEL MATEMATİK TESTİ

X. Ulusal İlköğretim Matematik Olimpiyatı

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA

UYGUN MATEMATİK 5 SORU BANKASI. HAZIRLAYANLAR Fatih KOCAMAN Meryem ER. : Sad k Uygun E itim Yay nlar. : Yaz n Matbaas / stanbul

Ayrık Fourier Dönüşümü

1 Primitif Kökler. [Fermat ] p asal, p a a p 1 1 (mod p) a Z, a p a (mod p) [Euler] ebob(a, m) = 1, a φ(m) 1 (mod m) φ(1) := 1

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü

V 2 = J 2,1 J 2,2 = aşamada ise atılanlar = 27. ve kalanlar. kümeleridir. aralıklar 2 n 1 tanedir ve. V n = J n,1 J n,2 n 1 = tanedir ve

Muhammed ERKUŞ. Sefer Ekrem ÇELİKBİLEK

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde

TEMEL MATEMATİK. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz.

Transkript:

MAT223 AYRIK MATEMATİK Fibonacci Sayıları 4. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı

Fibonacci nin Tavşanları Fibonacci Sayıları Fibonacci nin Tavşanları 13. yüzyılda İtalyan matematikçi Leonardo Fibonacci aşağıdaki soruyu ortaya atmıştır: Leonardo Fibonacci Soru Bir çiftçi tavşan yetiştiriciliği ile uğraşmaktadır. Her bir tavşan iki aylık olduğunda bir yavru vermektedir. Bu yavrular da aynı şekilde iki aylık olduğunda yine yavru vermektedir. Tavşanların hiç ölmediğini düşünür ve tüm tavşanların dişi olduğunu kabul edersek n. ayın sonunda bu çiftçinin kaç tavşanı olacaktır? 2/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Fibonacci nin Tavşanları n nin küçük değerleri için bu soruya cevap vermek kolaydır. n Tavşanlar 1 1 2 1 3 2 4 3 5 5 6 8 7 13.. Sayı. 3/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Fibonacci nin Tavşanları Aslında tavşanların sayısının herhangi bir ay için nasıl arttığını belirlemek hiç de zor değildir. Açıktır ki, bir sonraki ayda doğacak (eklenecek) tavşan sayısı o aydaki en az iki aylık olan tavşanların sayısı kadardır. Bir başka ifadeyle, bir sonraki aydaki tavşan sayısını elde etmek için, önceki aydaki tavşanların sayısının eldeki tavşanların sayısına eklenmesi gerekir. Böylece her bir aydaki tavşan sayısı 1, 1+1 = 2, 2+1 = 3, 3+2 = 5, 5+3 = 8, 8+5 = 13,... elde edilir. 4/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Fibonacci nin Tavşanları Yukarıdaki bağıntıyı formüle etmek için n. aydaki tavşan sayısını F n ile gösterelim. Bu durumda n = 1,2,3,... için F n+1 = F n +F n 1 yazabiliriz. F 1 = 1, F 2 = 1, F 3 = 2, F 4 = 3, F 5 = 5 olduğunu zaten gördük. Yukarıdaki formül ile daha fazlasını da hesaplayabiliriz. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 1134903170, 1836311903, 2971215073, 4807526976, 7778742049, 12586269025, 20365011074, 32951280099, 53316291173, 86267571272, 139583862445, 225851433717, 365435296162, 591286729879, 956722026041, 1548008755920, 2504730781961, 4052739537881, 6557470319842, 10610209857723, 17167680177565, 27777890035288, 44945570212853, 72723460248141, 117669030460994, 190392490709135, 308061521170129, 498454011879264, 806515533049393, 1304969544928657, 2111485077978050, 3416454622906707, 5527939700884757, 8944394323791464, 14472334024676221, 23416728348467685, 37889062373143906, 61305790721611591, 99194853094755497, 160500643816367088, 259695496911122585, 420196140727489673, 679891637638612258, 1100087778366101931, 1779979416004714189, 2880067194370816120, 4660046610375530309,... 