DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 8 Sayı: 3 s Ekim 2006

Benzer belgeler
KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu

Ayrık Fourier Dönüşümü

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 3 sh Ekim 2011 KESİRLİ FOURIER DÖNÜŞÜMÜNÜN SİMETRİ ÖZELLİKLERİ

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

İMGE İŞLEME Ders-9. İmge Sıkıştırma. Dersin web sayfası: (Yrd. Doç. Dr. M.

İşaret ve Sistemler. Ders 1: Giriş

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM)

Hafta 09 -Topluluk Yöntemleri - Boyut Azaltma - Anomali Tespiti

ÖZDEĞERLER- ÖZVEKTÖRLER

SÜREKLİ SAKLI MARKOV MODELLERİ İLE METİNDEN BAĞIMSIZ KONUŞMACI TANIMA PARAMETRELERİNİN İNCELENMESİ

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

TEMEL MEKANİK 5. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

BAŞKENT ÜNİVERSİTESİ BİYOMEDİKAL MÜHENDİSLİĞİ BÖLÜMÜ

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır.

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

Matris Cebiriyle Çoklu Regresyon Modeli

Göksel GÜNLÜ Gazi Üniversitesi Elektrik-Elektronik Müh. Böl.

ÇİFT EŞİK DEĞERLİ GÖRÜNTÜ NETLEŞTİRME YÖNTEMİ

Aşağı Link MC-CDMA Sistemlerinde Kullanılan PIC Alıcının EM-MAP Tabanlı Olarak İlklendirilmesi

Özdeğer ve Özvektörler

birim daire üzerindeki z = e jω değerlerinde hesaplanması yöntemiyle bulunabiliri. Ancak, sayısal işaret işlemenin pratik uygulaması, sonsuz bir x(n)

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= Genel: Vektörler bölümünde vektörel iç çarpım;

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Dijital Sinyal İşleme (COMPE 463) Ders Detayları

LYS MATEMATİK DENEME - 1

KONU 8: SİMPLEKS TABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.1. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx (8.1)

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

HAFTA 11: ÖRNEKLEME TEOREMİ SAMPLING THEOREM. İçindekiler

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

Analitik Hiyerarşi Prosesi (AHP) Yrd.Doç.Dr. Sabahattin Kerem AYTULUN

İstanbul Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü Avcılar, İstanbul e-posta:

FARKLI YÖNTEMLERLE DEPREM KAYITLARININ ZAMAN-FREKANS ANALİZİ. Yusuf BAYRAK 1, Şeyda YILMAZ 2, Erdem BAYRAK 3 ve Selin AKSOY 4

( ) v = 3i -4j vektörünün boyu kaç birimdir? r r r r A) 5 B) 4 C) 3 D) 2 E ) 1. Çözüm: v = 3i -4j Vektörün boyu ω olsun.

Elemanter fonksiyonlarla yaklaşım ve hata

SİNYAL TEMELLERİ İÇİN BİR YAZILIMSAL EĞİTİM ARACI TASARIMI A SOFTWARE EDUCATIONAL MATERIAL ON SIGNAL FUNDAMENTALS

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

Yüksek Mobiliteli OFDM Sistemleri için Ortak Veri Sezimleme ve Kanal Kestirimi

DENEY 3: DFT-Discrete Fourier Transform. 2 cos Ω d. 2 sin Ω d FOURIER SERİSİ

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 10 Sayı: 2 sh Mayıs 2008

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007

Jeodezide Yaklaşım Yöntemleri: Enterpolasyon ve Kollokasyon

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Appendix B: Olasılık ve Dağılım Teorisi

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

Frekans Seçici Kanallarda Çalışan Yukarı Link MC-CDMA Sistemleri için EM Tabanlı Birleşik Bilgi Sezim ve Kanal Kestirim Yöntemi

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ

Stokastik Süreçler. Bir stokastik süreç ya da rastgele süreç şöyle tanımlanabilir.

MIMO Radarlarda Hedef Tespiti için Parametrik Olmayan Adaptif Tekniklerin Performans Değerlendirilmesi

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I

YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ. Umut FIRAT

AHP ye Giriş Karar verici, her alternatifin her kriterde ne kadar başarılı olduğunu değerlendirir. Her kriterin amaca ulaşmadaki görece önemini değerl

Bilgisayarla Görüye Giriş

Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N

METASEZGİSEL YÖNTEMLER

Ders 6: Sürekli Olasılık Dağılımları

TURBO KODLANMIŞ İŞARETLERDE SEYİRME ETKİSİNİ AZALTAN YAKLAŞIMLAR (*)

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

HATA VE HATA KAYNAKLARI...

