TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1. Süleyman KORKUT

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1. Süleyman KORKUT"

Transkript

1 Süleymn Demirel Üniversitesi Ormn Fkültesi Dergisi Seri: A, Syı:, Yıl: 004, ISSN: , Syf: TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1 Süleymn KORKUT Abnt İzzet Bysl Üniversitesi, Ormn Fk., Ormn End. Müh. Böl., 8160 Düzce ÖZET Tomruktn mksimum kereste rndımnı elde etmek için iki boyutlu geometrik teori geliştirildi. Dire ve elips şeklindeki tomruklrın merkezileştirilmiş prizm biçme çözümleri elde edilmiştir. Mksimum rndımn için biçme httının yerleşimi yuvrlk tomruklrın çpın vey elips şeklindeki tomruklrın enine kesit eksenine bğlıdır. Prizm yüzeyinin genişliği x tomruğun prlel ekseni vey çpı n eşittir. Kpk thtsı klınlığı x tomruğun dik ekseni vey çpı n eşittir. Teori dire ve elips tomruk biçimlerini vrsyr ve bilgisyrlı tomruk işleme krrlrı uygulndığı zmn hesplm zmnını ttmin edici düzeyde zltn bir metot sunr. Anhtr Kelimeler: Tomruk işleme, Tomruk biçme lgoritmsı, Prizm kesiş TWO-DIMENSIONAL GEOMETRIC THEORY FOR MAXIMIZING LUMBER YIELD FROM LOGS ABSTRACT A two-dimensionl geometric theory for mximizing lumber yield from logs ws developed. Centered cnt swing solutions for both circulr nd ellipticl shped logs were derived. Swline plcement for mximum yield is dependent upon the dimeter of round logs or upon the cross-sectionl xis of ellipticl logs. The width of the fce of the cnt is equl to times the dimeter or prllel-xis of the log. Slb thickness is equl to times the dimeter or perpendiculr-xis of the log. It ssumes circulr nd ellipticl log shpes nd provides method tht my substntilly reduce computtion time when pplied to computerized log brekdown decisions. smples. Keywords: Log brekdown, Log swing lgorithm, Cnt swing 1 Çeviri. Bu yzı Yge ZHENG, Frncis G. WAGNER, Philip H. STEELE ve Zhendong JI trfındn, Two-Dimensionl Geometric Theory for Mksimizing Lumber Yield from Logs ismi ile Wood nd Fiber Science, 1(19): , 1989 d yyınlnmıştır.

2 TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ 1. GİRİŞ ve GENEL BİLGİLER Arştırmlr tomruktn elde edilen kereste rndımnını bir çok fktörün etkilediğini göstermiştir. Bu fktörler tomruk ebdı, tomruk formu, testere oyuğu genişliği, biçme değişkeni, kb tze kereste ebdı, ürün krışımı ve tomruk işleme krrlrıdır (Hllock ve Lewis, 1976; Steele, 1984). Kereste rndımnını geliştirmek için bu fktörlerin yeniden ypılndırılmsı rştırmcılr, ekipmn imltçılrı ve fbrik yöneticilerinin uzun süredir mçlrı olmuştur. Bu yzıd mksimum kereste rndımnı için iki boyutlu geometrik teori kullnılrk tomruk formu ve tomruk işleme krrlrı ele lınmıştır. Tomruk işleme krrlrının optimizsyonu için en iyi çılm yüzey (BOF) kvrmı ilk olrk Hllock ve Lewis trfındn 1971 de tkdim edilmiştir. BOF sistemi günümüzde bilgisyrlı krr verme ve işlem kontrol biçme ekipmnlrınd yoğun bir şekilde kullnılmktdır. Bu sistem üç boyutlu simülsyon modeli olup tomruklrı ucu kesilmiş koni olrk vrsyr ve biçme yerleşimini optimize etmek için tekrrlı bir yklşım kullnır. BOF un kompleksliği ve uzun çlışm zmnı gerektirmesi sebebiyle rştırmcılr son günlerde BOF pozisyonunu bsit olrk hesplyn bir metodu çıklmışlrdır (Steele vd., 1987). Onlr merkezileştirilmiş biçme çözümlerinin BOF pozisyonlrının mükemmel bir thmincisi olrk kbul etmişlerdir. Ayrıc tomruğun iki boyutlu geometrik teorisinin, optimum biçme httı yerleşimini sptmd en etkili geometrik fktör olduğunu ifde etmişlerdir. Bu temel bilgi ile, tomruktn mksimum kereste rndımnı elde etmek için iki boyutlu geometrik teori geliştirilmiştir. Bir merkezileştirilmiş prizm çözümü dire ve elips şeklindeki tomruklr için temin edilmiştir. Bu teori biçme httı yerleşimi ve bilgisyrlı tomruk işleme krrlrı uygulndığı zmn hesplm zmnını ttmin edici düzeyde zltmk için direk hesplmlrı kullnır.. METOT.1. Diresel Tomruklr Geometri öğreticileri ilk olrk dire içine çizilen dört kenrlı krenin en büyük ln ship olduğunu öğretirler. Bunu diresel tomruk içindeki kre prizmnın diğer dört kenrlı prizmlrdn dh büyük ln ship olduğunun öğretilmesi tkip eder. O nedenle, bu iki boyutlu geometrik teorinin temeli mksimum rndımn elde etmek için diresel tomruk içinde kre prizmnın yerleştirilmesidir. En büyük kre diresel bir tomruk içerisine tmmen çizilebilir ve şğıdki eşitlikle hesplnbilir (Şekil 1). 161