5/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Fibonacci nin Tavşanları Bu sayılara Fibonacci Sayıları denir. Eğer alınırsa, F 0 = 0, F 1 = 1 F n+1 = F n +F n 1 eşitliği ile birlikte Fibonacci sayıları tek türlü olarak elde edilir. Bu nedenle Fibonacci sayılarının tanımı bu şekilde verilebilir. Yukarıdaki eşitlik doğrudan F n sayısını vermek yerine, ilk iki Fibonacci sayısı ile başlayıp, önceki iki Fibonacci sayısı yardımıyla her bir Fibonacci sayısını vermektedir. Bu şekildeki tanımlamalara yinelemeli (recurrence) tanımlama denir. 6/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Fibonacci nin Tavşanları Soru n basamaktan oluşan bir merdiveni her seferinde bir ya da iki basamak çıkmak koşuluyla kaç farklı şekilde çıkabilirsiniz? Yine n nin bazı küçük değerleri için inceleyelim: n Çıkış şekli Çıkış sayısı 1 1 adım 1 2 1 adım + 1 adım, 2 adım 2 3 1 adım + 1 adım + 1 adım, 2 adım + 1 adım, 3 1 adım + 2 adım 4 1+1+1+1, 1+1+2, 1+2+1, 2+1+1, 2+2 5 5 1+1+1+1+1, 1+1+1+2, 1+1+2+1, 8 1+2+1+1, 2+1+1+1, 1+2+2, 2+1+2, 2+2+1... 7/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Fibonacci nin Tavşanları n basamaklı merdivenin J n farklı şekilde çıkılabildiğini kabul edelim. J n+1 sayısını J k (1 k n) sayılarını kullanarak belirlemeye çalışalım. Eğer n+1 basamaklı merdiveni ilk başta bir adım atarak çıkmaya başlarsak, geriye n basamak kalır ve bu n basamağı J n farklı şekilde çıkabileceğimizi biliyoruz. Eğer merdiveni ilk başta iki adım atarak çıkmaya başlarsak, geriye n 1 basamak kalır ve bu n 1 basamağı da J n 1 farklı şekilde çıkabileceğimizi biliyoruz. Böylece olası iki durumu da incelemiş olduk. O halde elde edilir. J n+1 = J n +J n 1 Elde edilen bu formül ile Fibonacci sayılarını elde etmek için kullanılan formül aynı. Buradan F n = J n diyebilir miyiz? Hayır! 2 = F 3 J 3 = 3. Ancak, J n = F n+1 yazabiliriz. 8/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Bazı Özdeşlikler Fibonacci Sayıları Bazı Özdeşlikler Soru İlk n Fibonacci sayısının toplamı nedir? 0,1,1,2,3,5,8,13,21,34,55, 89,144,233,377,610,987,... 0 = 0 0+1 = 1 0+1+1 = 2 0+1+1+2 = 4 0+1+1+2+3 = 7 0+1+1+2+3+5 = 12 0+1+1+2+3+5+8 = 20 0+1+1+2+3+5+8+13 = 33 Tahmini olan? 9/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Bazı Özdeşlikler O halde tümevarım yöntemi gereği her n doğal sayısı için eşitlik doğru olur. 10/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi Varsayım/Sanı (Conjecture) F 0 +F 1 +F 2 + +F n = F n+2 1 Kanıt. Kanıtı tümevarım yöntemini kullanarak yapalım: n = 0, 1, 2, 3 için eşitliğin doğru olduğunu yukarıdan biliyoruz. n 1 için eşitliğin doğru olduğunu kabul edelim. Yani, F 0 +F 1 +F 2 + +F n 1 = F n+1 1 olsun. Bu durumda eşitliğin n için de doğru olduğunu gösterelim. F 0 +F 1 +F 2 + +F n 1 +F n = (F n+1 1)+F n = F n+1 +F }{{ n 1 = F } n+2 1 F n+2

