Kafes Sistemler Turesses

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Kafes Sistemler Turesses"

Transkript

1 Kafes Sistemler Turesses Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Turesses are a carrier system formed by the bar elements. Each bar element connects to others at its end (joints).

2 Kafes Sistemler Birçok uygulama alanları vardır. Application areas of the Turesses Çatı sistemlerinde,(roof systems) Köprülerde, (Bridges) Kulelerde, (Towers) Ve benzeri bir çok yapılarda kullanılır.

3 Kafes Sistemler Başlıca Özellikler ve Kabuller: Main properties and assumptions for turesses Bağlantı noktalarında (düğümlerde) sadece tekil kuvvetler oluşur. Bağlantılardaki moment tepkisi ihmal edilir. (The single forces occur on the joint and reaction moments at the joint are neglected. ) Herbir çubuğa ekseni doğrultusunda kuvvet düşer. Yani tüm çubuklar çift kuvvet elemanıdır. (Each bar force is through the bar axis; i.e each bar is the twoforce member.) Çözümlerde çubuk ağırlıkları ihmal edilir. (The weight of the bars are neglected) Sisteme sadece bağlantı (düğüm) noktalarından dış kuvvetler etki eder. (The extarnal forces act on the joints only) Herbir bağlantı noktasına «düğüm noktası» ismi verilir.

4 Kafes Sistemler Tipleri: (Types of the Trusse) 1- Uzay Kafes Sistemleri: 3 Boyutlu sistemlerdir. 3 dimensions Trusses Systems 2- Düzlem Kafes Sistemleri: 2 boyutlu sistemlerdir. Plane Systems of Trusses (3 boyutlu olmasına rağmen, geometri, yükleme ve dış bağlantıların simetrikliliği söz konusu ise 2 boyutta incelenebilen sistemler de olabilir.) Ders kapsamında amacımız: Dış kuvvetler belli iken, herbir çubuğa veya belirli çubuklara düşen kuvvetleri hesaplamaktır. Ders kapsamında sadece düzlem kafes sistemler incelenecektir. Our Aims in this chapter are Calculating the bar forces, when the extarnal forces are known. We will examine the plane trusses systems only.

5 Kafes Sistemler Çubuk veya Düğümlere Düşen Kuvvetler ve Hesaplama Yöntemleri : Calculation Methods of Bar and joint forces: Kafes sistemlerde herbir düğüm noktasına ve çubuklara düşün kuvvetleri daha net görebilmek için yandaki örneği inceleyelim. Examine this example for understanding the forces at bars and joints 30kN Dikkat edilirse herbir düğüme, bağlı olduğu çubukların herbirinden bir kuvvet gelir. Çubuklara ise eşit şiddette-zıt yönde bağlı olduğu herbir düğümden bir tepki kuvveti gelir (etki-tepki). Tüm düğüm ve çubuk kuvvetleri sistemin iç kuvvetleri olarak isimlendirilir ve toplamları sıfırdır.. Bir çubuk kuvvetinin( örn: AC ) doğrultusu mutlaka çubuğa paraleldir. Püf noktası 5.1: Çubuk kuvvetinin yönü nasıl seçilmeli? Bu sorunun cevabı ise: İlk kez bu kuvvet yerleştirilirken çubukğa paralel olmak kaydıyla keyfi bir yönde (sağa-sola, yukarı aşağı) seçilir. Ancak aynı kuvvetin yönü 2., 3., yerleştirmede keyfi seçilemez. İlk yerleştirmeye bağlı olarak seçilir. Örneğin AC kuvveti ilk kez yerleştirilirken keyfi olarak A düğümüne sola doğru etki ettirlimiş. AC çubuğunun A ucuna mecburen sağa olmalıdır (etki-tepki). AC çubuğunun C ucuna sola doğru olmaldır ki çubuk dengede olsun. C düğümüne ise sağa olmalıdır (etki-tepki). Hesaplar sonucu kuvvetin işareti «-» çıkarsa seçtiğimiz yönün tersine yönde olduğunu gösterir. Ancak bu durumda kuvvetin yönü çevrilmez, hesaplarda «-» işareti ile birlikte kullanılır. Çevrilirse işareti de değiştirilmelidir.

6 Çubuk veya Düğümlere Düşen Kuvvetleri Hesaplama Yöntemleri: Calculation Methods of Bar and joint forces: Aynı örneğe devam edersek, Öncelikle bağlantı noktalarındaki kuvvetler tüm sistemin dengesinde hesaplanır: irstly, the reaction and external forces are calculated by the equilibrium of the whole system. x =0 E x + T. cos 30 o = 0 y =0 E y + T. sin 30 o = 0 M E =0 T = 0 T= 80kN E x = 69.28kN E y =10 kn bulunur. Püf noktası 5.2: Bazı problemlerde mesnet tepkilerini hesaplamaya gerek kalmadan, istenen çubuk kuvvetleri bulunabilir. Bu durumu görebilmek ve alışmak için bol soru çözülmesinde fayda vardır. Kesim yönteminde, mesnetlerin tümü kesimin bir tarafında kalıyorsa mesnet tepkilerini bulmaya gerek kalmaz.kesimin diğer tarafı incelenir ve çubuk kuvvetleri bulunabilir.