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö

4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

1. Hafta Uygulama Soruları

KABLOSUZ İLETİŞİM

Bölüm 2: Kuvvet Vektörleri. Mühendislik Mekaniği: Statik

GEO182 Lineer Cebir. Matrisler. Matrisler. Dersi Veren: Dr. İlke Deniz Derse Devam: %70. Vize Sayısı: 1

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

QUANTILE REGRESYON * Quantile Regression

Yrd. Doç. Dr. A. Burak İNNER

sonlu altörtüsü varsa bu topolojik uzaya tıkız diyoruz.

Bu bölümde; Çok ölçütlü karar verme yöntemlerinden biri olan TOPSİS yöntemi anlatılacaktır.

SMI Algoritmasını Kullanan Adaptif Dizi İşaret İşleme Sistemlerinin İncelenmesi

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

DERS 2 : BULANIK KÜMELER

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

MOD419 Görüntü İşleme

Dizey Cebirinin Gözden Geçirilmesi

DOKU TİPİ İMGELERİN SINIFLANDIRILMASI İÇİN BİR UYARLAMALI ENTROPİ TABANLI DALGACIK-YAPAY SİNİR AĞI SİSTEMİ

Dizey Cebirinin Gözden Geçirilmesi

2.3. MATRİSLER Matris Tanımlama

ADAPTİF FİLTRELERDE GAUSS-SEIDEL ALGORİTMASININ STOKASTİK YAKINSAMA ANALİZİ

HAFTA 8: FOURIER SERİLERİ ÖZELLİKLERİ. İçindekiler

İki Boyutlu Dalgacık Dönüşümü Kullanarak Ön Cepheden Çekilmiş İnsan Yüzü Resimlerini Tanıma Üzerine Yaklaşımlar

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

Ders 8: Verilerin Düzenlenmesi ve Analizi

Uzaktan Algılama Uygulamaları

B = 2 f ρ. a 2. x A' σ =

Mekanik Titreşimler ve Kontrolü. Makine Mühendisliği Bölümü

11. SINIF. No Konular Kazanım Sayısı GEOMETRİ TRİGONOMETRİ Yönlü Açılar Trigonometrik Fonksiyonlar

Transkript:

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 8 Sayı: 3 s 9-5 Ekim 006 ÇEŞİTLİ DÖNÜŞÜM YÖNTEMLERİNİN BAŞARIM ÖLÇÜTLERİ YÖNÜNDEN KARŞILAŞTIRILMASI (PERFORMANS CRITERIONS COMPARISON OF THE SHOT TIME FOURIER TRANSFORM WITH DIFFERENT ORTHOGONAL TRANSFORMS) Gülden KÖKTÜRK* ÖZET/ABSTRACT Bu çalışmada, kısa zaman Fourier dönüşüm (KZFD) yönteminin bozunum hızı ve ortalama karesel hata başarımı incelenmiştir Sonuçların değerlendirilebilmesi için farklı dönüşüm yöntemlerine bu kriterler uygulanmıştır Başarım kriterleri değerlendirilirken sayısal örnekler; hızlı Fourier dönüşümü, ayrık kosinüs dönüşümü (AKD) ve kısa zaman Fourier dönüşümü için gerçekleştirilmiştir This paper includes mean square error performance and the rate distortion of the short time Fourier transform Investigation of criteria applies the different transformations to have constructed its results Numerical examples of performance criteria represented for the fast Fourier transform, the dscrete cosine transform and the short time Fourier transform ANAHTAR KELİMELER/KEYWORDS Başarım kriteri, Kısa zaman Fourier dönüşümü, Ortalama karesel hata, Bozunum oranı Performance criteria, Short time Fourier transform, Mean square error performance, Rate distortion * DEU Mühendislik Fak, Elektrik ve Elektronik Müh Böl, Buca, İZMİR