Bazı Özdeşlikler Alıştırma (Alıştırma 4.2.9) 8 8 = 64 5 13 = 65 64 = 65? Bunun Fibonacci sayıları ile ne ilgisi var? 11/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Bazı Özdeşlikler Öncelikle biraz hile yaptığımı itiraf edeyim. İlk kareden ikinci şekil elde edilemez. Şekilde geçen sayılar 5,8 ve 13 Fibonacci sayılarıdır. F 5 = 5, F 6 = 8 ve F 7 = 13 8 8 = 5 13 1 (F 6 ) 2 = F 5 F 7 1 Peki F 5,F 6,F 7 yerine F 6,F 7,F 8 için yazarsak? (F 7 ) 2 }{{} 169 = F 6 F 8 }{{} 168 Alıştırma (Alıştırma 4.2.3-d) olduğunu gösteriniz. (F n+1 ) 2 = F n F n+2 +( 1) n 12/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Bazı Özdeşlikler Kanıt. Kanıtı yine tümevarım yöntemini kullanarak yapalım: n = 0 için (F 1 ) 2 = 1 = F 0 F 2 +( 1) 0 = 1 n için eşitliğin doğru olduğunu kabul edelim. Yani, (F n+1 ) 2 = F n F n+2 +( 1) n olsun. n+1 için de eşitliğin doğru olduğunu gösterelim. Yukarıdaki eşitliğinin her iki tarafına F n+1 F n+2 eklersek, (F n+1 ) 2 +F n+1 F n+2 = F n F n+2 +( 1) n +F n+1 F n+2 n F n+1 (F n+1 +F n+2 ) = F }{{} n+2 (F n +F n+1 ) +( 1) }{{} F n+3 F n+2 F n+1 F n+3 = (F n+2 ) 2 +( 1) n (F n+2 ) 2 = F n+1 F n+3 +( 1) n+1 O halde tümevarım yöntemi gereği her n doğal sayısı için eşitlik doğrudur. 13/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Bazı Özdeşlikler Aşağıdaki özdeşliklerin de doğru olduğu yineleme formülü ve/veya tümevarım yöntemi kullanılarak gösterilebilir. F 1 +F 3 +F 5 + +F 2n 1 = F 2n F 0 F 1 +F 2 F 3 + F 2n 1 +F 2n = F 2n 1 1 F 2 0 +F 2 1 + +F 2 n = F n F n+1 Fn 2 +Fn 1 2 = F 2n 1 ( ) ( ) n n F 0 + F 1 + 0 1 ( ) n F 2 + + 2 ( ) n F n = F 2n n 14/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Fibonacci Sayıları İçin Bir Formül Fibonacci Sayıları İçin Bir Formül Teorem Fibonacci sayıları eşitliğini sağlar. F n = 1 5 [( 1+ ) n 5 ( 2 1 ) n ] 5 2 15/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Fibonacci Sayıları İçin Bir Formül Alıştırma 4.3.1. Kanıtı tümevarım yöntemi ile yapalım: n = 0 ve n = 1 için formülün doğru olduğu açıktır. n 1 (n 2) için formülün doğru olduğunu kabul edelim (tümevarım hipotezi). n için de formülün doğru olduğunu gösterelim. F n = F n 1 +F n 2 ) n 1 ( ) ] n 1 1 5 [ (1+ = 1 5 5 2 [ (1+ + 1 ) n 2 ( ) ] n 2 5 5 1 5 2 [ (1+ = 1 5 5 2 [( = 1 1+ 5 5 2 ) n 2 ( ) 1+ 5 2 + 1 + ) n ( ) n ] 1 5 2 2 2 ( ) n 2 ( ) ] 1 5 1 5 2 2 + 1 O halde tümevarım yöntemi gereği formül her n doğal sayısı için doğrudur. 16/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Fibonacci Sayıları İçin Bir Formül Önce bu formülün nasıl ortaya çıktığına değinelim: Fibonacci sayılarının oldukça hızlı arttığını biliyoruz. Acaba bu sayılar hangi hızla artıyor? Ardışık Fibonacci sayılarının oranlarına bakalım: 1 1 = 1, 2 1 = 2, 3 2 = 1.5, 5 3 = 1.666666, 8 5 = 1.600000, 13 8 = 1.625000, 21 13 = 1.615384615, 34 21 = 1.619047619, 55 34 = 1.617647059, 89 55 = 1.618181818, 144 89 = 1.617977528, 233 144 = 1.618055556, 377 = 1.618025751,... 