2 Boyutlu Kompozit Levhada Hooke Bağıntıları (Hooke s Laws on the 2 dimensional composite lamina)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "2 Boyutlu Kompozit Levhada Hooke Bağıntıları (Hooke s Laws on the 2 dimensional composite lamina)"

Transkript

1 Boutlu Kompozit Levhada Hooke Bağıntıları Genelde kompozit levhanın 1,,3 doğrultularında elatik mekanik özellikleri deneel vea teorik olarak belirlenir. Generall the elatic propertie along to the 1, and 3 direction 1 are determined b thoeritical or eperimental method. Bu bölümde amacımız şu orua cevap bulmaktır: In thi ection, our aim i found the anwer of thi queiton: Acaba 1 ve doğrultularında elatik özellikler belli iken, düzlem durumda ve doğrultularında gerilme ve şekil değiştirmeler araındaki bağıntılar naıl kurulur? How can we obtianed the relationhip between the tre and train at - direciton, when the elatic propertie along to the 1, direction are known. t t

2 Boutlu Kompozit Levhada Hooke Bağıntıları 3 boutta Boutta vea

3 Boutlu Kompozit Levhada Hooke Bağıntıları 3

4 Boutlu Kompozit Levhada Hooke Bağıntıları 4 Tüm bu denklemlerden, (from thee equation): Benzer Şekilde Rijitik matrii abitleri (imelarl)

5 Boutlu Kompozit Levhada Hooke Bağıntıları 5 Örnek: Tek önlü takvieli Graphite / Epo Kompozitin (For unidirectional graphite /epo compoite find thee value): 1. Gevşeklik matriini, (Compliance matri). Minor poion oranını (Minor Poion ratio) 3. Rijitlik matriini (Reduced tiffne matri) 4. Ugulanan gerilme durumuna göre 1- doğrultularındaki gerinme değerlerini (Strain in the 1 coordinate tem if the applied tree)

6 Boutlu Kompozit Levhada Hooke Bağıntıları 6 b-) a-) c-)

7 Boutlu Kompozit Levhada Hooke Bağıntıları 7 d-)

8 Boutlu Kompozit Levhada Gerilme Dönüşümleri (Stre Tranformation on the dimenional compoite lamina) 8 Prizmatik bir elemanın boutlu dengeini düşünelim: Conider the condition for equilibrium of a primatic element with face perpendicular to the,, and ae. F F 0 0 t A Aco co t Aco Ain in t Ain co A Aco in t Aco Ain co t Ain in in co co in t (in.co ) t ' ' ' in.co in.co t (co in ) co in t (in.co ) vea t co t co t in t co in in

9 Boutlu Durumda Kompozit Levhada Gerilme Dönüşümleri (Hooke Law on the compoite lamina for dimenional cae ) 9 t t - doğrultularında gerilmeler belli iken 1- doğrultularındaki gerilmeler ine anı şekilde bulunur. Similarl: co in t (in.co ) t 1 1 in.co in.co t (co in ) co in t (in.co ) vea (or) 1 co t co t t1 in t co in in

10 Boutlu Durumda Kompozit Levhada Gerilme Dönüşümleri (Hooke Law on the compoite lamina for dimenional cae ) 10 co t 1 1 in in.co in.co t co in t t (in.co ) (co (in.co ) in )

11 Boutlu Kompozit Levhada Hooke Bağıntıları 11

12 Boutlu Kompozit Levhada Hooke Bağıntıları 1 İndirgenmiş rijitlik matrii (reduced tifne matri):

13 Boutlu Kompozit Levhada Hooke Bağıntıları 13 İndirgenmiş gevşeklik matrii (reduced compliance matri) S :

14 Boutlu Kompozit Levhada Hooke Bağıntıları 14 Örnek: 60 fiber açılı, graphite/epo kompozit için aşağıda itenen değerleri bulunuz. (Find the following for a 60 angle lamina (Figure.1) of graphite/epo.) 1. İndirgenmiş gevşeklik matrii ( ) (tranformed compliance matri). İndiirgenmiş rijitlik matrii (Tranformed reduced tiffne matri) 3. - düzlemindeki gerinmeler (Global train) düzlemindeki gerinmeler (Local train) düzlemindeki gerilmeler (Local tree) 6. Aal Gerilmeler (Principal tree) 7. Makimum kama gerilmei (Maimum hear tre) S

15 Boutlu Kompozit Levhada Hooke Bağıntıları 15 a-) Benzer şekilde (imilarl)

16 Boutlu Kompozit Levhada Hooke Bağıntıları 16 b-)

17 Boutlu Kompozit Levhada Hooke Bağıntıları 17 3-) Global Gerinmeler (The global train in the plane are given)

18 Boutlu Kompozit Levhada Hooke Bağıntıları 18 4-) 1- doğrultularındaki lokal gerinmeler (the local train in the lamina)

19 Boutlu Kompozit Levhada Hooke Bağıntıları 19 5-) 1- düzlemindeki gerilmeler (the local tree)

20 Boutlu Kompozit Levhada Hooke Bağıntıları 0 Düzlem gerilme durumunda Mohr Çemberi Düzlem gerinme durumunda Mohr Çemberi

21 Boutlu Kompozit Levhada Hooke Bağıntıları 1 6-) Aal Gerilmeler (Principal Stre) Aal gerilme düzleminin doğrultuu: (+ ekeni ile normalin aptığı açı) The value of the angle at which the maimum normal tree

22 Boutlu Kompozit Levhada Hooke Bağıntıları 7- Makimum kama gerilmei ve doğrultuu (The maimum hear tre and it direction)

23 Boutlu Kompozit Levhada Hooke Bağıntıları 3 8-Aal Gerinmeler (Principal Stre) Aal Gerinme doğrultuları (Principal train direction:)

24 Boutlu Kompozit Levhada Hooke Bağıntıları 4 9- Makimum kama gerilmei ve doğrultuu (The maimum hearing train and it direction) Makimum kama gerilmei düzleminin + ekenile aptığı açı (The value of the angle at which the maimum hearing train occur)

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

KOMPOZİTLERDE AKMA VE KIRILMA TEORİLERİ Strength Failure Theories of an Angle Lamina

KOMPOZİTLERDE AKMA VE KIRILMA TEORİLERİ Strength Failure Theories of an Angle Lamina KOMPOZİTLERDE AKMA VE KIRILMA TEORİLERİ Strength Failure Theories of an Angle Lamina Bir yapıdaki başarılı bir tasarım, yapıyı oluşturan malzemeler açısından verim ve güvenliğin sağlanmasını gerektirir.