3 S D Ü O R M A N F A K Ü L T E S İ D E R G İ S İ d α Şekil 1. İçine kre prizm çizilmiş diresel tomruk. Burd d=direnin çpı, = krenin bir kenrının uzunluğu ve α= 45 o çı. =d.cos α = d. cos 45 o = 0.707xd Burd; d= Tomrk çpı, = Kre prizmnın bir kenrının uzunluğu, α= Kre prizmnın ile köşegen üçgenin 45 o lik çısı Bu sebeple, diresel tomruktn en büyük kre prizm x tomruk çpı eşitliği ile biçilebilir. Uygulmd, tomruk çpı tomruk ince uç çpı olrk vey tomruk uzunluğu boyunc bir ölçüm noktsınd ölçülebilir. Sulm sınırlmlrı ve gövde düşüklüğü ölçüm noktlrı üzerine etki edebilir. Kre prizmdn biçilecek thtlrın syısı prizmnın ebtlrın, biçilen kerestenin klınlığın ve testere oyuğu genişliğine bğlıdır. Thtlrın syısı şğıdki eşitlik yrdımıyl hesplnbilir (Şekil ). N= (+k)/(s+k) Burd; N= Tht syısı, = Prizmnın bir kenrının uzunluğu, s= Her bir thtnın klınlığı, k= Testere oyuğu genişliği s k Şekil. Kre prizmdn biçilen tht syısı prizmnın ebdın(), biçilen kerestenin klınlığın (s) ve testere oyuğu genişliğine (k) bğlıdır. 16

4 TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ Elbette, thtlrın syısı tüm syı olmlıdır. s ve k sbit, prizmnın ebdı N tüm syıy eşit oluncy kdr yrlnbilir. Tercihen, prizmnın ebdı N in sulm sınırlrını şmyck biçimde tüm syıy eşit oluncy kdr rttırılbilir. Açıkç, prizmnın ebdındki rtm prizmdn elde edilecek kerestenin hcminin rtmsın sebep olcktır. Biçme boyunc tomrukt ilk biçme httının yerleşimi kereste rndımnını mksimum ypmk için kritik öneme shiptir (Hllock ve Lewis, 1971 ve 1976; Steele vd., 1987). Bu sebeple, kre prizm eldesi boyunc üretilen kpk klınlıklrını hesp etmek için ilk biçme httının yerleşimi önemlidir. Kpk klınlıklrı tomruk çpın ve üretilen mksimum kre prizmnın ebdın bğlıdır. Kre prizmnın bir kenrının uzunluğunu veren denklem belli olduğun göre kpk klınlığı şğıdki eşitlik yrdımıyl hesplnbilir (Şekil 3). d= t+ t= (d-)/ = d Burd; t= Kpk klınlığı, d= Tomruk çpı, = Prizmnın bir kenrının uzunluğu Bu sebeple, optimum ebtt bir prizm üretmek için, prizmnın her bir yüzeyi için biçme httı yerleşim noktsınd tomruğun yüzeyinden t kdr mesfede olmlıdır. Prizm yüzeyinin genişliği y eşittir. Büyük çplı tomruklr için, kpklr nispi olrk klındır ve klın kpktn dh fzl kereste elde edilebilir. En geniş thtnın genişliğini ve klınlığını sptmk için klın kpklr şğıdki eşitlik kullnılrk biçilebilir (Şekil 4). t d t t t Şekil 3: Diresel tomruklrdn mksimum prizm ebdı üretmek için biçilen kpk klınlığı (t), kre prizmnın ebdın () ve tomruğun çpın () bğlıdır. 163

5 S D Ü O R M A N F A K Ü L T E S İ D E R G İ S İ b r d c Şekil 4. Diresel tomruğun bir kpktn biçilen en geniş thtnın klınlığı (c) ve genişliği (b) tomruk çpın (d) ve dire içine çizilen prizmnın kenrın () bğlıdır. b/= r + (c / ) = r (c + ( / )r) b = r + (c / ) = r (c + ( / )r) Burd; = Prizmnın bir kenrının uzunluğu = x r b= Klın kpktn biçilen en geniş thtnın genişliği c= Klın kpktn biçilen en geniş thtnın klınlığı r= Tomruğun yrı çpı Thtnın en geniş enine kesit lnını (F) bulmk için yukrıdki denklemde b yi yerine koyrsk şğıdki eşitlik elde edilir. F= b.c F=.c r (c + ( / )r) Mksimum lnı bulmk için F nin türevini lıp sıfır eşitlersek şğıdki denklem elde edilir. df/dc= d/dc)c(r -(c+r / ) ) 1/ =0 ((r /-c -rc )-c -rc )/(r /-c -rc ) 1/ =0 (r /-c -rc )-c -rc =0-4c -3rc +r =0 164

6 TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ c için çözüm; c= (3r ± 18 r + 16r )/(-8) c= r(3 ± 34)/(-8) = r( )/(-8) = r = d Yukrıdki eşitlikte c yi yerine koyduğumuzd b için çözüm; b= b= 0.46.d r (c + / ) = d Stndrt genişlikte ve klınlıkt kereste üretmek için sulm sınırlmlrını şmmk şrtıyl b ve c rttırılbilir... Elips Şeklindeki Tomruklr Prtik tecrübeler tüm tomruklrın enine kesitlerinin diresel olmdığını göstermiştir. Cin de ypıln bir çlışmd tomruklrın % 70 inden fzlsının elips vey ovl şeklinde olduğu sptnmıştır (Zheng, 1979). Bu bilgiye rğmen, çoğu mevcut işlem kontrol krrlrı tomruklrın enine kesitini dire kbul ederek lınmktdır. Bu krr lımlrınd BOF bilgisyr progrmı geniş ornd kullnılmktdır. Enine kesiti dire şeklinde olmyn bu tomruklr için rndımn mksimizsyonu ve biçme krrlrı dh gerçekçi bir tomruk şekli oln elips dikkte lınrk hesplnır. Şyet elipsin yty ekseni (d) ve dikey ekseni (d ) ise, elips içine yerleştirilen dikdörtgen prizmnın en geniş enine kesit lnı şğıdki eşitlik yrdımıyl hesplnbilir (Şekil 5). y B(x,y) d x d Şekil 5. Elips tomruğun içerisine yerleştirilen en geniş dikdörtgen prizmnın kenr uzunluklrı ( ve ) elipsin eksen uzunluğun (d ve d ) bğlıdır. 165

