YGS-LYS GEOMETRÝ Konu Anlatýmý ÇEMBERÝN ANALÝTÝÐÝ - I 1. Çember Denklemi: Analitik düzlemde merkezi M(a, b) ve yarýçapý r birim olan çemberin denklemi, (x - a) 2 + (y - b) 2 = r 2 (x - a) 2 + y 2 = r 2 b. Merkezi Oy ekseni üzerinde M(0, b) ve yarýçapý r birim olan çemberin denklemi, 2. Merkezil Çemberin Denklemi: Merkezi orijinde ve yarýçapý r birim olan çemberin denklemi, x 2 + y 2 = r 2 r = 1 olursa x 2 + y 2 = 1 çemberi merkezil birim çember adýný alýr. x 2 + (y - b) 2 = r 2 4. Eksenlere Teðet Olan Çemberlerin Denklemleri: a. Merkezi M(a, b) ve yarýçapý r birim olan çember Ox eksenine teðetse r = b 3. Merkezi Eksenler Üzerinde Olan Çember: a. Merkezi Ox ekseni üzerinde M(a, 0) ve yarýçapý r birim olan çemberin denklemi r = b
ÇEMBERÝN ANALÝTÝÐÝ - I YGS-LYS GEOMETRÝ Konu Anlatýmý b. Merkezi M(a, b) ve yarýçapý r birim olan çember Oy eksenine teðetse r = a - 2a = D, - 2b = E, a 2 + b 2 - r 2 = F yazýlýrsa çemberin genel denklemi x 2 + y 2 + Dx + Ey + F = 0 Genel çember denkleminde, r = a c. Merkezi M(a, b) ve yarýçapý r birim olan çember her iki eksene de teðetse r = a = b r = a = b 6. Çember Olma Þartý: Ax 2 + By 2 + Cxy + Dx + Ey + F = 0 denkleminin çember belirtmesi için, a. A = B olmalýdýr. b. C = 0 olmalýdýr. c. NOT: 1. Merkezleri I. ya da III. bölgede olan ve her iki eksene de teðet olan çemberlerin merkezleri y = x doðrusu üzerinde 2. Merkezleri II. ya da IV. bölgede olan ve her iki eksene de teðet olan çemberlerin merkezleri y= - x doðrusu üzerinde 5. Genel Çember Denklemi Merkezi M(a, b) ve yarýçapý r birim olan çemberin denklemi (x - a) 2 + (y - b) 2 = r 2 Bu denklemi açarsak; x 2-2ax + a 2 + y 2-2by + b 2 - r 2 = 0 x 2 + y 2-2ax - 2by + a 2 + b 2 - r 2 = 0 D 2 + E 2-4F ifadesine çember diskriminantý denir. Bu diskriminant deðerine göre, üç durum vardýr. 1. durum: D 2 + E 2-4F > 0 ise denklem bir çember belirtir. (reel çember belirtir.) 2. durum: D 2 + E 2-4F = 0 ise denklem bir nokta belir - tir. (Merkez noktasý) 3. durum: D 2 + E 2-4F < 0 ise denklem bir reel çember belirtmez.
YGS-LYS GEOMETRÝ Konu Anlatýmý ÇEMBERÝN ANALÝTÝÐÝ - II 1. ÜÇ NOKTASI VERÝLEN ÇEMBERÝN DENKLEMÝ Çember üzerinde üç nokta verildiðinde bu noktalar sýrasýyla, x 2 + y 2 + Dx + Ey + F = 0 denkleminde yerine yazýlarak; D, E, F sayýlarý bulunur. 2. DOÐRU ÝLE ÇEMBERÝN BÝRBÝRÝNE GÖRE DURUMLARI Merkezi M(a, b) ve yarýçapý r birim olan bir çemberin, bir k doðrusuna uzaklýðý d olsun. a. d > r ise doðru ile çember kesiþmez. d > r 3. ÇEMBERE ÜZERÝNDEKÝ BÝR NOKTADAN ÇÝZÝLEN NORMALÝN DENKLEMÝ b. d = r ise doðru çembere teðettir. d = r c. d < r ise doðru çemberi farklý iki noktada keser. Çemberin merkezinden ve çember üzerindeki bir noktadan geçen doðruya normal denir. M(a, b) ve A(x 1, y 1 ) noktasýndan geçen normalin denklemi d < r Kesim noktalarý doðru denklemi ile çember denkleminin ortak çözümünden bulunur. þeklinde bulunur. (Ýki noktasý bilinen doðru denklemi) Þekilde d N normal doðrusudur. Normal doðrusuna dik olan d T doðrusuna da teðet denir.