Detaylı

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Gerilme ve Şekil değiştirme bileşenlerinin lineer ilişkileri Hooke Yasası olarak bilinir. Elastisite Modülü (Young Modülü) Tek boyutlu Hooke

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Companies, Inc. All rights reserved. T E CHAPTER 7 Gerilme MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Dönüşümleri Fatih Alibeoğlu 00 The McGraw-Hill

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

BİRİM ŞEKİLDEĞİŞTİRME DÖNÜŞÜMÜ

BİRİM ŞEKİLDEĞİŞTİRME DÖNÜŞÜMÜ BİRİM ŞEKİLDEĞİŞTİRME DÖNÜŞÜMÜ DÜZLEM-BİRİM ŞEKİLDEĞİŞTİRME 3D durumda, bir noktadaki birim şekil değiştirme durumu 3 normal birim şekildeğiştirme bileşeni,, z, ve 3 kesme birim şekildeğiştirme bileşeninden,

Detaylı

5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi

5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi 5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi u bölümde RITZ metodu eleman bazında uygulanacak, elemanın yer değiştirme fonksiyonu, şekil değiştirme, gerilme bağıntıları, toplam potansiyeli,

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

Anizotropik Malzemeler ve Elastik Davranışları Anisotropic Materials and Their Elastical Behaviours

Anizotropik Malzemeler ve Elastik Davranışları Anisotropic Materials and Their Elastical Behaviours Aniotropik Malemeler ve lastik Davranışları Anisotropic Materials and Their lastical Behaviours Composite Materials - Chapter 3: Anistropic Materials and Their lastic Behaviours - Prof.Dr. Mehmet Zor İotropik

Detaylı

Posta Adresi: Sakarya Üniversitesi, İnşaat Mühendisliği Bölümü, Sakarya, Türkiye

Posta Adresi: Sakarya Üniversitesi, İnşaat Mühendisliği Bölümü, Sakarya, Türkiye FİBER TAKVİYELİ POLİMERLE GÜÇLENDİRİLEN BETONARME KİRİŞLERİN DOĞRUSAL OLMAYAN ANALİZİ NONLINEAR ANALYSIS OF RC BEAM STRENGTHENED WITH FIBER REINFORCED POLYMERS MERT N., ELMAS M. Pota Adrei: Sakarya Üniveritei,

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

Kemer Barajların Drucker-Prager Yaklaşımı Kullanılarak Lineer Olmayan Dinamik Analizi 1

Kemer Barajların Drucker-Prager Yaklaşımı Kullanılarak Lineer Olmayan Dinamik Analizi 1 İMO eknik Dergi, 2004 3085-3103, Yazı 207 Kemer Barajların Drucker-Prager Yaklaşımı Kullanılarak Lineer Olmayan Dinamik Analizi 1 Yuu CALAYIR * Muhammet KARAON ** ÖZ Bu çalışmada, betonun lineer olmayan

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal o Engineering and Natural Science Mühendilik ve Fen Bilimleri Dergii Sigma 004/1 YAPI ELEMANLARININ ANALİZİNDE ŞERİT-LEVHA VE KAFES SİSTEM BENZEŞİMİ MODELİ M. Yaşar KALTAKCI *, Günnur YAVUZ Selçuk

Detaylı

Çekme testi ve gerilme-birim uzama diyagramı

Çekme testi ve gerilme-birim uzama diyagramı MCHANICS OF MATRIALS Beer Johnston DeWolf Maurek Çekme testi ve gerilme-birim uama diagramı Sünek bir maleme için çekme testi diagramı P P Lo P 2009 The McGraw-Hill Companies, Inc All rights reserved -

Detaylı

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University CHAPTER BÖLÜM MECHANICS MUKAVEMET OF I MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Basit Eğilme Lecture Notes: J. Walt Oler Teas Tech Universit Düzenleen: Era Arslan 2002 The McGraw-Hill

Detaylı

ELYAF TAKVİYELİ KOMPOZİT MALZEMELER İÇİN MİKROMEKANİK ESASLI KIRIM KISTASI EMRE FIRLAR KAAN BİLGE MELİH PAPİLA 0º 90º 90º 0º

ELYAF TAKVİYELİ KOMPOZİT MALZEMELER İÇİN MİKROMEKANİK ESASLI KIRIM KISTASI EMRE FIRLAR KAAN BİLGE MELİH PAPİLA 0º 90º 90º 0º ELYAF TAKVİYELİ KOPOZİT ALZEELER İÇİN İKROEKANİK ESASLI KIRI KISTASI x z θ y 0º 90º 90º 0º ERE FIRLAR KAAN BİLGE ELİH PAPİLA UHUK-2008-074 II. ULUSAL HAVACILIK VE UZAY KONFERANSI 15-17 Ekim 2008, İTÜ,

Detaylı

3. Hafta. Bu durumda ; aslında daha karmaşık yükleme hali ile. Önceki bölümde eksenel ve enine. Birçok makine elemanı ve bileşenleri ENLERĐ