233 İlk birkaç değeri göz ardı edersek ardışık Fibonacci sayılarının oranının 1.618 e çok yakın olduğunu görüyoruz. Bu bize Fibonacci sayılarının geometrik bir dizi olduğunu düşündürebilir. Acaba Fibonacci sayıları ile aynı yineleme formülüne sahip bir geometrik dizi var mı bakalım. 17/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Fibonacci Sayıları İçin Bir Formül G n dizisi G n = cq n şeklinde (c,q 0) G n+1 = G n +G n 1 yineleme formülünü sağlayan bir geometrik dizi olsun. Bu durumda G n yerine değerini yazarsak, olur. Gerekli sadeleştirmeyi yaparsak, elde ederiz. Bu denklemi çözersek, cq n+1 = cq n +cq n 1 q 2 = q + 1 olur. q 1 = 1+ 5 2 1.618034 ve q 2 = 1 5 2 0.618034 18/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Fibonacci Sayıları İçin Bir Formül O halde elimizde Fibonacci sayıları ile aynı yineleme formülüne sahip iki geometrik dizi var: ( 1+ ) n ( 5 G n = c ve G n 1 ) n 5 = c 2 2 Maalesef her iki dizi de bize Fibonacci sayılarını vermez. Gerçekten de, n = 0 için F 0 = 0 olmasına karşın G 0 = G 0 = c olur. Ancak, G n+1 G n+1 = (G n +G n 1 ) ( G n +G n 1) ( = Gn G n) ( + Gn 1 G n 1 ) olduğundan G n G n dizisi yineleme formülünü sağlar. Ayrıca, G 0 G 0 = 0 = F 0 olur. Üstelik, G 1 G 1 = c 5 olur. O halde c = 1 5 seçilirse G 1 G 1 = 1 = F 1 elde edilir. 19/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Fibonacci Sayıları İçin Bir Formül Böylece, aynı başlangıç değerlerine ve aynı yineleme formülüne sahip F n ve G n G n gibi iki dizi elde edilir. Öyleyse, F n = G n G n olur. G n ve G n yerine değerleri yazılırsa başlangıçta verilen formül elde edilir. Verilen formülle başka çıkarımlar da yapabiliriz: q 1 = 1+ 5 2 1.618034 > 1 olduğundan n arttığında G n üstel olarak artar. 1 < q 2 < 0 olduğundan n artarken G n üstel olarak azalır. ( O halde yeterince büyük n sayıları için F n 1 ) n 1+ 5 5 2 alabiliriz. 20/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Fibonacci Sayıları İçin Bir Formül ϕ = 1+ 5 2 sayısı Altın Oran olarak adlandırılan meşhur sayıdır. Hiç beklenmedik yerlerde bu sayı ile karşılaşmak mümkündür. Örneğin, düzgün bir beşgenin köşegeninin kenarına oranı bu sayıyı verir. Ya da 1 ϕ = 1+ 1 1+ 1+ 1+ ϕ = 1+ 1+ 1+ 1+ 1 1 1+ 1+ 1, 1+ 1+. 21/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar Fibonacci Sayıları Alıştırmalar Alıştırma Pascal üçgeninin herhangi bir satırının soldan ilk elemanını işaretleyin. Daha sonra bu elemandan bir birim doğuya ve bir birim kuzey-doğuya gidip ulaştığınız elemanı işaretleyin. Pascal üçgeninin dışına çıkana kadar bu işleme devam edip işaretlediğiniz elemanları toplayın. Farklı satırlar için bu işlemi tekrarladığınızda ne tür sayılar elde edersiniz. Bu işlemi formüle edip kanıtlayınız. 22/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

