1. Ders. Mahir Bilen Can. May 9, 2016

Benzer belgeler
Lecture 2. Mahir Bilen Can. Mayıs 10, 2016

3. Ders. Mahir Bilen Can. Mayıs 11, Önceki Dersteki Sorular ile İlgili Açıklamalar

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve

Cebir 1. MIT Açık Ders Malzemeleri

Cebir 1. MIT Açık Ders Malzemeleri

sonlu altörtüsü varsa bu topolojik uzaya tıkız diyoruz.

12. Ders. Mahir Bilen Can. Mayıs 24, Son dersten hatırlayacağınız üzere simetrikleştirme operasyonundan elde ettiğimiz fonksiyon.

İleri Diferansiyel Denklemler

7. Ders. Mahir Bilen Can. Mayıs 17, 2016

VEKTÖR UZAYLARI 1.GİRİŞ

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

Alıştırmalara yanıtlar

9. Ders. Mahir Bilen Can. Mayıs 19, 2016

10. Ders. Mahir Bilen Can. Mayıs 20, Yarıbasit bir Lie cebirinin yapısını analiz etmeye devam ediyoruz. hatırlayınız:

İleri Diferansiyel Denklemler

Ders 2: Manifold, kritik noktaları ve indisleri

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

Grup Homomorfizmaları ve

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

8.Konu Vektör uzayları, Alt Uzaylar

11. Ders. Mahir Bilen Can. Mayıs 23, 2016

Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

MAT 302 SOYUT CEBİR II SORULAR. (b) = ise =

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

Hamel Taban ve Boyut Teoremi

Cebir 1. MIT Açık Ders Malzemeleri

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/

ÖZDEĞERLER- ÖZVEKTÖRLER

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

13.Konu Reel sayılar

Ders 9: Bézout teoremi

Özdeğer ve Özvektörler

Soru Toplam Puanlama Alınan Puan

Ders 8: Konikler - Doğrularla kesişim

BÖLÜM 24 PAULI SPİN MATRİSLERİ

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

Kuantum Grupları. Orta Doğu Teknik Üniversitesi, Ankara. Münevver Çelik. Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010

1. Metrik Uzaylar ve Topolojisi

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

Egzersizler MATH 111

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= Genel: Vektörler bölümünde vektörel iç çarpım;

DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI

İleri Diferansiyel Denklemler

1.4 Tam Metrik Uzay ve Tamlaması

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

İleri Diferansiyel Denklemler

13. Ders. Mahir Bilen Can. Mayı 25, : α nın eş-kökü

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı

Kuantum mekaniğinde uzay ve zamandaki dönüşümler sisteme ait Hilbert uzayında üniter

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

13. Karakteristik kökler ve özvektörler

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

Kuantum Mekaniğinin Varsayımları

Galois Teori, Örtü Uzayları ve Diferansiyel Denklemler

Normal Alt Gruplar ve Bölüm Grupları...37

İleri Diferansiyel Denklemler

SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X) kuvvet. kümesi veriliyor. P (X) üzerinde 0 ; A = 1 ; A

İleri Diferansiyel Denklemler

İNJEKTİF MODÜLLERE. Ali Pancar Burcu Nişancı Türkmen

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

Fen ve Anadolu Liselerine Öğretmen Seçme Sınav Denemesi

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

10.Konu Tam sayıların inşası

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKTRUMLARI ÜZERİNE

TOPOLOJİK ROUGH KÜMELERİ ÜZERİNE. Hatice Kübra SARI

MAT 321SOYUT CEBİR I KONU TEKRAR SORULARI. ise < A > nedir?