3. Hafta. Bu durumda ; aslında daha karmaşık yükleme hali ile. Önceki bölümde eksenel ve enine. Birçok makine elemanı ve bileşenleri ENLERĐ : 3. Hafta - GENEL YÜKLEME Y KOŞULLARINDA GERĐLME BĐLE B LEŞENLER ENLERĐ - EMNĐYETL YETLĐ GERĐLME, ĐŞLETME G. VE EMNĐYET KATSAYISI : 09/10 3.H Hatırlama Önceki bölümde ekenel ve enine yüklenmiş bağlantılarda

Detaylı

Saf Eğilme (Pure Bending)

Saf Eğilme (Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde, doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki deformasonları incelenecek. Burada çıkarılacak formüller, en kesiti an az bir eksene göre simetrik

Detaylı

MATERIALS. Değiştirme Dönüşümleri. (Kitapta Bölüm 7) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf

MATERIALS. Değiştirme Dönüşümleri. (Kitapta Bölüm 7) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf 00 The McGraw-Hill Companies, Inc. All rights reserved. Third E CHAPTER BÖLÜM 8 Gerilme MECHANICS MUKAVEMET OF II MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt

Detaylı

ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ

Detaylı

Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç

Detaylı

Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ

Detaylı

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET Yrd. Doç. Dr. Emine AYDIN Yrd. Doç. Dr. Elif BORU 1 GENEL YÜKLEME DURUMUNDA GERİLME ANALİZİ Daha önce incelenen gerilme örnekleri eksenel yüklü yapı elemanları

Detaylı

PASTERNAK ZEMİNİNE OTURAN TIMOSHENKO KİRİŞİNİN DEĞİŞKEN HIZLI VE ŞİDDETİ ZAMANLA ARTAN TEKİL YÜK ALTINDA DİNAMİK DAVRANIŞININ İNCELENMESİ

PASTERNAK ZEMİNİNE OTURAN TIMOSHENKO KİRİŞİNİN DEĞİŞKEN HIZLI VE ŞİDDETİ ZAMANLA ARTAN TEKİL YÜK ALTINDA DİNAMİK DAVRANIŞININ İNCELENMESİ PASTERNAK ZEMİNİNE OTURAN TIMOSHENKO KİRİŞİNİN DEĞİŞKEN HIZLI VE ŞİDDETİ ZAMANLA ARTAN TEKİL YÜK ALTINDA DİNAMİK DAVRANIŞININ İNCELENMESİ Oan ÇELİK*, İbrahim BAKIRTAŞ* *İtanbul Teknik Üniveritei, İnşaat

Detaylı

TER 201 TERMODİNAMİK 2011-2012 Güz Yarıyılı ÖDEV 3 İlan Tarihi: 5.12.2011 Teslim Tarihi: 12.12.2011 haftasındaki ders saatinde

TER 201 TERMODİNAMİK 2011-2012 Güz Yarıyılı ÖDEV 3 İlan Tarihi: 5.12.2011 Teslim Tarihi: 12.12.2011 haftasındaki ders saatinde ER 0 ERMODİNAMİK 0-0 Güz Yarıyılı ÖDEV 3 İlan arihi: 5..0 elim arihi:..0 haftaındaki der aatinde Soru. Bir otomobil motoru aatte 0 L yakıt tüketmekte ve tekerleklere 60 kw güç iletmektedir. Yakıtın ııl

Detaylı

(, ) = + + yönünde yer değiştirme fonksiyonu

(, ) = + + yönünde yer değiştirme fonksiyonu . Üçgen levha eleman, düzlem gerilme durumu. Üçgen levha eleman, düzlem gerilme durumu Çok katlı yapılardaki deprem perdeleri ve yüksek kirişler düzlem levha gibi davranır. Sağdaki şekilde bir levha sistem

Detaylı

MALZEMELERİN MEKANİK ÖZELİKLERİ

MALZEMELERİN MEKANİK ÖZELİKLERİ MALZEMELERİN MEKANİK ÖZELİKLERİ MALZEMELERİN MEKANİK ÖZELİKLERİ Mekanik Özellikler, malzemenin yük ve deformayon etkiindeki davranışını belirleyen özelliklerdir (ör: dayanım, E,...) Malzemelerin yük altındaki

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAK 2029

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAK 2029 Dersi Veren Birim: Makina Mühendisliği Dersin Türkçe Adı: MUKAVEMET Dersin Orjinal Adı: MUKAVEMET Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAK 09 Dersin Öğretim Dili:

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

FOTOELASTİSİTEDE SINIR ELEMAN YÖNTEMİNİN AYIRMA YÖNTEMİ OLARAK KULLANILMASI. Boundary Element Method in Photoelasticity as a Separation Method

FOTOELASTİSİTEDE SINIR ELEMAN YÖNTEMİNİN AYIRMA YÖNTEMİ OLARAK KULLANILMASI. Boundary Element Method in Photoelasticity as a Separation Method S.Ü. Müh. Mim. Fak. Derg., c.3, s., 008 J. Fac.Eng.Arch. Selcuk Univ., v.3, n., 008 FOTOELASTİSİTEDE SINIR ELEMAN YÖNTEMİNİN AYIRMA YÖNTEMİ OLARAK KULLANILMASI Atilla ÖZÜTOK, Ahmet Yalçın AKÖZ Selçuk Üniversitesi,

Detaylı

SONLU ELEMANLAR (FINITE ELEMENTS) YÖNTEMİ

SONLU ELEMANLAR (FINITE ELEMENTS) YÖNTEMİ SONLU ELEMANLAR (FINITE ELEMENTS) YÖNTEMİ Sonlu Elemanlar Yöntemi, çeşitli mühendislik problemlerine kabul edilebilir bir yaklaşımla çözüm arayan bir sayısal çözüm yöntemidir. Uniform yük ır Sabit sın