7 S D Ü O R M A N F A K Ü L T E S İ D E R G İ S İ A = Burd; A= Dikdörtgen prizmnın lnı, = Dikdörtgenin yty ekseninin uzunluğu, = Dikdörtgenin dikey ekseninin uzunluğu Dikdörtgen ve elipsin rkesit koordintlrı (x,y) ise o zmn; = x = y A= (x)(y)= 4xy Burd; x= x yönünde elips ve dikdörtgenin kesişme yeri, y= y yönünde elips ve dikdörtgenin kesişme yeri Elips için denklem; x /(d/) +y /(d /) = 1 Bu sebeple; y= d / 1 x /(d / ) A= 4x(d /) 1 x /(d / ) Anın mksimum lnı için Anın türevini lıp sıfır eşitlersek şğıdki denklem elde edilir: da/dx= 4(d /)( 1 x /(d / ) -(x /(d/) )(1/ 1 x /(d / ) )) 1 x /(d / ) -(x /(d/) )(1/ 1 x /(d / ) ) = 0 1-x /(d/) -x /(d/) = 0 Dh bsit olrk x için çözüm: x=(d/)/ = 0.707(d/) x= d Yukrıd x belirlendiğine göre bsit bir ifdeyle y; y= (d /)/ = 0.707(d /) y= d Elips içerisine çizilen dikdörtgenin en geniş kenr uzunluğu şğıdki eşitlikle hesplnbilir. = x= d = y= d Bu sebeple, elips şeklindeki tomruğun içerisine tmmen çizilen en geniş dikdörtgenin kenrı, diresel tomruklr içerisine yerleştirilen en 166

8 TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ geniş kre prizmnın kenrının hesp formülleri ile hesplnbilir fkt elips şeklindeki tomruklrın çpı iki yönde (d ve d ) ölçülmelidir. Elips içerisine yerleştirilen dikdörtgen prizmsının kenr uzunluğu x elipsin prlel ekseni eşitliği ile hesplnır. Dikdörtgen prizmdn biçilen thtlrın syısı prizm kenrı, biçilen kerestenin klınlığı ve testere oyuğu genişliğine bğlıdır. Hesplmlr için ynı denklemler kullnılbilir. Prizmnın kenrı sulm sınırlrını şmmk şrtıyl N tüm syıy eşit oluncy kdr rttırılbilir. Kpk klınlığı elips şeklindeki tomruklrdn mksimum lnd dikdörtgen prizm üretmek için kldırılmlıdır. Ayrıc kpk klınlıklrı diresel tomruklrdki gibi hesplnbilir.kpk klınlıklrı elipsin dik ekseninin uzunluğun ve üretilen mksimum dikdörtgen prizmnın kenrın bğlıdır (Şekil 6). y t d x t t t d y c b x c b Şekil 6. Elips şeklindeki tomruklrdn mksimum prizm üretmek için biçilen kpklrın klınlıklrı (t ve t ), elipsin eksen uzunluğun (d ve d ) ve dikdörtgen prizmnın kenrın ( ve ) bğlıdır. Dh büyük çplı elips şeklindeki tomruk kpklrındn mksimum hcim ile biçilen thtlrın klınlığı (c ve c ) ve genişliği (b ve b ) elipsin eksen uzunluğun (d ve d ) ve dikdörtgen prizmnın kenrın ( ve ) bğlıdır. 167

9 S D Ü O R M A N F A K Ü L T E S İ D E R G İ S İ t= (d-)/= d t = (d - )/= d Burd; t= Dikey kpk klınlığı t = Yty kpk klınlığı d= Elips yty ekseninin uzunluğu d = Elips dikey ekseninin uzunluğu = Dikdörtgenin yty kenrının uzunluğu = Dikdörtgenin dikey kenrının uzunluğu Bu sebeple, mksimum kenrlı prizm üretmek için, prizmnın yty yüzeyleri için biçme httı tomruk yüzeyinden t mesfede, prizmnın dikey yüzeyleri için biçme httı tomruk yüzeylerinden t mesfede olmlıdır. Büyük çplı elips şeklindeki tomruk kpklrındn elde edilen kerestelerin kenr düzgünlüğü diresel tomruk hesplmlrı ile sğlnbilir. Elips şeklindeki tomruklr içerisine yerleştirilen en geniş dikdörtgen prizmlrı için kpklrın klınlığı ve genişliği dire enine kesitine ship tomruklrdki gibi hesplnbilir. b= 0.46.d b= 0.46.d c= d c = d Burd; b= Klın yty kpktn biçilen en geniş thtnın genişliği b = Klın dikey kpktn biçilen en geniş thtnın genişliği c= Klın dikey kpktn biçilen en geniş thtnın klınlığı c = Klın yty kpktn biçilen en geniş thtnın klınlığı Bu kenr kerestesinin klınlığı ve genişliği sulm sınırlrını şmmk şrtıyl stndrt genişlik ve klınlıkt kereste üretmek için rttırılbilir. 3. ÖZET Tomruktn mksimum kereste rndımnı elde etmek için iki boyutlu geometrik teoriyi geliştirildi. Merkezileştirilmiş prizm kesiş çözümleri dire ve elips şeklindeki tomruklr için temin edilebilir. Diresel tomruklr için kre prizm mksimum rndımn üretecektir. Kre şeklindeki prizmnın bir kenrının uzunluğu, tomruk ince uç 168

10 TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ çpınd vey tomruk uzunluğu boyunc bzı ölçüm noktlrınd x tomruk çpı eşitliği ile hesplnbilir. Kre prizm elde ederken üretilen kpklrın klınlığı x tomruk çpı eşitliği ile sptnır. Her bir kpktn biçilen en geniş thtnın genişliğini 0.46 x tomruk çpı ve klınlığını x tomruk çpı formülleriyle hesplnır. Elips şeklindeki tomruklrdn mksimum rndımn elde etmek için dikdörtgen prizmlr üretilir. Dikdörtgen şeklindeki prizmnın kenrlrının uzunluğunu, x elipsin prlel ekseni olmlıdır. Prizm üretirken elde edilen kpklrın klınlığı, x elips şeklindeki tomruğun dik ekseninin uzunluğun eşittir. Bir kpktn biçilen en geniş thtnın genişliği 0.46 x tomruk prlel ekseninin uzunluğu ve klınlığını x dik eksenin uzunluğun eşittir. KAYNAKLAR Hllock, H. nd Lewis, D.W Incresing Softwood Dimension: Yield from Smll Log-Best Opening Fce, USDA Forest Service Res. Pp. FPL 166, Mdison, WI. Hllock, H. nd Lewis, D.W Is There Best Swing Method? USDA Forest Service Res. Pp. FPL 80, Mdison, WIS. Steele, P.H Fctors Determining Lumber Recovery in Swmilling, USDA Forest Service Gen. Tech. Rep. FPL 39, MdİsOn, WI. nd Wgner, F. G. A Model to Estimte Regionl Softwood Swmill efficiency, Forest service (in pres). Wengert, E.M. nd Llittle, K Simplified Procedure for Computing Best Opening Fce, Forest Products Journl, 37, 59; Zheng, Y.G Reserch on Sleepers nd Lumber Swn from Ellipticl Logs by Rtionl Swing Prctices, Industry of Forest Products, Peking, Chin. 169