1 1 1 1 2 1 1 3 3 1 Alıştırmalar 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1+4+3 = 8 = F 6 1+5+6+1 = 13 = F 7 Sanı ( ) n + 0 ( n 1 1 ) + ( n 2 2 ) + + ( ) n k = F n+1, k = [ n/2 ] k 23/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar Tümevarım yöntemi ve Pascal üçgeninin temel özelliği yardımıyla kolayca gösterilebilir. n = 0 ve n = 1 için doğru olduğu açık. n 2 için doğru olsun. n+1 için de doğru olduğunu gösterelim. Genelliği bozmaksızın n nin tek olduğunu kabul edersek (n çift ise sadece son terimde bir farklılık olacaktır benzer şekilde kanıt yapılabilir), ( n ( 0) + n 1 ) ( 1 + n 2 ) ( 2 + + n k ) [ (n 2 ) ( k = 1+ 0 + n 2 ) ] (n 3 ) ( 1 +[ 1 + n 3 ) ] (n k 1 ) ( 2 + +[ k 1 + n k 1 ) ] [ k (n 1 ) ( = 0 + n 2 ) ( 1 + n 3 ) ( 2 + + n k 1 ) ] (n 2 ) ( k +[ 0 + n 3 ) 1 + ( n 4) ( 2 + + n k 1 ) ] k 1 = F n +F n 1 = F n+1 olduğundan n + 1 içinde doğru dolayısıyla her n N için eşitlik doğrudur. 24/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar Alıştırma 2 n boyutlarındaki bir satranç tahtasını domino taşları ile kaç farklı şekilde örtebilirsiniz? Domino taşı, dikdörtgen şeklinde, satranç tahtasının iki karesi boyutundadır ve domino taşları satranç tahtası üzerine bir beyaz ve bir siyah kareye denk gelecek şekilde yerleştirilebilir. Ayrıca domino taşları özdeş kabul edilecektir. ). 25/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar 2 n boyutlarındaki bir satranç tahtasını domino taşları ile F n+1 farklı şekilde örtebiliriz. Kanıtı tümevarım ile yapalım: Aşağıda görüldüğü gibi n = 1 için satranç tahtasını 1, n = 2 için 2 ve n = 3 için 3 farklı şekilde örtebiliriz. (n = 4 için sayının 5 olacağını görünüz.) 26/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar n için mümkün olan tüm farklı örtülüşlerin sayısını G n = F n+1 ile gösterelim. n+1 için inceleyelim: Eğer ilk adımda domino taşını dikey pozisyonda koyarsak, geriye n sütun kalır ve bunları G n farklı şekilde örtebiliriz. Eğer ilk adımda domino taşını yatay koyarsak bu durumda geriye n 1 sütun kalır ve bunları G n 1 farklı şekilde örtebiliriz. O halde n+1 için G n+1 = G n +G n 1 olur. O zaman 2 n boyutlarındaki bir satranç tahtasını domino taşları ile G n = F n+1 farklı şekilde örtebiliriz. 27/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar Alıştırma F n, n. Fibonacci sayısını göstermek üzere, özdeşliğini kanıtlayınız. F n+m = F n 1 F m +F n F m+1 Kanıtı m üzerinden tümevarım ile yapalım. m = 1 için F n+1 = F n 1 F }{{} 1 +F n F 2 = F }{{} n 1 +F n 1 1 m = 2 için F n+2 = F n 1 F 2 }{{} 1 +F n F 3 }{{} 2 = F n 1 + 2F n = F n 1 +F }{{ n +F } n F n+1 = F n+1 +F n 28/41 olduğundan AYRIK MATEMATİK doğrudur. 2014 2015 Anadolu Üniversitesi