Detaylı

İÇİNDEKİLER. ÖNSÖZ... iii İÇİNDEKİLER... v

İÇİNDEKİLER. ÖNSÖZ... iii İÇİNDEKİLER... v İÇİNDEKİLER ÖNSÖZ... iii İÇİNDEKİLER... v BÖLÜM 1.... 1 1.1. GİRİŞ VE TEMEL KAVRAMLAR... 1 1.2. LİNEER ELASTİSİTE TEORİSİNDE YAPILAN KABULLER... 3 1.3. GERİLME VE GENLEME... 4 1.3.1. Kartezyen Koordinatlarda

Detaylı

Kafes Sistemler Turesses

Kafes Sistemler Turesses Kafes Sistemler Turesses Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Turesses are a carrier system formed by the bar elements. Each bar element connects to others

Detaylı

Ad Soyad: Öğrenci No:...

Ad Soyad: Öğrenci No:... FİZ 121 2015-2016 Güz Dönemi 2. Vize Sınavı Süre 90 dakikadır 1 2 3 4 5 Toplam Ad Soyad: Öğrenci No:... Sınav sırasında hesap makinası kullanılması serbest, ancak alışverişi yasaktır. Sorular eşit puanlıdır.

Detaylı

DAİRESEL DELİKLİ TABAKALI KOMPOZİT LEVHALARDA DENEYSEL VE SAYISAL HASAR ANALİZİ

DAİRESEL DELİKLİ TABAKALI KOMPOZİT LEVHALARDA DENEYSEL VE SAYISAL HASAR ANALİZİ 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS 09), 13-15 Mayıs 009, Karabük, Türkiye DAİRESEL DELİKLİ TABAKALI KOMPOZİT LEVHALARDA DENEYSEL VE SAYISAL HASAR ANALİZİ EXPERIMENTAL AND NUMERICAL FAILURE

Detaylı

Düzlem Elektromanyetik Dalgalar

Düzlem Elektromanyetik Dalgalar Düzlem Elektromanetik Dalgalar Düzgün Düzlem Dalga: E nin, (benzer şekilde H nin) aılma önüne dik sonsuz düzlemlerde, anı öne, anı genliğe ve anı faza sahip olduğu özel bir Maxwell denklemleri çözümüdür.

Detaylı

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir Soru 1: Şekil-1 de görülen düzlem gerilme hali için: a) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir eden gerilme bileşenlerini, gerilme dönüşüm denklemlerini kullanarak

Detaylı

MUKAVEMET FATİH ALİBEYOĞLU

MUKAVEMET FATİH ALİBEYOĞLU MUKAVEMET FATİH ALİBEYOĞLU Rijit Cisimler Mekaniği Statik Dinamik Şekil Değiştiren Cisimler Mekaniği (MUKAVEMET) Akışkanlar Mekaniği STATİK: Dış kuvvetlere maruz kalmasına rağmen durağan halde, yani dengede

Detaylı

GEOMETRİ SORU BANKASI KİTABI

GEOMETRİ SORU BANKASI KİTABI LİSE ÖĞRENCİLERİNİN ÜNİVERSİTE SINAVLARINA HAZIRLANMALARI İÇİN GEOMETRİ SORU BANKASI KİTABI HAZIRLAYAN Erol GEDİKLİ Matematik Öğretmeni SUNUŞ Sevgili öğrenciler! Bu kitap; hazırlandığınız üniversite sınavlarında,

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 3 Laminanın Mikromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 3 Laminanın Mikromekanik

Detaylı

Torsion(Moment along the longitudinal axis)

Torsion(Moment along the longitudinal axis) Torsion(Moment along the longitudinal axis) In this section we will be studying what happens to shafts under torsional effects. We will limit ourselves with elements having circular cross sections. How

Detaylı

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER MUKAEMET I ÇÖZÜMÜ ÖRNEKER ders notu Yard. Doç. Dr. Erdem DAMCI Şubat 15 Mukavemet I - Çözümlü Örnekler / 7 Örnek 1. Üzerinde yalnızca yayılı yük bulunan ve açıklığı olan bir basit kirişe ait eğilme momenti

Detaylı

YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI YÜZÜNCÜ YIL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Yrd. Doç. Dr. Barış Erdil YAPI MÜHENDİSLİĞİ NEDİR? STRUCTURAL ENGINEERING IS

Detaylı

ĠÇ BASINÇ ETKĠSĠNDEKĠ ĠNCE CĠDARLI SĠLĠNDĠRDE DENEYSEL GERĠLME ANALĠZĠ DENEYĠ

ĠÇ BASINÇ ETKĠSĠNDEKĠ ĠNCE CĠDARLI SĠLĠNDĠRDE DENEYSEL GERĠLME ANALĠZĠ DENEYĠ MAK-AB06 ĠÇ BASINÇ TKĠSĠNDKĠ ĠNC CĠDARI SĠĠNDĠRD DNYS GRĠM ANAĠZĠ DNYĠ. DNYĠN AMACI Mukavemet derslerinde iç basınç etkisinde bulunan ince cidarlı silindirik basınç kaplarında oluşan gerilme ve şekil değişimleri

Detaylı

UYGULAMALI ELASTİSİTE TEORİSİ

UYGULAMALI ELASTİSİTE TEORİSİ KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ UYGULAMALI ELASTİSİTE TEORİSİ Prof.Dr. Paşa YAYLA 2010 ÖNSÖZ Bu kitabın amacı öğrencilere elastisite teorisi ile ilgili teori ve formülasyonu

Detaylı

A Y I K BOYA SOBA SOBA =? RORO MAYO MAS A A YÖS / TÖBT

A Y I K BOYA SOBA SOBA =? RORO MAYO MAS A A YÖS / TÖBT 00 - YÖS / TÖBT. ve. sorularda, I. gruptaki sözcüklerin harfleri birer rakamla gösterilerek II. gruptaki sayılar elde edilmiştir. Soru işaretiyle belirtilen sözcüğün hangi sayıyla gösterildiğini bulunuz.