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN ÖZEL EGE ORTAOKULU ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN HAZIRLAYAN ÖĞRENCĠLER: Olçr ÇOBAN Sevinç SAYAR DANIġMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI... 2 2. GĠRĠġ... 2 3.

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühendislik Mimrlık Fkültesi İnşt Mühendisliği Bölümü E-Post: ogu.hmet.topcu@gmil.com Web: http://mmf2.ogu.edu.tr/topcu Bilgisyr Destekli Nümerik Anliz Ders notlrı 204

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Ders Notu: Hri ACAR İstnbul Teknik Üniveristesi Tel: 85 1 46 / 116 E-mil: crh@itu.edu.tr Web: http://tls.cc.itu.edu.tr/~crh

Detaylı

SANTRİFÜJ KOMPRESÖR ÇARKININ ÖN TASARIMI. Saim KOÇAK. S. Ü. Mühendislik - Mimarlık Fakültesi Makina Mühendisliği Bölümü, Kampüs Konya

SANTRİFÜJ KOMPRESÖR ÇARKININ ÖN TASARIMI. Saim KOÇAK. S. Ü. Mühendislik - Mimarlık Fakültesi Makina Mühendisliği Bölümü, Kampüs Konya TEKNOLOJİ, (00), Syı -, 9-5 TEKNOLOJİ SANTRİFÜJ KOMPRESÖR ÇARKININ ÖN TASARIMI Sim KOÇAK S. Ü. Mühendislik - Mimrlık Fkültesi Mkin Mühendisliği Bölümü, Kmpüs Kony ÖZET Sntrifüj kompresörü çrkınd ön tsrımın

Detaylı

MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE

MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE Yrdımcı Doçent Doktor Yılmz YÜKSEL 1. GİRİŞ Tekstil Mklnlrmd hmmddeyi mmul mdde hline getirirken çoğu kere bir çok teknik iş belirli bir sıry göre rdrd ypılmktdır.

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM Burk Uzkent Osmn Prlktun Elektrik-Elektronik Mühendisliği Bölümü Eskişehir Osmngzi Üniversitesi, Eskişehir uzkent.burk@gmil.com oprlk@ogu.edu.tr

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03 ELEĐ MOOLA ve SÜÜCÜLEĐ DES 03 Özer ŞENYU Mrt 0 ELEĐ MOOLA ve SÜÜCÜLEĐ DA MOOLANN ELEĐ DEE MODELLEĐ E AAEĐSĐLEĐ ENDÜĐ DEESĐ MODELĐ Endüviye uygulnn gerilim (), zıt emk (E), endüvi srgı direni () ile temsil

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

Telekomünikasyon, bilginin haberleşme amaçlı

Telekomünikasyon, bilginin haberleşme amaçlı GÜNÜMÜZ HABERLEŞME TEKNOLOJİLERİNE KISA BİR BAKIŞ Mehmet Okty ELDEM Elektronik Y. Mühendisi EMO Ankr Şubesi Üyesi okty.eldem@gmil.com Telekomüniksyon, bilginin hberleşme mçlı olrk dikkte değer bir mesfeye

Detaylı

TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ

TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ Gzi Üniv. Müh. Mim. Fk. Der. J. Fc. Eng. Arch. Gzi Univ. Cilt 4, No, 9-36, 009 Vol 4, No, 9-36, 009 TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ

Detaylı

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ 3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ BİRİNCİ BÖLÜM Aç, Kps, Dynk, Tnılr ve Kısltlr Aç MADDE 1 (1) Bu Tebliğin cı, IMT 2000/UMTS Altypılrının Kurulsı

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

BSD Lİ DİK İŞLEME MERKEZİNDE PARÇA PROGRAMINA GÖRE ZAMAN ANALİZİ

BSD Lİ DİK İŞLEME MERKEZİNDE PARÇA PROGRAMINA GÖRE ZAMAN ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2002 : 8 : 1 : 42-51 BSD

Detaylı

ÜNİTE - 9 GEOMETRİK CİSİMLER

ÜNİTE - 9 GEOMETRİK CİSİMLER ÜNİ - 9 GMRİK İSİMLR KI İSİMLRİN YÜZY LNLRI V İMLRİ RİZMLR Q ve Q birbirine prlel iki düzlem olsun. iri, diğeri Q düzlemindeki birbirine eş iki çokgenin köşeleri krşılıklı olrk birleştirilirse elde edilen

Detaylı

ELEKTRİK DAĞITIM ȘİRKETLERİNİN SORUMLULUĞUNDAKİ YOL AYDINLATMASINA İLİȘKİN KURALLARIN İRDELENMESİ

ELEKTRİK DAĞITIM ȘİRKETLERİNİN SORUMLULUĞUNDAKİ YOL AYDINLATMASINA İLİȘKİN KURALLARIN İRDELENMESİ ELEKTRİK DAĞITIM ȘİRKETLERİNİN SORUMLULUĞUNDAKİ YOL AYDINLATMASINA İLİȘKİN KURALLARIN İRDELENMESİ M. Akif ȘENOL 1 Ercüment ÖZDEMİRCİ 2 M. Cengiz TAPLAMACIOĞLU 3 1 Enerji ve Tbii Kynklr Bknlığı, Ankr, 2

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir?