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ

1 BAĞINTILAR VE FONKSİYONLAR

Normal Altgruplar ve Bölüm Grupları

CEBİR ÇÖZÜMLÜ SORU BANKASI

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

İleri Diferansiyel Denklemler

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31

Transkript:

1. Ders Mahir Bilen Can May 9, 2016 1 Lie Grup nedir? Kabaca Lie grubu denilen şey bir C -çokkatlısıdır ve aynı zamanda grup yapısına sahiptir öyle ki üzerindeki işlem ve ters alma operasyonu C -fonksiyonlardır. Bu tarz nesneler doğası gereği zengindirler ("unlike wisdom"). Örneğin, belirli bir yapısı ile birlikte bir doğrusal (lineer) uzayın simetri grubu Lie grup yapısına sahiptir. Mesela ortogonal grup O(n, R) yani, (.,.) R n üzerinde standart iç çarpım olmak üzere her x, y R n için (x, y) = (Lx, Ly) koşulunu sağlayan R n den kendisine giden tüm doğrusal dönüşümlerin oluşturduğu grup. SO(n, R) := {L O(n, R) : detl = 1} altkümesi de O(n, R) ın bir Lie altgrubudur ve (R n, (.,.)) üzerindeki özel ortogonal grup olarak adlandırılır. Bunlar çok doğal olmalarına karşın ne yazık ki tüm Lie grupları umulduğu kadar görsel değillerdir. Örneğin tanımı gereği özel ortogonal grubun çift örtüsü olan spin grubu kuantum elektromanyetik kuramı için büyük öneme sahiptir. Ancak bu grubun n=3 haricinde, genel özelliklerini detaylı bir şekilde çalışmadan ve ortogonal grubun topolojisine girmeden, doğasını kavrayabilmek hiç de kolay değildir. *: WIKI den: Parçacık fiziğinde (adını Enrico Fermi den alan), fermiyon Fermi-Dirac istatistiklerine saygı duyan herhangi bir parçacıktır. Bir fermiyon, elektron gibi elementer 1

bir parçacık olabilirken proton gibi bileşik bir parçacık da olabilir. Spin-istatistik teoremine göre; herhangi bir makul göreli kuantum alan kuramında, buçuklu parçacıkları olan spinler fermiyonken, tam sayılı spinlere sahip olan parçacıklar bozondurlar. Bose-Einstein istatistiklerine saygı duyan bozonların aksine verilen herhangi bir anda sadece bir fermiyon belirli bir "quantum sate" işgal edebilmektedir. Eğer birden fazla fermiyon aynı fiziksel uzayı işgal ediyorsa her fermiyonun, onun spini gibi, en az bir özelliği farklı olmalıdır. Bozonlar genel olarak kuvvet taşıyıcı parçacıklarken fermiyonlar genelde madde ile ilişkilendirilmektedirler. Belirtmek gerekir ki şu an ki kuantum fiziğinde, bu iki kavram arasındaki ayrım net değildir. Standart Model iki tip elementer fermiyonları görmektedir: kuarklar ve leptonlar. Tümünde model 24 farklı fermiyon ayırt etmektedir: her birinin karşı-parçacığı ile birlikte 6 kuark ve 6 lepton. Proton ve nötronlar gibi bileşik fermiyonlar maddenin temel yapı taşlarıdır... 1.1 Motivasyonel Örnekler 1. R n+1 deki n-küresi S n := {(x 0,..., x n ) R n+1 : x n+1 i = 1} Bu türevlenebilir bir çokkatlının ilk örnekleri arasında yer almaktadır. n = 1 olduğu zaman, yani birim çember durumunda, iyi bilinen bir gruba rastlamaktayız: e s 1 ve e r 1, S 1 de iki eleman ve s, r R olsun. Grup yapısı e s 1 e r 1 = e (s+r) 1. ile verilmektedir. Bu açıdan bakıldığında doğal bir soru S 2 nin de bir grup olup olmadığıdır. Cevabımız ise hayır. (İleride bu noktaya geriye döneceğiz.) 2 2 lik matrislerin oluşturduğu SO(2, R) = {A Mat 2 (R) : AA T = I 2 } özel ortogonal grubunu göz önüne alalım. SO(2, R) nin hem grup hem de topolojik olarak S 1 olduğunu görebiliriz. Daha 2