Detaylı

Kaya Numunelerinin Dinamik Yükler Altında Mekanik Davranışının İncelenmesi

Kaya Numunelerinin Dinamik Yükler Altında Mekanik Davranışının İncelenmesi Süleyman Demirel Üniveritei, Fen Bilimleri Entitüü Dergii, 6-( ), 96- Kaya Numunelerinin Dinamik Yükler Altında Mekanik Davranışının İncelenmei Hüeyin YAVUZ *, Kenan TÜFEKÇİ, Ramazan KAYACAN, Halim CEVİZCİ

Detaylı

6. Sistemin toplam potansiyeli, rijitlik matrisi ve kurulması

6. Sistemin toplam potansiyeli, rijitlik matrisi ve kurulması 6 Sistemin toplam potansiyeli, rijitlik matrisi ve kurulması 6 Sistemin noktalarında süreklilik koşulu : Her elemanın düğüm noktası aynı zamanda sistemin de düğüm noktası olduğundan, sistemin noktaları

Detaylı

MM103 E COMPUTER AIDED ENGINEERING DRAWING I

MM103 E COMPUTER AIDED ENGINEERING DRAWING I MM103 E COMPUTER AIDED ENGINEERING DRAWING I ORTHOGRAPHIC (MULTIVIEW) PROJECTION (EŞLENİK DİK İZDÜŞÜM) Weeks: 3-6 ORTHOGRAPHIC (MULTIVIEW) PROJECTION (EŞLENİK DİK İZDÜŞÜM) Projection: A view of an object

Detaylı

ÇELİK YAPILARDA ELASTİK VE PLASTİK YÖNTEM ÇÖZÜMLERİ VE BİRLEŞİMLER

ÇELİK YAPILARDA ELASTİK VE PLASTİK YÖNTEM ÇÖZÜMLERİ VE BİRLEŞİMLER Omangazi Üniveritei Müh.Mim.Fak.Dergii C.XVII, S.1, 2003 Eng.&Arch.Fac.Omangazi Univerit, Vol.XVII, o: 1, 2003 ÇELİK YAPILARDA ELASTİK VE PLASTİK YÖTEM ÇÖZÜMLERİ VE BİRLEŞİMLER Selim ŞEGEL 1, evzat KIRAÇ

Detaylı

Şekil D.1. şekil değiştirme bileşenlerinin bilindiği kabul edilsin.

Şekil D.1. şekil değiştirme bileşenlerinin bilindiği kabul edilsin. EK D DENEYSEL GERİLME ANALİZİ D. DENEYSEL GERİLME ANALİZİ Elastik bir cisim, en genel halde bir kuvvet sistein ve bağ kuvvetlerinin etkisinde dengede olsun. Cisimde genelde noktadan noktaa değişen bir

Detaylı

25. SEM2015 programı kullanımı

25. SEM2015 programı kullanımı 25. SEM2015 programı kullanımı Basit Kuvvet metodu kullanılarak yazılmış, öğretim amaçlı, basit bir sonlu elemanlar statik analiz programdır. Program kısaca tanıtılacak, sonraki bölümlerde bu program ile

Detaylı

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI.

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI. WEEK 11 CME323 NUMERIC ANALYSIS Lect. Yasin ORTAKCI yasinortakci@karabuk.edu.tr 2 INTERPOLATION Introduction A census of the population of the United States is taken every 10 years. The following table

Detaylı

TAK TA I K M VE V İŞ BAĞ BA LAMA

TAK TA I K M VE V İŞ BAĞ BA LAMA TAKIM VE İŞ BAĞLAMA DÜZENLERİ MAK 4941 DERS SUNUMU 7 30.10.2017 1 Bu sunumun hazırlanmasında ulusal ve uluslararası çeşitli yayınlardan faydalanılmıştır 2 1 TORNALAMADA KESME KUVVETLERİNİN İŞ PARÇASINA

Detaylı

Yrd.Doç.Dr. Hüseyin YİĞİTER

Yrd.Doç.Dr. Hüseyin YİĞİTER Dokuz Eylül Üniversitesi İnşaat Mühendisliği Bölümü İNŞ224 YAPI MALZEMESİ II BETONDA ŞEKİL DEĞİŞİMLERİ Yrd.Doç.Dr. Hüseyin YİĞİTER http://kisi.deu.edu.tr/huseyin.yigiter BETONUN DİĞER ÖZELLİKLERİ BETONUN

Detaylı

Tabakalı Kompozit Plakların Sonlu Farklar Yöntemi ile Statik Analizi Static Analysis of Laminated Composite Plates by Finite Difference Method

Tabakalı Kompozit Plakların Sonlu Farklar Yöntemi ile Statik Analizi Static Analysis of Laminated Composite Plates by Finite Difference Method Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Cilt 17, Sayı 1, 2011, Sayfa 51-62 Tabakalı Kompozit Plakların Sonlu Farklar Yöntemi ile Statik Analizi Static Analysis of Laminated Composite Plates

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

STATICS. Atalet Momentleri (Moments. of Inertia) VECTOR MECHANICS FOR ENGINEERS: Yapı. özellikle de kesit alanının n 2. momenti veya atalet

STATICS. Atalet Momentleri (Moments. of Inertia) VECTOR MECHANICS FOR ENGINEERS: Yapı. özellikle de kesit alanının n 2. momenti veya atalet CHAPTER 9 Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P Beer, E Russell Johnston, Jr & RC HIBBELER in STATICs kitaplarından düzenlenmi zenlenmiştir tir 10 HAFTA Düzenleen zenleen::

