5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

Benzer belgeler
İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

2.2. Fonksiyon Serileri

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

İleri Diferansiyel Denklemler

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =

h)

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz.

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla

Yrd.Doç. Dr. Mustafa Akkol


POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

Analiz II Çalışma Soruları-2

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

18.06 Professor Strang FİNAL 16 Mayıs 2005

HARDY-CROSS METODU VE UYGULANMASI

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr.

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr.

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

Yard. Doç. Dr. Mustafa Akkol

kpss ÖABT PEGEM İ TERCİH EDENLER YİNE KAZANDI ÖNCE BİZ SORDUK LİSE MATEMATİK 50 Soruda SORU

TG 12 ÖABT ORTAÖĞRETİM MATEMATİK

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

TOPOLOJİK TEMEL KAVRAMLAR

8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

GERC EL ANAL IZ H useyin IRMAK

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe)

HOMOGEN OLMAYAN DENKLEMLER


2013 BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI MATEMATİK

LİNEER CEBİR DERS NOTLARI. Ayten KOÇ

HİPER KÜRESEL HORMONİKLER Nursefa YAKUPOĞLU Yüksek Lisans Tezi Matematik Anabilim Dalı Uygulamalı Matematik Bilim Dalı Yrd. Doç. Dr.

T.C SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

DİZİLER - SERİLER Test -1

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

+ y ifadesinin en küçük değeri kaçtır?

STANDART OLMAYAN BÜYÜME KOŞULLU ELİPTİK TİPTEN FARK DENKLEMLERİNİN ÇÖZÜMLERİ. Sezgin OĞRAŞ

Matematik Olimpiyatları İçin

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Tahmin Edici Elde Etme Yöntemleri

TOPLAMSAL ARİTMETİK YARI GRUPLAR ÜZERİNDE ANALİTİK İŞLEMLER

KATSAYILARI PERİYODİK FONKSİYON OLAN DİFERANSİYEL OPERATÖRLERİN SPEKTRAL ANALİZİ

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh Ocak 2004

DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

SİSTEMLERİN ZAMAN CEVABI

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi

Mekanik Titreşimler ve Kontrolü. Makine Mühendisliği Bölümü

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun

KESĠRLĠ MERTEBEDEN DEĞĠġKEN KATSAYILI DĠFERENSĠYEL DENKLEM VE DENKLEM SĠSTEMLERĠNĠN HERMĠTE COLLOCATION YÖNTEMĠ ĠLE YAKLAġIK ÇÖZÜMLERĠ

BAĞINTI VE FONKSİYON

Ki- kare Bağımsızlık Testi

BÖLÜM XIII. FOURİER SERİLERİ VE FOURİER TRANSFORMU Periyodik fonksiyon

limiti reel sayı Sonuç:

DENEY 4 Birinci Dereceden Sistem

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ

MONTE CARLO BENZETİMİ

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P.

6. BÖLÜM VEKTÖR UZAYLARI

A) π B) 4 π C) 9 π D) 16 π E ) π 6. Çözüm: Yanıt:A. 5. ax +by+ 5 = 0 } denklemlerini aynı zamanda. Çözüm: Yanıt:B

Polinom İnterpolasyonu

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere:

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız olduğunu. + + = + + eşitliğini ispatlayınız.

1 Lineer Diferansiyel Denklem Sistemleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

POLĐNOMLAR YILLAR ÖYS

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar)

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

FİNAL SORULARI GÜZ DÖNEMİ A A A A A A A

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

11. SINIF KONU ÖZETLİ SORU BANKASI

BİR ÇUBUĞUN MODAL ANALİZİ. A.Saide Sarıgül

7. Ders. Bazı Kesikli Olasılık Dağılımları

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Diferensiyel Denklemler I Uygulama Notları

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

MATEMATİK ANABİLİM DALI

PARABOLİK VOLTERRA İNTEGRO-DİFERANSİYEL DENKLEMLERİN NÜMERİK ÇÖZÜMLEMELERİ

KÖKLÜ SAYILAR. 1 n n. x a a x say s na a n n n. kuvvetten kökü denir. Köklü say lar n. çözüm. n n. a özelli inden, çözüm. m n n. çözüm. çözüm.