genel olarak SO(n, R) grubunu S n 1 in oryantasyonu koruyan simetri grubu olarak düşünebiliriz. 2. U n üniter grubu, C n üzerindeki q H standart Hermitian iç çarpım ile ortogonal matrislerin rolünü oynamaktadır: x = (x 1,..., x n ), y = (y 1,..., y n ) C n. q H (x, y) = x i y i Daha somut olarak U n grubu q H (x, y) = q H (Lx, Ly) koşulunu sağlayan tüm (karmaşık) doğrusal L : C n C n operatörlerin oluşturduğu grup olarak tanımlanmaktadır. Bir başka deyişle U n = {A Mat n (C) : AA = I n }. Özel üniter grubu ise SU n = {A U n : deta = 1} Açıklama 1.1. SU n ve U n grupları R üzerinde birer Lie gruplarıdır. Alıştırma 1.2. SU 2 nin S 3 olduğunu gösteriniz, böylelikle Lie grubu olduğunu da. 3. SU 2 ile alakalı bir başka mevzu ile devam ediyoruz. Lineer cebirden biliyoruz ki üniter matrisler köşegenleştirilebilir (spektral teorem - ileriki derslerde buna değinilecek). Aslında bu üniter matrisler ile yapılabilmektedir. Özel olarak SU 2 nin herhangi bir elemanı SU 2 de bir köşegen matrise U n -eşleniktir. A SU 2 olduğundan yani ( ) a b a + b = 1 ile A = b a olduğundan A nın karakteristik polinomu gerçel köklere sahiptir. Dolayısıyla bunların özdeğerleri θ [0, π] olmak üzere λ = cos θ + i sin θ ve λ = cos θ i sin θ biçimindedir. Bariz ki θ = 0 a (sırasıyla θ = π ye) karşılık gelen eşlenik sınıfı I 2 birim matrisinin (sırasıyla I 2 birim matrisinin) eşlenik sınıfıdır.buradan da {AI 2 A 1 : A SU 2 } = {AA : A SU 2 } = {I 2 } 3

olduğu açıktır. Benzer şekilde I 2 nin eşlenik sınıfı { I 2 } dir. Öte yandan özdeğerleri ±1 den farklı olan bir A SU 2 elemanının eşlenik sınıfı daha büyüktür. Aslında A nın eşlenik sınıfı onun λ = e iθ (ve λ) özdeğer(ler)i tarafından tek bir şekilde belirlenmektedir, böylece trace(a)=re(λ) elde edilir (λ birim çemberin üst yarısında kaldığı için). Dolayısıyla, ( ) ( ) a b x0 + x 1 i x 2 + ix 3 SU 2 A = = (x 0, x 1, x 2, x 3 ) S 3 b a x 2 + x 3 i x 0 ix 1 yardımıyla SU 2 nun 3-küre ile olan eşliğini kullanırsak trace(a)=2x 0 ın, A nın eşlenik sınıfına iliştirilmiş teklikle belirli bir değişmez olduğu görülür. Özel olarak A, B SU 2 elemanları eşleniktir ancak ve ancak bunların ilk girdilerinin gerçel kısımları aynıdır. Bu SU 2 nin eşlenik sınıflarının aslında 2-küre olduğunu göstermektedir. (bir 1 < c < 1 sayısı ile çarpmayı gözetmeksizin) Genelliği bozmadan x 0 = 0 olduğunu varsayabiliriz. Böylece karşılık gelen eşlenik sınıfı ( ) x i x 2 + ix 3 A = x 2 + x 3 i ix 1 biçimindeki matrislerden oluşmaktadır. E, R de x 0 = 0 eşitliği ile tanımlanan yatay R 3 ile SU 2 nin arakesiti olsun. Diğer bir deyişle E, SU 2 de λ = e iπ/2 = i özdeğerine karşılık gelen eşlenik sınıfı olsun. Bariz ki E, x 2 1 + x 2 2 + x 2 3 = 1 denklemi ile tanımlanan bir 2-küredir. Böylece SU 2, E üzerine eşlenik ile etki etmektedir. Biraz uğraşla SU 2 nin keyfi bir P elemanı, θ (0, π) ve A E olmak üzere P = P (A, θ) = (cosθ)i 2 + (sin θ)a biçiminde yazılabilmektedir. Dahası P nin E = S 2 üzerine eşlenik ile etkisi, A E kutbunun etrafında 2θ lık döndürmeden başka bir şey değildir. Böylelikle SU 2 nin, S 2 4