Alıştırmalar m = k + 1 için ifade doğru olsun. m = k + 2 için doğru olduğunu gösterelim. F n+k = F n 1 F k +F n F k+1 ve F n+k+1 = F n 1 F k+1 +F n F k+2 eşitliklerini taraf tarafa toplarsak, F n+k+2 = F n 1 F k+2 +F n F k+3 eşitlik m = k + 2 için de doğru olur. O halde tümevarım yöntemi gereği özdeşliğin doğruluğu elde edilir. 29/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar Alıştırma Her pozitif tam sayının birbirinden farklı Fibonacci sayılarının toplamı olarak yazılabileceğini kanıtlayınız. n = 1,2,3 için doğru olduğu açık. n den küçük her tam sayı farklı Fibonacci sayılarının toplamı şeklinde yazılabilsin. n sayısının da farklı Fibonacci sayılarının toplamı şeklinde yazılabildiğini gösterelim: n nin kendisi Fibonacci sayısı ise kanıtlanacak bir şey yok. n Fibonacci sayısı olmasın. Bu durumda F i < n < F i+1 olacak şekilde i sayısı vardır. Buradan olur. 0 < n F i < F i+1 F i = F i 1 30/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar Tümevarım hipotezinden, n = n F i pozitif tam sayısı da farklı Fibonacci sayılarının toplamı olarak yazılabilir. Ayrıca, n < F i 1 olduğundan bu toplamdaki Fibonacci sayılarının her biri F i 1 Fibonacci sayısından daha küçük olacaktır. Eğer, şeklinde ise n = n F i = F i1 +F i2 + +F ik, i j < i 1, j = 1,2,...,k n = F i1 +F i2 + +F ik +F i, i j < i 1, j = 1,2,...,k olacağından kanıt biter. 31/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar Alıştırma (Alıştırma 4.3.6) S = {1, 2,..., n} kümesinin kaç alt kümesi ardışık iki tam sayı içermez? Bazı n değerleri için ardışık iki eleman bulundurmayan alt kümelerin sayısını bulalım: n = 0 ise S = olduğundan ardışık iki eleman içermeyen 1 tane alt küme vardır ( ). n = 1 ise ardışık iki eleman bulundurmayan alt kümeler 2 tanedir ( ve {1}). n = 2 ise ardışık iki eleman bulundurmayan alt kümeler 3 tanedir (, {1} ve {2}). n = 3 ise ardışık iki eleman bulundurmayan alt küme sayısı 5 olur (, {1}, {2}, {3}, {1,3}). n = 4 ise ardışık iki eleman bulundurmayan alt küme sayısı 8 olur (, {1}, {2}, {3}, {4}, {1,3}, {1,4}, {2,4}).. 32/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar Elde edilen sayılar Fibonacci sayılarıdır. S = {1, 2,..., n} kümesinin ardışık iki eleman içermeyen alt kümelerinin sayısını A n olsun. Kolay anlaşılabilir olması için önce n = 4 iken S = {1, 2, 3, 4} kümesinin ardışık iki eleman bulundurmayan alt kümelerinin sayısını yani A 4 ü hesaplayalım. Bu alt kümeleri aşağıdaki gibi iki gruba ayırabiliriz: 4 ü bulunduran ve ardışık eleman içermeyen alt kümeler {4}, {1,4}, {2,4} }{{} 4 ü bulundurmayan ve ardışık elema içermeyen alt kümeler, {1}, {2}, {3}, {1,3} }{{} A 2 4 kümelere ait olduğundan 3 ait olmamalı. Bu durumda {1, 2} kümesinin ardışık iki sayı içermeyen her bir alt kümesine 4 ü ekliyoruz. Bunların sayısı ise varsayımımızdan A 2 olur. A 3 Bu kümeler {1, 2, 3} kümesinin ardışı iki eleman içermeyen alt kümeleri olu Bunların sayısı da varsayımımız gereğ A 3 olur. 33/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar Böylece A 4 = A 2 +A 3 olur. Yukarıda 4 yerine n alıp, diğer sayıları da n 1 ve n 2 ile değiştirirsek, A n = A n 1 +A n 2 olur. A 0 = 1 ve A 1 = 2 olduğundan A n = F n+2 olur. 34/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar Alıştırma n digit uzunluğunda ve 1 ile başlayan, 1 ler 1 ler ile, 0 lar 0 lar ile yan yana gelme koşuluyla ( 0 ve 1 lerin yalnız kalmasını istemiyoruz!) kaç farklı binary string yazılabilir? Örneğin, n = 8 için bazı istenen ve istenmeyen durumlar aşağıda verilmiştir. 