Transkript:

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii yapısı verilmişti. Eğer değişke katsayılı diferasiyel deklemleri geiş sııfı ile ilgilemek istiyorsak, bildiğimiz elemeter foksiyoları öteside, çözüm içi araştırmamızı geişletmeye ihtiyacımız vardır. Buu temel aracı verile foksiyou kuvvet serisie açarak temsil etmektir. Belirsiz katsayılar yötemie bezer olarak verile diferasiyel deklemi çözümüü kuvvet serisie açılımıı düşüüp, deklemi sağlayacak katsayıları belirlemek amacımız olacaktır. Bu bölümde kuvvet serilerii kullaarak ikici mertebede katsayıları bağımsız değişkei foksiyou ola lieer diferasiyel deklemleri temel çözümlerii yapısıı iceleyeceğiz.

5. Kuvvet Serileri Aalizde bildiğiiz kuvvet serileri içi gerekli bilgileri özetleyelim: ) Bir kuvvet serisi oktada = a( x x ) i bir x oktasıda yakısak olması o m m = lim a ( x x ) i var olmasıdır. Bu seri x = x da kesilikle yakısaktır. Bir kuvvet serisi x = x ı dışıdaki her oktada yakısak olmayabilir veya her oktada yakısak veya belli bir aralıkta yakısak olabilir. ) Eğer a ( ) x x bir x oktasıda yakısak ise a x x = = ( ) serisie x oktasıda mutlak yakısak deir. Eğer seri mutlak yakısak ise yakısaktır. Fakat tersi doğru değildir.

3) Bir kuvvet serisii mutlak yakısak olup olmadığıı test etmei e kolay yollarıda biri ora testii kullamaktır. Eğer a ve sabit bir x değeri içi + a+ ( x x) a+ lim = x x lim = L a ( ) x x a ve L < ise seri mutlak yakısak. L > ise ıraksaktır. L = ise serii yakısak olup olmadığı hakkıda bir şey söyleyemeyiz. Örek: ( ) + ( x 3) = serisi yakısak mıdır? + + ( ) ( + ) ( x 3) + x + lim = 3 lim = x 3 ( ) ( x 3) eğer x 3 < ise yai < x < 4 ise seri mutlak yakısak, x 3 > ise seri ıraksaktır. x 3 = ise yai x= ve x= 4 de içi geel terim sıfıra gitmediğide seri ıraksaktır.

4) a( x x) serisi x = x oktasıda yakısak ise x x < x x da = mutlak yakısak, x = x oktasıda ıraksak ise x x > x x da ıraksaktır. 5) a( x x) serisi x x < ρ içi mutlak yakısak, x x > ρ içi = ıraksak olacak şekilde egatif olmaya bir ρ sayısı vardır. Bua yakısaklık yarıçapı deir. Eğer seri yalız x = x da yakısak ise ρ = olarak taımlaır. Eğer seri her x içi yakısak ise ρ = deir. Eğer ρ > ise x x < ρ aralığıa yakısaklık aralığı deir. ( x + ) Örek: serisii yakısaklık yarıçapıı belirleyiiz. = Ora testii uygularsak + ( x+ ) x+ x+ lim = lim + = ( + ) ( x+ ) + elde edilir. Bua göre x + <, yai 3< x < içi seri mutlak yakısak,

x + > içi ise seri ıraksaktır. Serii yakısaklık yarıçapı ρ = dir. ( ) Uç oktaları icelersek x = 3 de seri olur ki bu seri = yakısaktır. x = de seri olur ki bu seri ıraksaktır. Bua göre = 3 x < içi seri yakısaktır. Bu aralığı dışıda seri ıraksaktır. 3< x < ise seri mutlak yakısaktır. Eğer, ρ > ve x x < ρ içi a( x x) ve b x x = = sırasıyla f ( x) ve g( x ) foksiyolarıa yakısıyorsa x x < ρ içi; 6) Seriler terim-terime toplaıp, çıkarılabilir ve dır. f( x) ± g( x) = ( a ± b )( x x ) = ( )

7) Seriler formel olarak çarpılabilir ve f( x) g( x) = a( x x) b( x x) = c( x x) = = = dir. Burada c = ab + ab + + ab dır. Hatta eğer gx ( ) ise seriler bölüebilir ve f( x) = d( x x ) gx ( ) = dır. Çoğu durumda d = a( x x) d( x x) b( x x) = = = = db k ( x x ) = = bağıtısıda kolayca elde edilir.