üzerinde döndürme operatörü olarak, bir temsilini bulmuş olduk. Bu gözlemi özel kılan şey eğer ilgili döndürmeyi R P ile gösterirsek o zaman φ : P R P fonksiyonu, SU 2 den SO(3, R) e giden bir 2-1 grup homomorfizmasıdir. Böylece SU 2 / ker φ SO(3, R) olduğunu görmekteyiz. Bir başka deyişle SO(3, R), SU 2 ile çift-örtülmektedir. SU 2 nin R 3 uzayına ortogonal matrislerle etki eden bu temsili aslında SU 2 nin sanal kuaternionlar üzerine olan eşlek temsili olarak görülebilmektedir, ancak buna sonra bakacağız. Açıklama 1.3. R 4 teki bu yatay R 3 ü ileride açıklayacağımız sanal kuaternionlarla özdeşleştiriyoruz. Diyelim I 2, i, j, k şu matrisler olsun ( ) ( ) ( ) ( ) 1 0 i 0 0 1 0 i I 2 =, i =, j =, k = 0 1 0 i 1 0 i 0 Sanal kuaternionlar i, j ve k nın gerdiği uzaydır. SU 2 bu matrislere eşlenik etkisi ile etki etmekte ve onlar üzerine indirgenmiş iç çarpımı korumaktadır. (Aslında SU 2 birim kuaterniyonların grubudur.) 1.2 Soyut tanım L, F cismi üzerinde bir vektör uzayı olsun. Eğer aşağıdaki koşulları sağlayan bir [.,.] : L L L bilneer operatörü varsa L, F üzerinde bir Lie cebiri olarak adlandırılır: 1. Her x L için, [x, x] = 0 ve 2. Her x, y, z L için [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 Lie cebirleri kategorisindeki morfizmler yükarıda tanımlanan braket işlemini koruyan doğrusal dönüşümler olarak verilmektedir. Lie cebirleri homomorfizmalarının çekirdeklerine ideal denir ve tüm idealler bu şekilde belirmektedir. Verilen bir V vektör uzayı için V nin Lie cebiri endomorfizmalarını gl(v ) ile gösteriyoruz. Tabiki V n boyutlu ve bir taban seçilmişse o zaman gl(v ), n n matrislerle özdeşleştirilebilir. 5