11000111 11100111 10001111 X en baştaki 1 yalnız kalmış. 11011000 X yalnız bir 0 var 11001000 X yalnız bir 1 var 00011000 X 1 ile başlamıyor 35/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar Önce bazı n değerleri için elde edilen binary stringleri yazalım: n Binary String A n 1 0 2 11 1 3 111 1 4 1111, 1100 2 5 11111, 11100, 11000 3 6 111111, 111100, 111000, 110011, 110000 5 7 1111111, 1111100, 1111000, 1110011, 1110000, 1100111, 1100011, 1100000 8... Yukarıdaki tablodan elde edilen sayıların Fibonacci sayıları olduğu görüyoruz. 36/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar n karakter uzunluğunda ve verilen koşulları sağlayan binary string sayısının F n+1 olduğunu kanıtlayalım. n karakter uzunluğunda ve verilen koşulları sağlayan farklı binary stringlarin sayısına A n diyelim. Bu şekildeki binary stringlerin soldan üçüncü digiti için iki durum söz konusudur: 111xxx }{{...x} n tane 1100xx }{{...x} n tane Birinci durumu ele alırsak, soldan ilk digiti attığımızda n 1 digitli ve verilen koşulları sağlayan bir binary string elde ederiz ki bunların sayısı A n 1 olur. 37/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar İkinci durumda yani 3. digit 0 ise bu durumda koşullar gereği 4. digitte 0 olmak zorundadır. Şimdi, ilk iki digit atılarak elde edilen n 2 digit uzunluğunda, 00 ile başlayan ve istenen koşulları sağlayan binary stringleri düşünecek olursak bunların sayısı n 2 digit uzunluğunda 11 ile başlayan ve istenen koşulları sağlayan binary stringlerin sayısı ile aynı ve A n 2 olur. Yani, 0 lar ile 1 leri değiştirmek bir şey değiştirmez. O halde bu iki durumu birleştirirsek, A n = A n 1 +A n 2 olur. Yukarıdaki tablodan A 2 = 1 ve A 3 = 1 olduğundan A n = F n+1 elde edilir. 38/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar Alıştırma Sosyal yardım için sırada bekleyen 10 vatandaşa kömür ve gıda yardımı yapılacaktır. Sırada bekleyen ardışık iki kişiye kömür vermemek ve sıradakilere yardımlardan sadece birini vermek koşuluyla bu dağıtım kaç farklı şekilde yapılabilir? Önce problemi basitleştirip sırada bekleyen 1,2,3,4 ve 5 kişi varken yardımların kaç farklı şekilde dağıtılabileceğini inceleyelim. Gösterimlerde kısalık açısından kömür yardımını K, gıda yardımını G ile gösterelim. 39/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar n Dağıtımlar A n 1 K, G 2 2 KG, GK, GG 3 3 KGK, KGG, GGK, GKG, GGG 5 4 KGKG, KGGK, KGGG, GKGK, GKGG, GGKG, GGGK, GGGG 8 5 KGKGK, KGKGG, KGGKG, KGGGK, KGGGG, GKGKG, GKGGK, GKGGG, GGKGK, GGKGG, GGGKG, GGGGK, GGGGG 13. Elde edilen sayılar Fibonacci sayılarıdır.. 40/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi

Alıştırmalar Şimdi sırada n kişi varken dağıtımların sayısını A n ile gösterelim. Buna göre sırada n kişi varken ilk kişiye kömür verildiyse ikinci kişiye gıda verilmek zorunda olduğundan bu şekildeki dağıtımların sayısı A n 2 olur. Eğer ilk kişiye gıda verilirse ikinci kişiye herhangi bir yardım verilebileceği için bu şekildeki dağıtımların sayısı A n 1 olur. O zaman toplam dağıtım sayısı A n = A n 1 +A n 2 elde edilir. Yukarıdaki tablodan A 1 = 2 ve A 2 = 3 olduğundan A n = F n+2 diyebiliriz. Böylece istenen cevap A 10 = F 12 = 144 elde edilir. 41/41 AYRIK MATEMATİK 2014 2015 Anadolu Üniversitesi