Sayfa No: 0 G KÖKTÜRK GİRİŞ Standart Fourier dönüşümü, bazı sınırlamalara sahip olan durağan olmayan sinyallere uygulandığında klasik zamanla değişen sinyal özelliklerini verir Durağan olmayan sinyallerde, hem zamanda hem de sıklıkta bir değişim söz konusu olmasına rağmen Fourier dönüşümünde tüm sinyal, zamanda sabittir KZFD, sinyalin zamana bağımlı izgel özelliklerini tanımlamaya yardımcı olabilecek bir dağılım olarak düşünülebilir (Kadembe ve Boudreaux, 99) En az öz nitelik çıkarımı ve aritmetik işlem azlığı ile gerçelleme, dikey dönüşümlerle yapılır Bu bağlamda, Walsh-Hadamard dönüşümü, ayrık Fourier dönüşümü (AFD), Harr dönüşümü ve sessiz (silent) dönüşüm bir çok uygulamada kullanılmıştır (Ahmed vd, 974) Bu dikey dönüşümler genelde başarım kriterlerine göre karşılaştırılır Kullanılan kriterlerin çoğu varyans dağılımı, ses sinyalleri gibi yarı durağan sinyaller için temel ortalama gibi yöntemlerdir (Allen ve Rabiner, 977; Kumar, 005) Standart Fourier dönüşümü ve KZFD ne dayanan bir çok araştırma bir çok uygulamada çok elverişli ve pratik olmaktadır (Archer ve Leen, 000; David ve Dirk, 00) Dikey dönüşümler sinyal işleme uygulamalarında yıllardır kullanılmaktadır Bu çalışmada, kısa zaman Fourier dönüşümü karesel hata başarımı ve bozulma oranı başarım ölçütleri yönünden karşılaştırılmış ve sonuçlar irdelenmiştir KISA ZAMAN FOURİER DÖNÜŞÜMÜ (KZFD) Bir işaretin KZFD gösterimi, zaman ve sıklıkta işaretin yapısıyla ilişkilidir KZFD ile işaret, bileşenlerine ayrılır ve her bileşenin gücü elde edilir Fakat, KZFD yönteminde tüm sıklık karakteristiği bulunamaz Durağan ve yarı durağan işaretler için KZFD yönteminde sıklık tüm zaman eksenine homojen olarak dağılmıştır Çünkü durağan olmayan işaretler bir döneme sahip değildir Böyle işaretler ani sıklık ve sonlu enerji içerirler Farzedelimki, tüm n de tanımlı bir x(t) giriş işareti olsun Bu işaret için KZFD e j = e j xn( ω s) ω( n k) ω s k () k şeklinde tanımlanır KZFD yönteminde, istenilen zaman ve sıklık çözünürlüğü için bazı önemli kurallar vardır Temel olarak en önemli etki, pencere seçimidir Pencere fonksiyonu, istenen sıklık ve zaman çözünürlüğünü verebilecek şekilde seçilmelidir En çok kullanılan pencere fonksiyoları; Gaussian pencere, Hamming pencere ve Hanning pencere fonksiyonlarıdır KZFD nün kullanımı, Vocoder ve ses sinyali gibi yarı durağan sinyallerin gösterimi için uygundur Bunun yanında, KZFD nün Fourier dönüşümünden farklı özelliklerinden faydalanarak özellikle durağan olmayan işaretlerinin gösteriminde kullanışlı olduğu anlaşılmıştır 3 MATRİS GÖSTERİMİ Bilindiği gibi bir dikey dönüşümün matris tanımı θ = Ax ()

Fen ve Mühendislik Dergisi Cilt : 8 Sayı : 3 Sayfa No: şeklindedir Burada; θ, katsayı vektörü ve x, giriş işaret vektörüdür Dönüşüm matrisi A, dönüşümün NxN lik taban matrisini verir Sonuç olarak, θ vektörü N boyutlu bir vektördür Eğer A matrisi birim dik matris ise A, bir terse sahiptir (Akansu, 987) Bu da ve A = A T (3) A T A A A T = I = (4) özellikleri ile verilir Herhangi bir dönüşüm matrisinin açık şekli (Ahmed vd, 974) θ ( r ) = A( r, k) x( k) r, k =,,, N (5) k formundadır Farzedelimki giriş işareti sıfır ortalamalı bir Gaussian süreç olsun Tanımdan dolayı { x( r) } = 0 E (6) dir Giriş işaretinin özilinti vektörü { x( k n) x( )} R xx ( k) = E + n (7) ile tanımlanır Eşitlik 7 de, matris katsayıları, özilinti fonksiyonunun özelliklerinden yararlanılarak tekrar düzenlendiğinde varyansın matris şekli σ = WR (8) vektörü ve W da dönüşümünün özilinti ağırlıklı vektörüdür 4 ALGORİTMA Bu çalışmada; KZFD dönüşümünde pencere fonksiyonu olarak Hamming pencere fonksiyonu kullanılmıştır Tipik bir Hamming pencere fonksiyonu 0,54 0,46 cos(πn N) ω ( n) = 0,0 n N n > 0 ve n > N şeklindedir KZFD için tüm katsayılar M nokta kullanılarak hesaplanır Hamming pencere fonksiyonu, kosinüs terimleri içerdiğinden dolayı ayrık kosinüs dönüşümü gibi pozitif bir dönüşümdür KZFD tersi alınabilir özelliğe sahip olduğu için kolayca tersi bulunur 5 BAŞARIM KRİTERLERİ Farklı dikey dönüşümleri karşılaştırmada, bazı kriterler kullanılmaktadır Bir kodlama sistemi için başarım kriteri sabit bozunum varken en az bilgi hızını belirlemektedir Özbağlanımlı () kaynak modeli için bazı başarım kriterleri vardır Bu çalışmada karşılaştırma için ortalama karesel hata ve bozunum hızı kriterleri kullanılmıştır Tüm içerik ve sonuçlar bir sonraki bölümde anlatılmıştır 5 Karesel Ortalama Hata Kriteri Giriş işaret vektörü x e bir gürültü vektörü N ekleyerek bir y vektörü elde edilsin Yani (9)