1.3 Vektör alanlarının Lie cebiri U, keyfi bir K cismi üzerinde bir cebir olsun. U dan birleşmeli olmasını gereksinmiyoruz. Bir δ : U U doğrusal fonksiyonu her x, y U için δ(xy) = xδ(y) + δ(x)y eşitliğini sağlıyorsa δ ya U üzerinde bir derivasyon denir. U üzerindeki derivasyonlar bir vektör uzayı oluşturur. Bariz ki bu End(U) nun bir altuzayıdır. End(U)(= gl(u)) nun U üzerindeki operatörlerin doğal braket çarpımına göre bir Lie cebiri olduğunu anımsayınız. İki derivasyonun [δ, δ ] komütatörünün de bir derivasyon olduğu kolayca görülebilir. Böylece U üzerindeki tüm derivasyonların uzayı olan Der(U), End(U) nun bir Lie altcebiridir. Bu soyut kavram aşağıdaki geometrik durumu göz önüne aldığımızda somut bir hale gelmektedir. M bir C -çokkatlı olsun ve M üzerindeki R-değerli pürüzsüz fonksiyonların cebirini C (M) ile gösterelim. T p M ile gösterilen bir p M noktasındaki tanjant uzayı "p noktasındaki nokta derivasyonları" nın vektör uzayı olarak görülebilmektedir. Tanımdan M nin bir p noktasındaki bir nokta derivasyonu, C (M) üzerindeki her f, g C (M) için δ(fg) = f(x)δ(g) + g(x)δ(g) koşulunu sağlayan (tabiki de p ye bağlı olan) bir doğrusal dönüşümdür. Türevdekine benzer olarak bir nokta derivasyonu sabit fonksıyonlar üzerinde sıfırlanmaktadır. Bu bir rastlantı değildir çünkü bir nokta derivasyonu yönlü türev kavramının bir genellemesidir. Aslında, eğer M = R n ise v yönündeki f nin p noktasındaki yönlü türevi v x.f = d dx f(x + tv) t=0 ifadesidir ve v x in bir nokta derivasyonu olduğunu göstermek kolaydır. C (M) üzerindeki bir (pürüzsüz) X vektör alanı M nin tüm noktalarındaki nokta derivasyonlarının bir (pürüzsüz) tayinidir. Özel olarak eğer f, M üzerindeki bir pürüzsüz fonksiyon ise o zaman Xf nin, p M deki değeri p de f ye X(p) nokta derivasyonu uygulanarak elde edilen bir başka pürüzsüz fonksiyonudur. Bir x M noktasındaki X vektör alanının değerini (x teki bir nokta derivasyonu olan) X x ile gösterelim ve bir başka Y vektör alanını göz önüne alalım. x M olmak üzere [X, Y ](x) [X, Y ](x)f = X x (Y f) Y x (Xf), f C (M) 6

ile bir vektör alanı tanımlamaktadır. Dolayısıyla bir C çokkatlısı üzerindeki vektör alanları bir Lie cebiri oluşturmaktadır. 2 Ek Bölüm: Türevlenebilir Çokkatlılar "Bir türevlenebilir n-çokkatlısı türevlenebilir koordinat değişimi ile yerel olarak R n ye homeomorfik olan bir M topolojik uzayıdır". Bu tanımı mümkün olduğunca daha da netleştireceğiz. Önce C k gösteriminin (R nin sabitlenmiş bir açık altkümesi üzerinde) k-kere sürekli bir biçimde türevlenebilir fonksiyonların R-cebiri olduğunu anımsayalım. Eğer k = 0 ise sadece sürekli fonksiyonlardan bahsetmiş oluyoruz. Eğer k = ya da k = ω ise o zaman,sırasıyla, C k pürüzsüz fonksiyonların cebiri, reel analitik fonksiyonların cebiridir. Diyelim ki, U M bir açık altküme ve φ : U U R n R n nin bir U açık altkümesi üzerine bir birebir ve örten fonksiyon olsun. Bu durumda (φ, U) çifti bir n-çart olarak adlandırılır. (φ 1, U 1 ) ve (φ 2, U 2 ) iki n-çartına C k -uyumludur denir eğer şu koşullar sağlanıyorsa: 1. i = 1, 2 olmak üzere φ i (U 1 U 2 ) kümeleri R n de açıktır. 2. i, j {1, 2} için φ i φ 1 j : φ j (U 1 U 2 ) φ i (U 1 U 2 ) gönderimleri C k sınıfındandır. M üzerindeki bir C k -atlası, içindeki altkümeleri ile M nin bir örtüsünü oluşturan C k -uyumlu çartların bir koleksiyonudur. Şu şekilde C k atlaslarının üzerinde bir kısmi sıralama elde ettiğimiz gözlemleyiniz: Eğer α 2, α 1 i kapsıyorsa α 1 α 2. M üzerindeki C k -atlasların bu posetinde, her artan zincirin bir üst sınırı vardır, bu sınır zincirdeki atlasların birleşimi olmaktadır. Böylece Zorn önsavından posetimizin bir azami (maksimal) elemanı vardır. Açıklama 2.1. Bariz ki herhangi C (ya da C ω ) atası bir C k dır. 1930 da Whitney nin meşhur bir sonucu eğer k > 0 ise o zaman her maksimal C k -atlasının teklikle belirli bir C atlasını içerdiğini söyler. Dolayısıyla C üzerindeki çokkatlılara odaklanmak makuldür. Daha kesin bir dille şöyle ifade edebiliriz: M bir n > 0 boyutlu bir çokkatlı olsun. Eğer α ve β C k -atlaslarının aynı denklik sınıfında yer alan iki C atlasları ise o zaman bunlar arasında bir C -difeomorfizması vardır. Aslında, yerine ω kullanabiliriz. Ancak, eğer k = 0 ise bir maksimal C 0 -atlasında yer alan bir C k atlası bulma konusunda ciddi engellerimiz var. Aslında Kervaire tarafından gösterilmiştir ki C 1 -atlası olmayan C 0 -çokkatlıları mevcuttur. 7