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir? 98 ÜYS Sorulrı. r top kumşın önce, sonr d klnın ü 5 stılıor. Gere 6 m kumş kldığın göre, kumşın tümü kç metredr? ) 7 ) 65 ) 6 ) 55 ) 5 4. r şekln, u brm uzunluğun göre ln ölçüsü, v brm uzunluğun göre ln

Detaylı

EKLEMELİ DC KOMPOUND JENERATÖR DENEY 325-05

EKLEMELİ DC KOMPOUND JENERATÖR DENEY 325-05 İNÖNÜ ÜNİVSİTSİ MÜHNDİSLİK FAKÜLTSİ LKTİKLKTONİK MÜH. BÖL. 35 LKTİK MAKİNALAI LABOATUVAI I KLMLİ DC KOMPOUND JNATÖ DNY 3505. AMAÇ: Kompound bğlnmış DC jenertörün çlışmsını incelemek.. UYGULAMALA:. Yük

Detaylı

a a a a a a www.inka-paletten.com P A L E T Y P A L E T Ahşap paletlerle rekabet edebilir fiyattadır İç içe geçebildiğinden daha az stok yeri tutar

a a a a a a www.inka-paletten.com P A L E T Y P A L E T Ahşap paletlerle rekabet edebilir fiyattadır İç içe geçebildiğinden daha az stok yeri tutar Y P A L E T Ahşp pletlerle rekbet edebilir fiyttdır İç içe geçebildiğinden dh z stok yeri tutr Konteynırlr uygun ebtlr CP3, CP5 Çevreyle Dost Düny çpınd kıs sürede teslimt Isıl işlem,fümigsyon gerektirmez,

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün ÜZGÜN TIGN ( ÜZGÜN TIGN TNIMI, ÖZİİ V NI ĞNİM ) ÜZGÜN TIGN Örnek...2 : TNIM V ÖZİİ enr syısı 6 oln çok - gene lt ıgen denir. ltıgeni için [], [] ve [] köşegenlerinin kesim noktsı oln noktsı dü zgün ltıge

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

Montaj ve kullanım kılavuzu: ROBA kayar göbekler boyut 0 12

Montaj ve kullanım kılavuzu: ROBA kayar göbekler boyut 0 12 Lütfen kullnım kılvuzunu dikktle okuyun ve on riyet edin! Aksi tutumlr fonksiyon rızlrın vey kvrmnın devre dışı klmsın neden olbilir ve bun bğlı olrk hsrlr d söz konusu olbilir. Mevcut montj ve kullnım

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 5-BÖÜM -UYGUAMA SORU VE ÇÖZÜMERİ 1. Aşğıd erilen dimi, iki otl ız lnını dikkte lınız: V (, ) (.66.1) i (.7.1) j B kış lnınd ir drm noktsı r mıdır? Vrs nerededir? Kller: 1. Akış dimidir.. Akış -otldr.

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

İNEK VE SOYA SÜTÜ KARIŞIMLARIN DUYUSAL ÖZELLİKLERİNE PEYNİR SUYU VE KARBONAT KULLANIMININ ETKİSİ

İNEK VE SOYA SÜTÜ KARIŞIMLARIN DUYUSAL ÖZELLİKLERİNE PEYNİR SUYU VE KARBONAT KULLANIMININ ETKİSİ OMÜ Zir. Fk. Dergisi, 2005,20(1):1-5 J. of Fc. of Agric., OMU, 2005,20(1):1-5 İNEK VE SOYA SÜTÜ KARIŞIMLARIN DUYUSAL ÖZELLİKLERİNE PEYNİR SUYU VE KARBONAT KULLANIMININ ETKİSİ Hsn TEMİZ A.Kdir HURŞİT Ondokuz

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı T.C. MİLLÎ EĞİTİM BKNLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve çıköğretim Kurumlrı Dire Bşknlığı KİTPÇIK TÜRÜ T.C. SĞLIK BKNLIĞI PERSONELİNİN UNVN DEĞİŞİKLİĞİ SINVI 43. GRUP: ELEKTRİK

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nsıl ullnılır? Tkdim Sevgili Öğrenciler ve eğerli Öğretmenler, ğitimin temeli okullrd tılır. İyi bir okul eğitiminden geçmemiş birinin hytt bşrılı olmsı beklenemez. Hedefe ulşmks

Detaylı

DEĞİŞİK UYGULAMALARIN ÇİLEK AKENLERİNİN ÇİMLENMESİ ÜZERİNE ETKİLERİ

DEĞİŞİK UYGULAMALARIN ÇİLEK AKENLERİNİN ÇİMLENMESİ ÜZERİNE ETKİLERİ Btı Akdeniz Trımsl Arştırm Enstitüsü Derim Dergisi, 2009,26(2):1-10 ISSN 1300-3496 DEĞİŞİK UYGULAMALARIN ÇİLEK AKENLERİNİN ÇİMLENMESİ ÜZERİNE ETKİLERİ Nfiye ADAK Mustf PEKMEZCİ Hmide GÜBBÜK Akdeniz Üniversitesi

Detaylı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı Intel Öğretmen Progrmı Ünite Plnı Şlonu Öğretmenin Adı, Soydı Okulunun Adı Okulunun Bulunduğu Mhlle Okulun Bulunduğu Ġl Ftm BAĞATARHAN Yunus Emre Andolu Lisesi Ġnönü Mhllesi Bingöl Ünit Bilgisi Ünite Bşlığı

Detaylı

FREN DİNAMİĞİ. Prof. Dr. N. Sefa KURALAY

FREN DİNAMİĞİ. Prof. Dr. N. Sefa KURALAY FREN DİNAMİĞİ Prof Dr N Sef KURALAY Objektif reksiyon tlebi Ayğın gz pedlındn kldırılmsı Yğın gz pedlındn kldırılmsı Fren pedlın bsılmsı Frenleme imesinin bşlmsı Mksimum frenleme imesi Arcın durmsı Frenleme

Detaylı

2.Hafta: Kristal Yapı

2.Hafta: Kristal Yapı MALZEME BİLİMİ MAL0.Hft: Kristl Ypı Mlzemeler tmlrın bir ry gelmesi ile luşur. Bu ypı içerisinde tmlrı bir rd tutn kuvvete tmlr rsı bğ denir. Ypı içerisinde birrd bulunn tmlr frklı düzenlerde bulunbilir.