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ Ali DOĞAN TABAKALI KOMPOZİT PLAKLARIN VE SİLİNDİRİK SIĞ KABUKLARIN SERBEST TİTREŞİM ANALİZİ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI ADANA, 9 ÇUKUROVA

Detaylı

Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi

Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi Rasim Temür İstanbul Üniversitesi İnşaat Mühendisliği Anabilim Dalı Sunum Planı Giriş Rijit Döşeme

Detaylı

KALIN CİDARLI SİLİNDİR

KALIN CİDARLI SİLİNDİR - 1 - YILDIZ TEKNİK ÜNİVESİTESİ MAKİNA FAKÜLTESİ MAKİNA MÜENDİSLİĞİ BÖLÜMÜ MEKANİK ANABİLİM DALI 006-007 ÖĞETİM YILI BAA YAIYILI LABOATUVA FÖYÜ KALIN CİDALI SİLİNDİ Deneyi Yapan Öğrencinin: Adı ve Soyadı

Detaylı

ELASTİK ZEMİNE OTURAN PLAKLAR İÇİN ETKİLİ ZEMİN DERİNLİĞİ

ELASTİK ZEMİNE OTURAN PLAKLAR İÇİN ETKİLİ ZEMİN DERİNLİĞİ rr ELASTİK ZEMİNE OTURAN PLAKLAR İÇİN ETKİLİ ZEMİN DERİNLİĞİ Korhan ÖZGAN ve Aye T. DALOĞLU Karadeni Teknik Üniv., İnşaat Müh. Böl., Trabon ÖZET Bu çalışmanın amacı plağın yüküne, boyutlarına ve eminin

Detaylı

YAPI SĠSTEMLERĠNDE SONLU ELEMANLAR YÖNTEMĠ

YAPI SĠSTEMLERĠNDE SONLU ELEMANLAR YÖNTEMĠ YAPI SĠSTEMLERĠNDE SONLU ELEMANLAR YÖNTEMĠ Prof.Dr. Metin AYDOĞAN Ġ.T.Ü.ĠnĢaat Fakültesi, ĠnĢaat Müh. Bölümü Betonarme Yapılar Bilim Dalı Tel-Faks:0212-285 3835 E-posta: aydoganm@itu.edu.tr aydogan1951@gmail.com

Detaylı

İleri Mukavemet (MFGE 418) Ders Detayları

İleri Mukavemet (MFGE 418) Ders Detayları İleri Mukavemet (MFGE 418) Ders Detayları Ders Adı İleri Mukavemet Ders Kodu MFGE 418 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Seçmeli 3 0 0 3 5 Ön Koşul Ders(ler)i MFGE 212 Katı Mekaniği

Detaylı

SEM2015 programı kullanımı

SEM2015 programı kullanımı SEM2015 programı kullanımı Basit Kuvvet metodu kullanılarak yazılmış, öğretim amaçlı, basit bir sonlu elemanlar statik analiz programdır. Çözebileceği sistemler: Düzlem/uzay kafes: Evet Düzlem/uzay çerçeve:

Detaylı

Mekanik. Mühendislik Matematik

Mekanik. Mühendislik Matematik Mekanik Kuvvetlerin etkisi altında cisimlerin denge ve hareket şartlarını anlatan ve inceleyen bir bilim dalıdır. Amacı fiziksel olayları açıklamak, önceden tahmin etmek ve böylece mühendislik uygulamalarına

Detaylı

SONLU FARKLAR GENEL DENKLEMLER

SONLU FARKLAR GENEL DENKLEMLER SONLU FARKLAR GENEL DENKLEMLER Bir elastik ortamın gerilme probleminin Airy gerilme fonksiyonu ile formüle edilebilen halini göz önüne alalım. Problem matematiksel olarak bölgede biharmonik denklemi sağlayan

Detaylı

İTÜ LİSANSÜSTÜ DERS KATALOG FORMU (GRADUATE COURSE CATALOGUE FORM)

İTÜ LİSANSÜSTÜ DERS KATALOG FORMU (GRADUATE COURSE CATALOGUE FORM) İTÜ LİSANSÜSTÜ DERS KATALOG FORMU (GRADUATE COURSE CATALOGUE FORM) Dersin Adı Kompozit Malzemelerin Mekaniği Course Name Mechanics of Composite Materials Kodu (Code) MAK516 Bölüm / Program (Department/Program)

Detaylı

MUKAVEMET TEMEL İLKELER

MUKAVEMET TEMEL İLKELER MUKAVEMET TEMEL İLKELER Temel İlkeler Mukavemet, yük etkisi altındaki cisimlerin gerilme ve şekil değiştirme durumlarının, iç davranışlarının incelendiği uygulamalı mekaniğin bir dalıdır. Buradaki cisim

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

Mohr Dairesi Düzlem Gerilme

Mohr Dairesi Düzlem Gerilme Mohr Dairesi Düzlem Gerilme Bu bölümde düzlem gerilme dönüşüm denklemlerinin grafiksel bir yöntem ile nasıl uygulanabildiğini göstereceğiz. Böylece dönüşüm denklemlerinin kullanılması daha kolay olacak.