ÇEMBERÝN ANALÝTÝÐÝ - II YGS-LYS GEOMETRÝ Konu Anlatýmý 4. ÇEMBERE ÜZERÝNDEKÝ BÝR NOKTADAN ÇÝZÝLEN TEÐETÝN DENKLEMÝ 6. ÝKÝ ÇEMBERÝN BÝRBÝRÝNE GÖRE DURUMLARI Merkezleri M 1, M 2 ve yarýçap uzunluklarý r 1 ve r 2 birim olan iki çemberin merkezleri arasýndaki uzaklýk M 1 M 2 olsun. a. M 1 M 2 > r 1 + r 2 ise çemberler kesiþmez. Normale dik olan doðruya teðet denir. Teðetin denklemi bulunurken, b. a. A(x 1, y 1 ) ve M(a, b) noktalarýndan geçen normalin eðimi bulunur. b. d N ^ d T ve dik doðrularýn eðimleri çarpýmý (- 1) olduðundan d T doðrusunun eðimi bulunur. c. Eðimi bilinen ve A(x 1, y 1 ) noktasýndan geçen d T doðrusunun denklemi yazýlýr. c. M 1 M 2 = r 1 + r 2 ise çemberler dýþtan teðettir. (Bir noktada kesiþir.) y - y 1 = m T. (x - x 1 ) m T : teðetin eðimi 5. ÇEMBERE DIÞINDAKÝ BÝR NOKTADAN ÇÝZÝLEN TEÐETLERÝN DENKLEMÝ d. M 1 M 2 < r 1 + r 2 ise çemberler farklý iki noktada kesiþir. r 1 - r 2 < M 1 M 2 < r 1 + r 2 e. M 1 M 2 = r 1 - r 2 ise çemberler içten teðettir. Bir çembere dýþýndaki bir P noktasýndan [PA ve [PB þeklinde iki teðet çizilebilir. Bu teðetlerin denklemi y = mx + n þeklinde Teðetin denklemi bulunurken a. P(x 1, y 1 ) noktasý y = mx + n denkleminde yerine yazýlýr. f. M 1 M 2 < r 1 - r 2 ise çemberler iç içedir ve kesiþmezler. b. MA = MB = r olduðundan bir noktanýn bir doðruya uzaklýðýndan bir denklem elde edilir. c. a ve b de bulunan denklemlerin ortak çözümünden doðrunun denklemi elde edilir. [M 1 K ^ [M 2 K ise çemberler dik kesiþiyor demektir.