Detaylı

SÜREKLİ REJİM ENERJİ DENGESİ MODELİNE GÖRE ISIL KONFOR BÖLGELERİ

SÜREKLİ REJİM ENERJİ DENGESİ MODELİNE GÖRE ISIL KONFOR BÖLGELERİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2003 : 9 : 1 : 23-30 SÜREKLİ

Detaylı

Kontak İbreli Termometreler

Kontak İbreli Termometreler E-mil: Fx: +49 661 6003-607 www.jumo.net www.jumo.co.uk www.jumo.us Veri Syfsı 608523 Syf 1/8 Kontk İbreli Termometreler Özellikler Pnel montj vey ek cihz gibi proses değeri göstergeli sıcklık kontrolörü

Detaylı

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2 Sf No.........................................................8-7 Prol....................................................................... 9 - Etkinlikler.....................................................................

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

Bir Elektrik Motorunun Kısımları. Bir elektrik motorunun parçaları: Rotor, stator içinde döner.

Bir Elektrik Motorunun Kısımları. Bir elektrik motorunun parçaları: Rotor, stator içinde döner. Bir Elektrik Motorunun Kısımlrı Bir elektrik motorunun prçlrı: Rotor, sttor içinde döner. İki kutuplu bir DA motoru -kutuplu mkinnın kısımlrı ve elemnlrı Dört kutuplu bir DA motoru-endüktör Kutup nüvesi

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumund, ir Q noktsını üç outlu olrk temsil eden küik gerilme elemnı üzerinde 6 ileşeni gösterileilir: σ, σ, σ z, τ, τ z, τ z. Söz konusu

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) ÖSS MT-1 / 008 MTMTİK 1 TSTİ (Mt 1) 1. u testte 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik 1 Testi için yrıln kısmın işretleyiniz. 1. 1 + 4 1 ( ) 4. syısı b 0 ) b syısının kç ktıdır? ) b ) b işleminin

Detaylı

Tablo 1: anket sorularına verilen cevapların % de dağılımı Anket soruları. % c. % a. % b

Tablo 1: anket sorularına verilen cevapların % de dağılımı Anket soruları. % c. % a. % b PROJENİN ADI: Kimy Öğretiminde Alterntif Öğretim Metodu PROJE AMACI: Kimy öğretiminde lterntif uygulm olrk nimsyon sunumu tekniğinin uygulnilirliğini örneklerle göstermek ve dh iyi nsıl öğreteilirim sorusun

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

Değişken Kalınlıklı İzotrop Plakların ANSYS Paket Programı ile Modellenmesi

Değişken Kalınlıklı İzotrop Plakların ANSYS Paket Programı ile Modellenmesi Akdemik Bilişim 1 - XII. Akdemik Bilişim Konfernsı Bildirileri 1-1 Şut 1 uğl Üniversitesi Değişken Klınlıklı İzotrop Plklrın ANSYS Pket Progrmı ile odellenmesi ustf Hlûk Srçoğlu, Yunus Özçelikörs Eskişehir

Detaylı

Veliler Anketi. Standart denetlemesi Matematik 4. sınıf 2013

Veliler Anketi. Standart denetlemesi Matematik 4. sınıf 2013 Veliler Anketi Stndrt denetlemesi Mtemtik 4. sınıf 2013 Sevgili Anne ve Bblr, Sevgili Veliler, Çocuğunuzun sınıfı bu öğretim yılınd 4.sınıf Mtemtik dersinde ilk stndrt denetlenmesi uygulmsın ktılcktır.

Detaylı

ÜÇGEN VE PİSAGOR BAĞINTISI

ÜÇGEN VE PİSAGOR BAĞINTISI ÜÇGEN VE PİSGOR ĞINTISI KZNIMLR Üçgen kvrmı Üçgen çizimi Üçgenin kenrlrı rsındki ğıntılr Üçgen eşitsizliği Üçgenlerde yükseklik Üçgenlerde kenrorty Üçgenlerde çıorty Kenr ort dikme kvrmı Pisgor ğıntısı

Detaylı

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri İlişkisel Veri Modeli İlişkisel Cebir İşlemleri Veri işleme (Mnipultion) işlemleri (İlişkisel Cebir İşlemleri) Seçme (select) işlemi Projeksiyon (project) işlemi Krtezyen çrpım (crtesin product) işlemi

Detaylı

2. BÖLÜM AKIŞKANLARIN STATİĞİ

2. BÖLÜM AKIŞKANLARIN STATİĞİ . BÖLÜM AKIŞKANLARIN STATİĞİ Akışknlr mekniğinin birçok probleminde reket yoktur. Bu tip problemlerde durn bir kışkn içinde bsınç dğılımı ve bu bsınç dğılımının ktı yüzeylere ve yüzen vey dlmış cisimlere

Detaylı

Santrifüj Pompa Nedir?

Santrifüj Pompa Nedir? Pomp Hidroliği Sntrifüj Pomp Nedir? Pomp Hidroliği, Çrk Bsm trfı Emme trfı Pompnın An Prçlrı Bir sntrifüj pomp 4 n prçdn oluşur. 1 Çrk:Kinetik enerjiyi kışkn trnsfer eder. 2 Pomp gövdesi: Akışknı tutr

Detaylı

Değişken Kalınlıklı İzotrop Plakların ANSYS Paket Programı ile Modellenmesi

Değişken Kalınlıklı İzotrop Plakların ANSYS Paket Programı ile Modellenmesi Değişken Klınlıklı İotrop Plklrın ANSYS Pket Progrmı ile odellenmesi ustf Hlûk Srçoğlu 1, Yunus Öçelikörs 1 1 Eskişehir Osmngi Üniversitesi, İnşt ühendisliği Bölümü, Eskişehir mhsrcoglu@ogu.edu.tr, unuso@ogu.edu.tr

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

Patlama korumalı ek termostat

Patlama korumalı ek termostat E-mil: Fx: +49 661 6003-607 www.jumo.net www.jumo.us Veri Syfsı 605051 Syf 1/7 Ptlm korumlı ek termostt Tip ATH-EXx Serisi Özellikler 10 A kontk derecesi Bölge 1, 2, 21 ve 22'de doğrudn yerleştirilebilir

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

BULANIK MANTIK. Gaziosmanpaşa Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Tokat.