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEKİLLİK İÇEREN REISSNER PLAKLARININ SONLU ELEMAN ÇÖZÜMÜNDE GEÇİŞ ELEMANLARI KULLANILARAK AĞ SIKLAŞTIRMASI YÜKSEK LİSANS TEZİ İnş. Müh. Tuğrul ÇELİK

Detaylı

Çoklu Kordinat Sistemi

Çoklu Kordinat Sistemi Çoklu Kordinat Sistemi Uçak pistte durduğu zaman burnunun kuleye göre kordinatı: (50, 5, 0), buna karşın uçağın kordinatlarına göre pozisyonu ise:(0,0,0). Benzer bir biçimde, kulenin tabanı kule kordinat

Detaylı

SONLU ELEMANLAR YÖNTEMİ (SAP2000 UYGULAMASI) I. Genel Kavramlar

SONLU ELEMANLAR YÖNTEMİ (SAP2000 UYGULAMASI) I. Genel Kavramlar Deprem ve Yapı Bilimleri GEBZE TEMSİLCİLİĞİ SONLU ELEMANLAR YÖNTEMİ (SAP2000 UYGULAMASI) I. Genel Kavramlar Dr. Yasin Fahjan fahjan@gyte.edu.tr http://www.gyte.edu.tr/deprem/ SONLU ELEMANLAR YÖNTEMİ Sonlu

Detaylı

R 1Y kn R 1X R 1Z R 4Y R 3Y 4 R 4X R 3Z R 3X R 4Z. -90 kn. 80 kn 80 kn R 1Y =10 R 1X =-10 R 4Y =10 R 1Z =0 R 3Y =70 4 R 3X =-70 R 4X =0

R 1Y kn R 1X R 1Z R 4Y R 3Y 4 R 4X R 3Z R 3X R 4Z. -90 kn. 80 kn 80 kn R 1Y =10 R 1X =-10 R 4Y =10 R 1Z =0 R 3Y =70 4 R 3X =-70 R 4X =0 27. Uzay kafes örnek çözümleri Örnek 27.: Şekil 27. de verilen uzay kafes sistem çelik borulardan imal edilecektir. a noktasındaki dış yüklerden oluşan eleman kuvvetleri, reaksiyonlar, gerilmeler ve düğüm

Detaylı

BURKULMA DENEYİ DENEY FÖYÜ

BURKULMA DENEYİ DENEY FÖYÜ T.C. ONDOKUZ MYIS ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ MKİN MÜHENDİSLİĞİ BÖLÜMÜ BURKULM DENEYİ DENEY FÖYÜ HZIRLYNLR Prof.Dr. Erdem KOÇ Yrd.Doç.Dr. İbrahim KELEŞ EKİM 1 SMSUN BURKULM DENEYİ 1. DENEYİN MCI

Detaylı

makale SONUÇ Şekil 8. Deneylerde Kullanılan Mermiler Şekil 9. Farklı Tabaka Sayılarındaki Kompozit Levhalarda Yüksek Hızlı Darbe Sonucu Oluşan Hasar

makale SONUÇ Şekil 8. Deneylerde Kullanılan Mermiler Şekil 9. Farklı Tabaka Sayılarındaki Kompozit Levhalarda Yüksek Hızlı Darbe Sonucu Oluşan Hasar makale SONUÇ Şekil 8. Deneylerde Kullanılan Mermiler Yüksek hızlı darbede özellikle balistik limit üzerindeki hızlarda kompozit malzemede oluşan hasar delinme, fiber kopması ve delaminasyon oluşumu şeklindedir.

Detaylı

MUKAVEMET SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU

MUKAVEMET SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU MUKAVEMET MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU Mukavemet Hesabı / 80 1) Elemana etkiyen dış kuvvet ve momentlerin, bunların oluşturduğu zorlanmaların cinsinin (çekme-basma, kesme, eğilme,

Detaylı

Örnek 1 (Virtüel iş çözümü için; Bakınız : Ders Notu Sayfa 23 - Örnek 4)

Örnek 1 (Virtüel iş çözümü için; Bakınız : Ders Notu Sayfa 23 - Örnek 4) Örnek 1 (Virtüel iş çözümü için; Bakınız : Ders Notu Sayfa 23 - Örnek 4) Şekil 1.1. İzostatik sistem EA GA 0, EI = 2.10 4 knm 2, E = 2.10 8, t =10-5 1/, h =60cm (taşıyıcı eleman yüksekliği, her yerde)

Detaylı

PLAKLI BİR DAMAR İLE NITINOL STENT ETKİLEŞİMİN SONLU ELEMANLAR YÖNTEMİYLE İNCELENMESİ

PLAKLI BİR DAMAR İLE NITINOL STENT ETKİLEŞİMİN SONLU ELEMANLAR YÖNTEMİYLE İNCELENMESİ PLAKLI BİR DAMAR İLE NITINOL STENT ETKİLEŞİMİN SONLU ELEMANLAR YÖNTEMİYLE İNCELENMESİ Recep GÜNEŞ *1, Ömer ÇAM 2 ve M. Kemal APALAK 1 1 Erciye Üniveritei, Makina Mühendiliği Bölümü, 38039 Kayeri, TÜRKİYE

Detaylı

DÖRTGEN DELİKLİ KOMPOZİT LEVHALARDA ELASTO- PLASTİK GERİLME ANALİZİ

DÖRTGEN DELİKLİ KOMPOZİT LEVHALARDA ELASTO- PLASTİK GERİLME ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K Bİ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 000 : 6 : 1 : 13-19

Detaylı

Düzlemine Dik Doğrultuda Yüklenmiş Tabakalı Kompozit Levhalarda Elasto-Plastik Gerilme Analizi

Düzlemine Dik Doğrultuda Yüklenmiş Tabakalı Kompozit Levhalarda Elasto-Plastik Gerilme Analizi Fırat Üniv. Mühendislik Bilimleri Dergisi Fırat Univ. Journal of Enginering 21 (1), 63-70, 2009 21(1), 63-70, 2009 Düzlemine Dik Doğrultuda Yüklenmiş Tabakalı Kompozit Levhalarda Elasto-Plastik Gerilme

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T E CHAPTER 2 Eksenel MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Yükleme Fatih Alibeyoğlu Eksenel Yükleme Bir önceki bölümde, uygulanan yükler neticesinde ortaya çıkan

Detaylı

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş Mukavemet-II Yrd.Doç.Dr. Akın Ataş Bölüm 7 Gerilme ve Şekil Değiştirme Dönüşümleri Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

108 0. How many sides has the polygon?