8) f foksiyou, x x < ρ aralığıda sürekli ve her mertebede türeve sahiptir. Hatta f, f,... seri terim-terime türetilerek hesaplaabilir. Yai, f ( x) = a + a ( x x ) + + a ( x x ) + = a( x x ) = ( ) = + 6 3( ) + + ( ) ( ) + = ( ) a( x x ) = f x a a x x a x x dir ve her seri x x < ρ aralığıda mutlak yakısaktır. 9) a i değeri, ( ) f ( x ) a =! ile verilir. Bu seriye x = x da f foksiyouu Taylor serisi deir.

a ( x x ) b ( x x ) ise ) Eğer her x içi = = = a,,,... = b = dir. Özel olarak her x içi a( x x) ise a = a = = a = = dır. = = Bir f foksiyou x = x da Taylor serisie açılıyorsa ( ) f ( x ) f( x) = ( x x ), x x < ρ =! dır ve x = x da f ye aalitiktir deir. 6. ve 7. maddelere göre, eğer f ve f g, x = x da aalitik ise f ± g, f g ve g ( g( x ) ) foksiyoları da x = x da aalitiktir. Bir seride toplam idisi, itegrasyo değişkeide olduğu gibi yapma (taklit) değişkedir. Yai

ayı toplamı ifade eder. j j k k x x x = =! j! k! = j= k= Örekler: ) ax serisii = = 3 da başlatarak yazıız. m= 3 diyelim. = m+ 3 dür ve m i sıfırda başlaması i üçte başlaması ile ayıdır. Bua göre = = 3 m= ax a x m+ 3 m+ 3 dır. İdisler yapma değişkeler olduğuda m yerie yazabiliriz. Bua göre dır. = = 3 = ax a x + 3 + 3

) ( + ) a ( x x ) serisii ( x x ) terimie göre yazıız. = terimii + kadar ötelersek yazarız. = ( + )( + 3) a ( x x ) + 3) r+ + ( + + ) serisii = x r a x r x + terimie göre yazıız. x i içeri alırsak seri elde edilir. r+ + ( r+ + ) ax olur. İdisi iki düşürürsek = r+ ( r+ ) a x =

4) si x i x = da, l x i x = de Taylor serilerie açıız ve yakısaklık yarıçaplarıı buluuz. f ( x) = six π f ( x) = cosx= si x+ π π f ( x) = cos x+ = si x+ ( ) π f ( x) = si x+, = k ( ) π f () = si =, = 4k+ k =,,,..., = 4k + 3

= ( ) 3 f () ( ) x x () () () () ( ) x x = f + f x+ f + f + + f () +!! 3!! 3 x x = + x + + ( ) + +! 3! ( ) + = x ( + )! = + + 3 ( ) x (+ )! x + lim = lim = (+ 3)! ( ) x (+ )(+ 3) x içi seri yakısaktır. Yai ρ = dur. six = = ( ) x ( + )! +

gx ( ) = lx g ( x) = = x x g ( x) = x g ( x) = x 3 g ( x) = ( ) ( ) x g ( ) + () = ( ) ( )! ( ) + ( ) + g () ( ) ( )! ( x ) = g() + ( x )!! = = = x = + ( ) ( )

+ + ( ) ( x ) lim = x lim = x + + ( ) ( x ) + x < aralığıda seri mutlak yakısak, ρ = yakısaklık yarıçapıdır. 5) belirleyiiz. ax + ax = deklemii sağlaya = = ax serisii temsil ede foksiyou buluuz. = + = = = ( + ) a x a x ( + ) a = a =,,,... + a+ = a =,,,... ( + ) a katsayılarıı

a 3 a a a = a, a = ( ), a3 = ( ),..., a = ( ),...! 3!! ax = = = ( ) a = ae! x