BULANIK MANTIK. Gaziosmanpaşa Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Tokat. Nim Çğmn, ncgmn@gop.edu.tr BLNIK MNTIK Gziosmnpş Üniversitesi, Fen Edebiyt Fkültesi, Mtemtik Bölümü, Tokt. Mtemtik deyince ilk kl gelen kesinliktir. Hlbuki günlük hytt konuşmlrımız rsınd belirsizlik içeren,

Detaylı

T.C.. VALİLİĞİ.. OKULU/LİSESİ

T.C.. VALİLİĞİ.. OKULU/LİSESİ T.C.. VALİLİĞİ.. OKULU/LİSESİ../. EĞİTİM ÖĞRETİM YILI ÖĞRENCİNİN Adı Soydı Sınıfı No Eğitimde fed edilecek fert yoktur. Mustf Keml ATATÜRK T.C... VALİLİĞİ/KAYMAKAMLIĞI Milli Eğitim Müdürlüğü. OKULU/LİSESİ

Detaylı

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ C.Ü. İktisdi ve İdri Bilimler Dergisi, Cilt 5, Syı 5 DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ Öğr. Gör. Dr. Mehmet Ali ALAN Cumhuriyet Üiversitesi İktisdi ve İdri Bilimler Fkültesi Öğr. Gör.

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

Velilere Yönelik Soru Formu

Velilere Yönelik Soru Formu Velilere Yönelik Soru Formu Eğitim Stndrtlrı Pilot Çlışmsı 4. Sınıf Mtemtik Okul Sınıf Öğrenci Sevgili veliler, Sevgili velyet shipleri, Çocuğunuzun sınıfı, mtemtik eğitim stndrtlrın ilişkin bir pilot

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan KAT CİSİMLERİN HACİMLERİ Örnek...2 : =2, =4, =2, = 5 doğrulrı rsınd kln ölgenin O ekseni etrfınd 360 o döndürülm esi le oluşck ktı cism in hcm ini ulunuz İNTEGRAL İLE HACİM HESAB 1. X EKSENİNDE DÖNDÜRMELER

Detaylı

ISSN: 1306-3111/1308-7231 Received: October 2014 NWSA ID: 2015.10.1.1A0356 Accepted: January 2015 E-Journal of New World Sciences Academy

ISSN: 1306-3111/1308-7231 Received: October 2014 NWSA ID: 2015.10.1.1A0356 Accepted: January 2015 E-Journal of New World Sciences Academy NWSA-Engineering Sciences Sttus : Originl Stud ISSN: 1306-3111/1308-7231 Received: October 2014 NWSA ID: 2015.10.1.1A0356 Accepted: Jnur 2015 E-Journl of New World Sciences Acdem Mustf Hlûk Srçoğlu Dumlupınr

Detaylı

TANELİ ÜRÜNLERDE ÜRÜN ŞEV KARAKTERİSTİKLERİNE BAĞLI DEPOLAMA YÜKLERİ

TANELİ ÜRÜNLERDE ÜRÜN ŞEV KARAKTERİSTİKLERİNE BAĞLI DEPOLAMA YÜKLERİ OMÜ Zir. Fk. Dergisi, 006,1(1):13-139 J. of Fc. of Agric., OMU, 006,1(1):13-139 TANELİ ÜRÜNLERDE ÜRÜN ŞEV KARAKTERİSTİKLERİNE BAĞLI DEPOLAMA YÜKLERİ Turgut ÖZTÜRK Hkn KİBAR Ondokuz Myıs Üniversitesi Zirt

Detaylı

YAYLAR. Tasarımı; ÖRNEK 1

YAYLAR. Tasarımı; ÖRNEK 1 YAYLAR Tsrıı; i) Yylrın çlışcğın boşluk ii) Uygulnn kuvvet ve istenilen yer değiştire iii) Güvenirlik ve hsssiyet iv) Çevresel Koşullr v) Mliyet ÖRNEK 1 00 N luk kuvvet yy uygulndığı tktirde. () pozisyonu

Detaylı

TEST SORULARI Adı /Soyadı : No : İmza: STATİK FİNAL SINAVI. Öğrenci No

TEST SORULARI Adı /Soyadı : No : İmza: STATİK FİNAL SINAVI. Öğrenci No -0-00 dı /Sodı : No : İmz: STTİK FİN SINVI Öğrenci No 00000 z m Şekildeki kirişinde bğ kuvvetlerin bulunuz. =(+e)n/m, =5(+e)N m m Şekildeki ğırlıksız blok det pndül k ve noktsınd küresel mfsl ile dengededir.

Detaylı

Yerel Topluluklar ve Yönetimler Arasında Sınır-Ötesi Đşbirliği Avrupa Çerçeve Sözleşmesine Ek Protokol

Yerel Topluluklar ve Yönetimler Arasında Sınır-Ötesi Đşbirliği Avrupa Çerçeve Sözleşmesine Ek Protokol Yerel Topluluklr ve Yönetimler Arsınd Sınır-Ötesi Đşirliği Avrup Çerçeve Sözleşmesine Ek Protokol Strsourg 9 Xl 1995 Avrup Antlşmlrı Serisi/159 Yerel Topluluklr vey Yönetimler rsınd Sınır-ötesi Đşirliği

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 325-06

BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 325-06 İNÖNÜ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİKELEKTRONİK MÜH. BÖL. 35 ELEKTRİK MAKİNALARI LABORATUVARI I BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 3506. AMAÇ: Bğımsız uyrılmış DC motorun moment/hız ve verim

Detaylı

Sigma 28, 124-137, 2010 Review Paper / Derleme Makalesi ANALYTIC HIERARCHY PROCESS FOR SPATIAL DECISION MAKING

Sigma 28, 124-137, 2010 Review Paper / Derleme Makalesi ANALYTIC HIERARCHY PROCESS FOR SPATIAL DECISION MAKING Journl of Engineering nd Nturl Sciences Mühendislik ve Fen Bilimleri Dergisi Sigm 28, 24-37, 200 Review Pper / Derleme Mklesi ANALYTIC HIERARCHY PROCESS FOR SPATIAL DECISION MAKING Dery ÖZTÜRK*, Ftmgül