Bazen C k -yapısı olarak bir maksimal C k atlasını düşünüyoruz. Teklikle belirli bir C - yapısına sahip topolojik uzayları vardır. Örneğin, reel doğru ya da S 1. Diğer taraftan R 4 sonsuz çoklukta C yapısına sahiptir ve S 7 üzerinde 28 farklı C yapısı mevcuttur. Hatırlatma: ikinci-sayılabilir, topolojinin sayılabilir miktarda açık tabanı olduğunu söyler. Bu gereksinim parakompaktlığı (yerel olarak sonlu altörtülerin varlığını) gerektirir. Sırasıyla, parakompaktlık "birimin parçalanışı" nın varlığını gerektirir. Birimin parçalanışı negatif olmayan reel değerli C fonksiyonların {f i : i I} bir koleksiyonudur öyle ki f i lerin desteğinin koleksiyonu yerel olarak sonlu ve her x M için, i I f i(x) = 1. Burada f nin desteği, f yi sıfırlamayan noktalar kümesinin kapanışı olarak tanımlanmaktadır. Tanım 2.2. Bir türevenebilir n-çokkatlı (ya da bir prüzsüz n-çokkatlı) bir C -yapısı ile bir ikinci sayılabilir Hausdorff topolojik uzaydır. Daha kesin bir dille (ve daha genel olarak), bir n-boyutlu C k -çokkatlısı, M bir ikinci sayılabilir topolojik uzay ve α bir C k -atlası olmak üzere bir (M, α) ikilisidir. Burada, k bir sayıdır veya k {, ω}. Teorem 2.3. M bir türevlenebilir çokkatlı ve {U α : α A}, M nin bir açık örtüsü olsun. O zaman bir birimin parçalanışı {f i : i I} vardır öyle ki her i I için, supp(f i ) U α ile α A vardır. Dahası f i lerin desteğinin kompakt olduğu varsayımı yapılabilmektedir. Eğer kompaktlık gerekmiyorsa I nın en fazla sayılabilir sonsuz olduğu varsayılabilir. Sonuç 2.4. Eğer U M açık, V U kapalı ve eğer V U ise o zaman bir C fonksiyonu f : [0, 1] vardır öyle ki supp(f) U ve her x V için f(x) = 1. Proof. {U, M V }, M nin bir açık örtüsüdür. Teoremi uygulayınız. 3 Tanjant uzayı T p (M) ile M nin p M noktasındaki tanjant uzayını gösterelim. Bir C çokkatlısı için T p (M) yi tanımlamanın birkaç alternatif yolu vardır. Aynı anda tüm C -çokkatlılarını ele almak için, p M de C k fonksiyonların tohumunun halkası üzerindeki nokta derivasyonların uzayı olarak, p M noktasındaki "cebirsel" tanjant uzayını tanımlayalım. Tanımdan, p 8