YGS-LYS GEOMETRÝ Konu Anlatýmý ÇEMBERÝN ANALÝTÝÐÝ - III I. BÝR NOKTANIN BÝR ÇEMBERE GÖRE KUVVETÝ Bir A(x 1,y 1 ) noktasýnýn bir çembere göre kuvveti, P A olsun. T teðet noktasý M çember merkezi a. P A > 0 ise nokta çemberin dýþýndadýr. P A = d 2 - r 2 > 0 b. P A = 0 ise nokta çemberin üzerinde P A = AT 2 a. A(x 1, y 1 ) noktasýnýn (x - a) 2 + (y - b) 2 = r 2 çemberine göre kuvveti, b. A(x 1, y 1 ) noktasýnýn x 2 + y 2 + Dx + Ey + F = O çemberine göre kuvveti Yani her iki durumda da verilen nokta çember denkleminde yerine yazýlýrsa P A bulunur. 2. BÝR NOKTA ÝLE BÝR ÇEMBERÝN BÝRBÝRÝNE GÖRE DURUMLARI Analitik düzlemde merkezi M ve yarýçapý r birim olan bir çember ile bir A noktasý alalým. A noktasýnýn çemberin merkezi olan M noktasýna uzaklýðý d olsun. T teðet noktasý M A = d P A = AT 2 P A = (x 1 - a) 2 + (y 1 - b) 2 - r 2 P A = d 2 - r 2 P A = d 2 - r 2 = O c. P A < 0 ise nokta çemberin içinde P A = d 2 - r 2 < 0 Bu durumda, A noktasýndan geçen en kýsa kiriþ [MA] ya dik olan kiriþtir. C AM dik üçgeninde x 2 = r 2 - d 2 x 2 = - P A (En kýsa kiriþin uzunluðu 2x tir.) 3. ÝKÝ ÇEMBERÝN KUVVET EKSENÝ Ýki çembere göre, kuvvetlerin eþit olduðu noktalarýn oluþturduðu doðruya kuvvet ekseni denir. Denklemleri verilen iki çemberin kuvvet ekseni bulunurken yok etme metodu ile x 2 ve y 2 li terimler yok edilerek doðrunun denklemi bulunur.
ÇEMBERÝN ANALÝTÝÐÝ - III YGS-LYS GEOMETRÝ Konu Anlatýmý Aþaðýdaki þekillerde d doðrularý çemberlerin kuvvet eksenleri 6. ÇEMBER DEMETÝ Ç 1 : x 2 + y 2 + D 1 x + E 1 y + F 1 = 0 Ç 2 : x 2 + y 2 + D 2 x + E 2 y + F 2 = O Ç 1 Ç Ç 2 = {A, B} olsun A ve B noktalarýndan geçen sonsuz sayýda çember bir çember demeti oluþturur. Çember demetinin denklemi Ç 1 + k. Ç 2 = 0 (k : parametre) 7. ÇEMBERÝN SÝMETRÝÐÝ Bir çemberin bir noktaya ya da bir doðruya göre simetriði alýnýrken merkezinin simetriði alýnýr. Yarýçap uzunluðu deðiþmez. Çemberin denklemi yazýlýr. 8. ÇEMBERÝN DÜZLEMDE AYIRDIÐI BÖLGELER 4. ÜÇ ÇEMBERÝN KUVVET MERKEZÝ Üç çemberin ikiþer ikiþer üç tane kuvvet ekseni vardýr. Bu üç kuvvet ekseninin kesiþtiði noktaya üç çemberin kuvvet merkezi denir. (x - a) 2 + (y - b) 2 = r 2 çemberi için a. (x - a) 2 + (y - b) 2 > r 2 eþitsizliðini saðlayan noktalar çemberin dýþ bölgesini gösterir. b. (x - a) 2 + (y - b) 2 = r 2 eþitsizliðini saðlayan noktalar çemberin kendisini gösterir. c. (x - a) 2 + (y - b) 2 < r 2 eþitsiziðini saðlayan noktalar çemberin iç bölgesini gösterir. Kuvvet merkezini bulmak için herhangi iki kuvvet ekseni bulunup bu denklemler ortak çözülerek kesim noktasý bulunur. 9. YARIM ÇEMBER DENKLEMLERÝ (x - a) 2 + (y - b) 2 = r 2 çember denkleminde (y - b) 2 = r 2 - (x - a) 2 5. ÇEMBERÝN PARAMETRÝK DENKLEMÝ Merkezi M(a,b) ve yarýçapý r birim olan çemberin parametrik denklemi x = a + r. cosq y = b + r. sinq þeklinde (q : açýsal parametre) þeklinde yarým çember denklemleri bulunabilir.