Detaylı

ph Hesabı Prof. Dr. Mustafa DEMİR M.DEMİR(ADU) 16-PH HESABI 1

ph Hesabı Prof. Dr. Mustafa DEMİR M.DEMİR(ADU) 16-PH HESABI 1 p esbı Prof. Dr. Mustf DEMİR M.DEMİR(ADU) 6-P ESABI . uvvetli sit ve bz çözeltilerinde p hesbı. Zyıf sit çözeltilerinin p ı. Zyıf Bz Çözeltisinin p ı 4. Zyıf sidin tuzunu içeren bir çözeltinin p ının hesbı

Detaylı

on8 S İ G O R T A C I L I K S E K T Ö R Ü K U R U M S A L W E B S İ T E L E R İ G E N E L A N A L İ Z Ç A L I Ş M A S I

on8 S İ G O R T A C I L I K S E K T Ö R Ü K U R U M S A L W E B S İ T E L E R İ G E N E L A N A L İ Z Ç A L I Ş M A S I on8 S İ G O R T A C I L I K S E K T Ö R Ü K U R U M S A L W E B S İ T E L E R İ G E N E L A N A L İ Z Ç A L I Ş M A S I Kurumsl web sitelerinin en büyük hedefi; kullnıcılrı müşteri, müşterileri kullnıcı

Detaylı

DA MOTOR SÜRÜCÜLERİ İÇİN BULANIK MANTIK DENETİMİ

DA MOTOR SÜRÜCÜLERİ İÇİN BULANIK MANTIK DENETİMİ DA MOTOR SÜRÜCÜLERİ İÇİN BULANIK MANTIK DENETİMİ Yuuf SÖNMEZ* (*) Gzi Üniveritei, Elektrik Eğitimi Bölümü, 06500, Ankr yonmez@gzi.edu.tr ÖZET Günümüzde DA (doğru kım) motorlr endütriyel lnd geniş bir kullnım

Detaylı

1000(1,025) t TL ödeyerek bir fon. F t SORU 2 : SORU 1 : Bahar, t=1,3,5. yılların sonunda. Bir yatırım fonu, 0 t 1. için. anlık faiz oranına göre

1000(1,025) t TL ödeyerek bir fon. F t SORU 2 : SORU 1 : Bahar, t=1,3,5. yılların sonunda. Bir yatırım fonu, 0 t 1. için. anlık faiz oranına göre SORU 1 : Bhr, t=1,3,5. yıllrın sonund 1000(1,025) t TL ödeyerek bir fon oluşturmuştur. Üç ylığ dönüştürülebilir nominl iskonto ornı 4/41 olrk verildiğine göre, bu fonun 7. yıl sonundki birikimli değeri,

Detaylı

T.C. MİLLİ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) İNŞAAT TEKNOLOJİSİ AHŞAP TAVAN VE DÖŞEMELER

T.C. MİLLİ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) İNŞAAT TEKNOLOJİSİ AHŞAP TAVAN VE DÖŞEMELER T.C. MİLLİ EĞİTİM BAKANLIĞI MEGEP (MESLEKÎ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) İNŞAAT TEKNOLOJİSİ AHŞAP TAVAN VE DÖŞEMELER ANKARA 2007 Milli Eğitim Bknlığı trfındn geliştirilen modüller;

Detaylı

Depolama Süresinin Bazı Hıyar Çeşitlerinde Mekanik Özelliklere Olan Etkisinin Belirlenmesi *

Depolama Süresinin Bazı Hıyar Çeşitlerinde Mekanik Özelliklere Olan Etkisinin Belirlenmesi * TRIM BİLİMLERİ DERGİSİ 5, (3) 5-56 Depolm Süresinin Bzı Hıyr Çeşitlerinde Meknik Özelliklere Oln Etkisinin Belirlenmesi * Yeşim Benl YURTLU Doğn ERDOĞN Geliş Trihi: 5.. 5 Öz: Bu çlışmd, bzı hıyr çeşitlerinde

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

ph Hesabı (TİTRASYON) Prof. Dr. Mustafa DEMİR http://web.adu.edu.tr/akademik/mdemir/ M.DEMİR(ADU) 2009-07-PH HESABI (titrasyon) 1

ph Hesabı (TİTRASYON) Prof. Dr. Mustafa DEMİR http://web.adu.edu.tr/akademik/mdemir/ M.DEMİR(ADU) 2009-07-PH HESABI (titrasyon) 1 p esbı (TİTRASYON) Prof. Dr. Mustf DEMİR http://web.du.edu.tr/kdemik/mdemir/ M.DEMİR(ADU) 009-07-P ESABI (titrsyon) . uvvetli sit ve bz çözeltilerinde p hesbı. Zyıf sit çözeltilerinin p ı. Zyıf Bz Çözeltisinin

Detaylı

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU 63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU www.omk.com.tr 01.08.2014 V3185 / V4185 VARİL ISITICISI KULLANIM KILAVUZU OMAK MAKİNA SANAYİİ ve TİCARET LİMİTED ŞİRKETİ DR. MEDİHA ELDEM

Detaylı

Huş Odununun Kayın Odununa Alternatif Olarak Kontrplak Üretiminde Değerlendirilmesi

Huş Odununun Kayın Odununa Alternatif Olarak Kontrplak Üretiminde Değerlendirilmesi 50 Odununun Kyın Odunun Alterntif Olrk Kontrplk Üretiminde Değerlendirilmesi Evren Osmn ÇAKIROĞLU 1*, İsmil AYDIN 2 1 Artvin Çoruh Üniversitesi Meslek Yüksekokulu Mobily ve Dekorsyon Bölümü/Artvin 2 Krdeniz

Detaylı

EasyMP Multi PC Projection Kullanım Kılavuzu

EasyMP Multi PC Projection Kullanım Kılavuzu EsyMP Multi PC Projection Kullnım Kılvuzu İçindekiler 2 EsyMP Multi PC Projection Hkkınd EsyMP Multi PC Projection Trfındn Önerilen Toplntı Stilleri... 5 Birden Çok Görüntü Kullnrk Toplntı Ypm... 5 Ağ

Detaylı