7 Çubuk veya Düğümlere Düşen Kuvvetleri Hesaplama Yöntemleri : Calculation Methods of Bar and joint forces: Şimdi iç kuvvet ismi verdiğimiz çubuk ve düğümlere düşen kuvvetleri hesaplayacağız. Now, we are going to calculate the forces at the bars and joints (i.e; internal forces by using two different methods) Bunun için 2 yöntem vardır: 1. Yöntem : Düğüm Yöntemi (The method of Joint) Çözüm: A düğümünden başlanabilir. Çünkü 2 bilinmeyen kuvvet vardır. We can start at the joint A. Because there are two unknown force. Bu yöntemde herbir düğümün dengesi yazılır ve x =0 AC + AB cos 60 o =0 kuvvetler hesaplanır. In this method, the forces can be calculated by the equlibrium of each joint Herbir düğüm için x =0, y =0 olmak üzere 2 denklem yazılabilir. Tüm kuvvetler aynı noktadan geçtiği için moment denklemi yazılamaz. Bu nedenle bir düğümde 2 bilinmeyen olması gerekir. Çözüm aşamasında düğüm sırası önemlidir. Örnekten bu durum daha iyi anlaşılacaktır. Totaly 2 different independent equations ( x =0, y =0 ) can be writen for each joints. The order of the joint calculation is important. y =0-30+ AB sin 60 o =0 AC = 17.32kN, AB = 34.64kN Şimdi B düğümüne geçilebilir. Çünkü B düğümünde 2 bilinmeyen kaldı x =0 BC cos 60 o + BD cos 60 o =0 y =0 BC. sin 60 o sin 60 o =0 BC = 34.64kN, BD = 34.64kN x =0 BC cos 60 o + AC CE CD cos 60 o =0 y =0 BC. sin 60 o + CD sin 60 o -20 = 0 CD = 57.74kN, CE = 63.51kN Benzer şekilde E veya D düğümlerinin dengesinden DE = 11.55kN bulunur.

8 2. Yöntem : Kesim Yönetimi (the method of section) II Bu yöntem mekaniğin önemli bir prensibi olan ayırma prensibine dayanır. This method rely on the separation principle. Ayrıma prensibi: dış kuvvetlerin etkisindeki bir sistem dengede ise, hayâli bazda ayırdığımız bir parçası da iç ve dış kuvvetlerin etkisiyle ayrı ayrı dengededir. İncelediğimiz örnekteki kafes sistem dış kuvvetlerin etkisi ile dengededir. O halde hayali olarak yaptığımız I-I kesiminden sonra sol veya sağ parçası da dengededir. Bu parçalara, kesilen bölgeden çubuk kuvvetleri dış kuvvet gibi etki ettirilir. Ve 3 denge denklemi ( x =0, y =0, M E =0 ) yardımıyla bu çubuk kuvvetleri bulunur. I - I kesiminde sağ tarafın SCD si ve dengesi II I - I kesiminde sol tarafın SCD si ve dengesi x =0 BC cos 60 o BD + AC =0 y =0 BC. sin 60 o -30 = 0 M C =0 BD. 5. sin60 o -30x5= 0 BC = BD = 34.64kN, işaretinin negatif «-» çıkması seçtiğimiz yönün tersine olduğunu gösterir. x =0 BC cos 60 o + BD AC cos 30 o = 0 y =0 BC. sin 60 o sin 30 o = 0 BC = BD = 34.64kN, M E =0 BD. 5. sin60 o + T BC. sin 60 o = 0 Kuvvet yönleri ilk defa keyfi seçilir. 3 denklemden 3 bilinmeyen bulanabileceği için genelde ilk kesimde 3 çubuk kesilir.. Diğer çubuk kuvvetlerini bulmak için II-II kesimi yapılabilir

9 Örnek Problem: Verilen kafes sistemindeki çubuk kuvvetlerini düğüm metodunu kullanarak bulunuz. (Calculate all bar forces at this system) S AB S AD.sin θ = S AB S AD. 3 5 S AD.cos θ 20 = S AD S DE S AD.sin θ + S DB Sin θ = S DE S 3 5 DB S AD.Cos θ +S DB Cos θ = S DB 4 5 5

10 Örnek: Şekildeki kafes sistemde GE, GC ve BC çubuklarındaki kuvvetleri bulunuz. ind the forces at the bars GE, GC and BC Çözüm: a a BC M 0 G 300(4) 400(3) (3) N (T) BC GE GE M 0 C 300(8) (3) 0 GE 800 N 800 N (C) GC 0 y GC N (T)

11 Örnek: C çubuğundaki kuvveti bulunuz. ind the force at the bar C Çözüm: Mesnet tepkileri bulunur. a a-a kesimi O o C sin 45 12m 3kN 8 m 4.75kN 4m 0 C M kN C a