108 0. How many sides has the polygon? 1 The planet Neptune is 4 496 000 000 kilometres from the Sun. Write this distance in standard form. 44.96 x 10 8 km 4.496 x 10 8 km 4.496 x 10 9 km 4.496 x 10 10 km 0.4496 x 10-10 km 4 Solve the simultaneous

Detaylı

PARÇA MEKANİĞİ UYGULAMA 1 ŞEKİL FAKTÖRÜ TAYİNİ

PARÇA MEKANİĞİ UYGULAMA 1 ŞEKİL FAKTÖRÜ TAYİNİ PARÇA MEKANİĞİ UYGULAMA 1 ŞEKİL FAKTÖRÜ TAYİNİ TANIM VE AMAÇ: Bireyselliklerini koruyan birbirlerinden farklı özelliklere sahip çok sayıda parçadan (tane) oluşan sistemlere parçalı malzeme denilmektedir.

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 3 Malzemelerin esnekliği Gerilme Bir cisme uygulanan kuvvetin, kesit alanına bölümüdür. Kuvvetin yüzeye dik olması halindeki gerilme "normal gerilme" adını alır ve şeklinde

Detaylı

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3 KARMAŞIK SAYININ ORJİN ETRAFINDA DÖNDÜRÜLMESİ z = a + bi karmaşık sayısını, uzunluğunu değiştirmeden orijin etrafında pozitif yönde β kadar döndürülmesiyle elde edilen yeni karm aşık sa yı w olsun. İm

Detaylı

5. BASINÇ ÇUBUKLARI. Euler bağıntısıyla belirlidir. Bununla ilgili kritik burkulma gerilmesi:

5. BASINÇ ÇUBUKLARI. Euler bağıntısıyla belirlidir. Bununla ilgili kritik burkulma gerilmesi: 5. BASINÇ ÇUBUKLARI Kesit zoru olarak, eksenleri doğrultusunda basınç türü normal kuvvet taşıyan çubuklara basınç çubukları adı verilir. Bu tür çubuklarla, kafes sistemlerde ve yapı kolonlarında karşılaşılır.

Detaylı

PLANE LOADED COMPOSITE LAMINATE PLATES RESIDUAL STRESS ANALYSIS

PLANE LOADED COMPOSITE LAMINATE PLATES RESIDUAL STRESS ANALYSIS DÜZLEMSEL YÜKLÜ TABAKALI KOMPOZİT PLAKALARDA ARTIK GERİLME ANALİZİ * *Dicle Üniversitesi Şırnak Meslek Yüksek Okulu, 735 ŞIRNAK hadin@dicle.edu.tr ÖZET Bu çalışmada, üniform yayılı düzlemsel çekme yüklerine

Detaylı

R A. P=67 kn. w=100 kn/m. 3,0 m. İstenenler. 550 mm 70mm. 550 mm. 660 mm. 590mm. 590mm. 660 mm

R A. P=67 kn. w=100 kn/m. 3,0 m. İstenenler. 550 mm 70mm. 550 mm. 660 mm. 590mm. 590mm. 660 mm Soru-1 Kirişe etkien kataılarla artırılmış ükler şekilde verilmiştir. (Kiriş öz ağırlığı dahil edilmiştir). Kiriş keiti tüm boda abittir. Çit ıra donatı durumunda pa paı 70 mm, tek ıra donatı durumunda

Detaylı

7. STABİLİTE HESAPLARI

7. STABİLİTE HESAPLARI 7. STABİLİTE HESAPLARI Çatı sistemlerinde; Kafes kirişlerin (makasların) montaj aşamasında ve kafes düzlemine dik rüzgar ve deprem etkileri altında, mesnetlerini birleştiren eksen etrafında dönerek devrilmelerini

Detaylı

10.7442 g Na2HPO4.12H2O alınır, 500mL lik balonjojede hacim tamamlanır.

10.7442 g Na2HPO4.12H2O alınır, 500mL lik balonjojede hacim tamamlanır. 1-0,12 N 500 ml Na2HPO4 çözeltisi, Na2HPO4.12H2O kullanılarak nasıl hazırlanır? Bu çözeltiden alınan 1 ml lik bir kısım saf su ile 1000 ml ye seyreltiliyor. Son çözelti kaç Normaldir? Kaç ppm dir? % kaçlıktır?

Detaylı

"Farklı?-Evrensel Dünyada Kendi Kimliğimizi Oluşturma" İsimli Comenius Projesi Kapsamında Yapılan Anket Çalışma Sonuçları.

Farklı?-Evrensel Dünyada Kendi Kimliğimizi Oluşturma İsimli Comenius Projesi Kapsamında Yapılan Anket Çalışma Sonuçları. "Farklı?-Evrensel Dünyada Kendi Kimliğimizi Oluşturma" İsimli Comenius Projesi Kapsamında Yapılan Anket Çalışma Sonuçları. Survey Results Which Were Done in Comenius Project named'' Different? Building

Detaylı

ZEMİNDE GERİLMELER ve DAĞILIŞI

ZEMİNDE GERİLMELER ve DAĞILIŞI ZEMİNDE GERİLMELER ve DAĞILIŞI MALZEMELERİN GERİLME ALTINDA DAVRANIŞI Hooke Yasası (1675) σ ε= ε x = υε. E τzx E γ zx= G= G 2 1 z ( +υ) BOL 1 DOĞAL GERİLMELER Zeminler elastik olsalardı ν σx = σz 1 ν Bazı

Detaylı