Sayfa No: G KÖKTÜRK y = x + N (0) ifadesi bulunsun Burada x vektörüne eklenen gürültü vektörü N, sıfır ortalamalı girişle ilişkisiz beyaz gürültüdür Bu y vektörüne bir dönüşüm uygulandığında, dikey dönüşümün taban kümeleri, Toeplitz matrisinin öz vektörlerine iyi bir yaklaşım sağlamaktadır Bu da Ψ = M M M M şeklinde gösterilir bir sabit ve 0 < < arasındadır Tüm çalışmada ; 0,9 olarak alınmıştır Toeplitz matrisine bir örnek verilmek istenirse, M=8 için ayrık kosinüs dönüşümü, cos (m + ) kπ ; k, m =,,,7 6 şeklinde alınır (Şekil ) Eğer kestirilmiş karesel ortalama hata e Q şeklinde alınırsa eq = M ψ x ( r, r) r ψ x ( r, r) + ψ N ( r, r) ifadesinden bulunur Burada Ψ x ve Ψ N sırasıyla, giriş işareti ve gürültünün dönüşüm bölgesi ortak varyans matrisleridir Şekil de farklı dönüşümler için karesel ortalama hata başarımı verilmiştir Şekil den de görüldüğü gibi, hızlı Fourier dönüşümü ve ayrık kosinüs dönüşümünün karesel ortalama hata başarımı yaklaşık olarak benzerdir Fakat, KZFD için bu başarım M artıkça oldukça kötüleşir Karesel ortalama hata, hızlı Fourier dönüşümü va ayrık kosinüs dönüşümünde, dönüşüm boyutu büyükken en iyi değerine sahiptir KZFD dönüşümünde ise tersine, küçük M değerlerinde karesel ortalama hata, en iyi değerine sahiptir 5 Bozunum Hızı Kriteri Farzedelimki, ayrık zaman sıfır ortalamalı Gaussian kaynağının, xi nin x j ile ilintisine sahip çıkış dizisi {, x, x0, x, } aşağıdaki gibi olsun (Viterbi ve Omura, 973) { } ψ ij =ψ i j = E xi x j (4) şeklindedir Bu ilişki sadece i j durumunda geçerlidir Bu nedenle, ergodiktir v R için ortak yoğunluk fonksiyonunun değerleri aşağıdaki gibi tanımlanır Q s ( v) ( π ) e N ψ = v Ψ v T Burada Ψ, giriş işaretinin ortak değişinti matrisidir ve Ψ pozitif olduğunda tersi alınabilir, Ψ yani Ψ,olduğundan Ψ nin pozitif durumunda hesaplanır Aşağıda, ortak değişinti matrisi Φ nin birimdik özvektörlerini içeren birimcil matrisi, U, verilmiştir () () (3) (5)

Fen ve Mühendislik Dergisi Cilt : 8 Sayı : 3 Sayfa No: 3 λ S = 0 Burada λ 0 λ M Ψ = US U T (7) Ψ = U S U T (6) M e a n -s q u a r e d E r r o r,e Q (a) The Discrete Cosine Transform The Fast Fourier Transform 0 0 0 30 40 50 60 70 Mean Square Error, e Q Transform Size(M) 0-00 -00 (b) -300-400 -500-600 -700 0 0 0 30 40 50 60 70 Transform Size(M) Şekil Karesel ortalama hata başarımı, (a) AKD ve AFD ü için (b)ksfd ü için