civarında C k fonksiyonları üzerindeki bir nokta derivasyonu C k fonksiyonları üzerinde bir doğrusal dönüşümdür öyle ki her f, g C (M) için X(fg) = f(p)x(g) + X(f)g(p). Tanjant uzayını tanımlamanın alternatif bir yolu p deki fonksiyonların tohumlarına bakmaktır. İki fonksiyon f, g C (M, R) için eğer bir p noktasının açık komşuluğunda f g = 0 oluyorsa, bunlar p de aynı tohuma sahiptir deriz. f nin tohumu için [f] yazarız. Açıktır ki, C (M, R) üzerinde aynı tohumda olma bir denklik bağıntısı tanımlar. O p (M), p deki tüm tohumların kümesini göstersin. O p (M) nin bir R-cebiri olduğu yazınca çıkıyor. Dahası bu, I p = {[f] : f(p) = 0} maksimal ideali ile bir yerel halkadır. Barizdir ki I p Ip 2 Ip 3... vektör uzaylarının bir "süzmesi"dir (filtration). Önsav 3.1. X bir nokta derivasyon olsun. Eğer f fonksiyonu p M noktasının açık bir komşuluğunda sıfırlanıyorsa, o zaman her f derivasyonu için X(f) = 0 dır. Önerme 3.2. (I p /Ip) 2 dual uzayı doğal olarak p M deki T p (M) tanjant uzayına izomorfiktir. Proof. Ψ : T p (M) (I p /Ip) 2, f C için, ΨX([f]) = X(f f(p)) = X(f) ile tanımlanan X ΨX fonsiyonunu göstersin. Bunun iyi tanımlı bir işlem olduğuna dikkat ediniz. Çünkü eğer f ve g aynı tohumu paylaşıyorlarsa o zaman f g, p civarında sıfırlandığı için X(f) X(g) = X(f g) = 0 dır. İkinci eşitlik, sabit fonksiyonların tohumlarının nokta derivasyonlarının sıfır olmasından ve derivasyonların doğrusal fonksiyonlar olmasından gelmektedir. ΨX in, I p /Ip 2 üzerinde iyi tanımlı olduğu yazınca çıkmaktadır. Tersine, Ψ nin tersi, I p /Ip 2 üzerindeki bir doğrusal Y fonksiyonelini ΦY ([f]) = Y ([f]) ile verilen p deki bir [f] tohumu üzerinde değer alan ΦY fonksiyonuna olan gönderimi olarak tanımlanmaktadır. 9

Genel olarak, k < ise I p /Ip 2 uzayı sonsuz boyutludur. Aksine k = ya da k = ω olduğu zaman bu sonlu boyutlu bir vektör uzayıdır. Önerme 3.3. M bir n-boyutlu C -çokkatlısı olsun. O zaman T p M nin boyutu n ye eşittir. 4 Tanjant Demeti Küme olarak M nin tanjant demeti T M = a M T a M birleşimidir. Bu, doğal bir türevlenebilir çokkatlı yapısını taşımaktadır. Bunu görmek için diyelim ki (U, φ U ) ikilisi, M nin U açığı üzerinde bir çart olsun ve ilgili T M = a M T a M kümesi üzerinde bir çart inşa edelim. Bir X = X a nokta derivasyonunu a ya gönderen bariz bir p : T M M izdüşümü vardır. Pürüzsüz bir v : M T M fonksiyonu bir vektör alanı olarak adlandırılır, eğer p v : M M bileşkesi M üzerinde birim fonksiyonsa. Tanjant vektörü bir nokta derivasyon olduğundan bir vektör alanı M üzerinde bir global derivasyon olarak tanımlanmalıdır. Bu sezgi doğrudur ve tersi de doğrudur. Önsav 4.1. v : C (M) C (M) doğrusal dönüşümü v(fg) = fv(g) + v(f)g ile bir vektör alanıdır. Bilinen Lie braketi ile [v, w] = vw wv (C üzerindeki operatörler olarak), tüm vektör alanlarının uzayı üzerinde bariz bir Lie cebiri yapısı vardır. 10