Sayfa No: 4 G KÖKTÜRK Olup, dönüşüm kaynakları ve ortak değişinti matrisinin olasılık yoğunluk fonksiyonunu, S, kullanarak bozunum hızı ifadesi aşağıdaki gibi elde edilir M R( A, D) = min min Ri( Di) (9) M D DM D * i =,, σ min ( ) = i Ri Di max 0, log (0) Di Burada ( ) Ri Di, is bozunum hızı fonksiyonunun i ci elemanıdır ve RL ( D) ile ilintili bozunum fonksiyonu aşağıdaki gibi gösterilir ( θ, σ ) Di = min i () Eşitlik 9 ve Eşitlik 0 de, en küçültme sorunu verilmiştir Bu sorun Kolmogorov tarafından çözümlenmiştir ve bunu takiben bozunum hızı fonksiyonu elde edilmiştir (Pearl vd, 97) M σ R( A, D) = i max 0,log M i = θ M D = min( θ, σ i) (3) M i = Bu çalışmada farklı dönüşümler için bozunum hızı Şekil de verilmiştir Burada, dönüşüm boyutuna karşı bozunum hızı fonksiyonu gösterilmişitir ve, karşılaştırma için hızlı Fourier dönüşümü, AKD ve KZFD kullanılmıştır 5 R L (D) () 4 The Short Time Fourier Transform The Discrete Cosine Transform The Fast Fourier Transform 3 0 0 0 0 30 40 50 60 70 Transform Size(M) Şekil KZFD, hızlı Fourier dönüşümü ve AKD için bozunum hızı başarımı

Fen ve Mühendislik Dergisi Cilt : 8 Sayı : 3 Sayfa No: 5 Şekil 3 incelendiğinde, küçük dönüşüm boyutlarında bozunum hızının KZFD ve diğer dikgen dönüşümler için yüksek başarımda olduğu görülmektedir Bunun yanında, bu oran, dikgen dönüşümlere göre KZFD de göreceli daha iyidir Başka bir deyişle, KZFD ün kullanımı, bozunum hızı yönünden etkinliği artırmaktadır Dönüşüm boyutu küçük olduğunda, KZFD yüksek kaliteye sahiptir Yüksek dönüşüm boyutunda ise hızlı Fourier dönüşümü ve AKD yaklaşık aynıdır ve KZFD ise diğer dikgen dönüşümlerle yaklaşık aynıdır 6 SONUÇLAR Bu çalışmanın amacı, KZFD ile çeşitli dikgen dönüşümlerin karşılaştırılmasıdır Bu nedenle, başarım kriterleri, KZFD ve farklı dikgen dönüşümler için karşılaştırılmıştır Sonuçlardan anlaşılacağı gibi, KZFD ün kare ortalama hata değeri, diğer dönüşümlere göre daha kötüdür Buna karşın çözünürlüğü, diğer dönüşümlere göre çok daha iyidir Sonuçta KZFD, küçük dönüşüm boyutlarında diğer dönüşümlere göre daha nitelikli yani kalitelidir Bunun yanında, sonuçlardan da anlaşılacağı gibi başarım kriterleri yönünde dönüşümler karşılaştırıldığında durağan olmayan sinyaller için KZFD ün kullanımı daha iyi sonuç vermektedir KAYNAKLAR Ahmed N, Natarajan T, and Rao KR (974): Discrete Cosine Transform, IEEE Trans on Computers, pp 90-93 Akansu AN (987): The Modified Hermite Transformation, A New Transform for Statistical Adaptive Transform Coding of Speech Signals, PhD Thesis, June Akansu AN, Haddad RA (990): On Asymmetrical Performance of Discrete Cosine Transform, IEEE Trans on ASSP, vol 38, no, January Allen JB, Rabiner LR (977): A Unified Approach to Short Time Fourier Analysis and Synthesis, Proc of IEEE, vol 65, no, November Archer C, Leen TK (000): Adaptive Transform Coding as Constrained Vector Quantization, Neural Network in Signal Processing X, IEEE Press David M, Dirk S (00): Backword Adaptive Transform Coding of Vectorial Signals: A Comparison between Unitary and Causal Approaches, Eurosipco Kadembe S, Boudreaux-BGF (99): A Comparison of the Existence of Cross Terms in the Wigner Distributionand the Suare Magnitude of the Wavelet Transform and the Short Time Fourier Transform, IEEE Trans on Signal Processing, vol 40, no 0, October Kumar A (005): Interpretability and Mean Square Error Performance of Fuzzy Inference Systems for Data Mining, Inter Jour of Intelligent Systems in Accounting and Finance Manangement, vol 3, no 4 Pearl J, Andrews HC, Pratt WK (97): Performance Measures for Transform Data Coding, IEEE Trans on Commun, June Viterbi AJ, Omura JK (979): Principles of Digital Communication and Coding, Mc Graw-Hill Comp