12 Örnek: EB çubuğundaki kuvveti bulunuz. ind the orce at the Bar EB b b a a-a kesimi a b-b kesimi ED ED M 0 ED B 1000(4) 3000(2) 4000(4) sin 30 (4) 0 o 3000 N 3000 N (C) E E EB 0 E x y E o cos cos N 3000 N (C) 0 o sin sin N (T) o o EB

13 Alttaki Kafes Sistemlerde Soru işareti olan çubuklardaki kuvvetleri hesaplayınız. (Cevapları soruların yanında verilmiştir. Yöntem Serbesttir.) BC = P/

STATİK DENGE VE KUVVET ANALİZİ Static Equilibrium and Force Analysis

STATİK DENGE VE KUVVET ANALİZİ Static Equilibrium and Force Analysis STATİK DENGE VE KUVVET ANALİZİ Static Equilibrium and Force Analysis Bu bölümde durağan halde dengede olan rijit sistemlere etki eden kuvvetlerin hesaplanması görülecektir. In this chapter we learn the

Detaylı

Çerçeveler ve Basit Makinalar

Çerçeveler ve Basit Makinalar Çerçeveler ve Basit Makinalar Çeşitli elemanların birbirlerine bağlanması ile oluşan sistemlerdir. Kafes sistemlerden farklı olarak, elemanlar birbirlerine 2 den fazla noktadan bağlanabilir ve dış kuvvetler

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta) KAFES SİSTEMLER STATİK (4. Hafta) Düz eksenden oluşan çubukların birbiriyle birleştirilmesiyle elde edilen sistemlere kafes sistemler denir. Çubukların birleştiği noktalara düğüm noktaları adı verilir.

Detaylı

6.12 Örnekler PROBLEMLER

6.12 Örnekler PROBLEMLER 6.1 6. 6.3 6.4 6.5 6.6 6.7 Çok Parçalı Taşıyıcı Sistemler Kafes Sistemler Kafes Köprüler Kafes Çatılar Tam, Eksik ve Fazla Bağlı Kafes Sistemler Kafes Sistemler İçin Çözüm Yöntemleri Kafes Sistemlerde

Detaylı

BÖLÜM 4 YAPISAL ANALİZ (KAFESLER-ÇERÇEVELER-MAKİNALAR)

BÖLÜM 4 YAPISAL ANALİZ (KAFESLER-ÇERÇEVELER-MAKİNALAR) BÖLÜM 4 YAPISAL ANALİZ (KAESLER-ÇERÇEVELER-MAKİNALAR) 4.1 Kafesler: Basit Kafes: İnce çubukların uçlarından birleştirilerek luşturulan apıdır. Bileştirme genelde 1. Barak levhalarına pimler ve kanak vasıtası

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS erdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 285 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.1 7.2 Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.4 Örnekler Kendi Ağırlığını Taşıyan Kablolar (Zincir Eğrisi)

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVELER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

FLUID MECHANICS PRESSURE AND MOMENTUM FORCES A-PRESSURE FORCES. Example

FLUID MECHANICS PRESSURE AND MOMENTUM FORCES A-PRESSURE FORCES. Example A-PRESSURE FORCES FLUID MECHANICS PRESSURE AND MOMENTUM FORCES Consider a duct as shown in figure. First identify the control volume on which to conduct a force balance. The inner passage is filled with

Detaylı

YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla

Detaylı

Uzay Çatı Sistemlerinin ANSYS Paket Programı Kullanılarak Statik Analizi

Uzay Çatı Sistemlerinin ANSYS Paket Programı Kullanılarak Statik Analizi Fırat Üniv. Fen ve Müh. Bil. Der. Science and Eng. J of Fırat Univ. 18 (1), 105-112, 2006 18 (1), 105-112, 2006 Uzay Çatı Sistemlerinin ANSYS Paket Programı Kullanılarak Statik Analizi M. Yavuz SOLMAZ

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta) TAŞIYICI SİSTEMLER VE MESNET TEPKİLERİ STATİK (3. Hafta) Taşıyıcı Sistemler Bir yapıya etki eden çeşitli kuvvetleri güvenlik sınırları içinde taşıyan ve bu kuvvetleri zemine aktaran sistemlere taşıyıcı

Detaylı

FIRAT ÜNĐ. MÜHENDĐSLĐK FAK. ĐNŞAAT MÜH. BÖLÜMÜ 2009-2010 Güz ĐMÜ-413 Bilgisayar Destekli Boyutlandırma Arasınav (13 Kasım 2009) No: Adı Soyadı: Đmza:

FIRAT ÜNĐ. MÜHENDĐSLĐK FAK. ĐNŞAAT MÜH. BÖLÜMÜ 2009-2010 Güz ĐMÜ-413 Bilgisayar Destekli Boyutlandırma Arasınav (13 Kasım 2009) No: Adı Soyadı: Đmza: FIRAT ÜNĐ. MÜHENDĐSLĐK FAK. ĐNŞAAT MÜH. BÖLÜMÜ 29-21 Güz ĐMÜ-413 Bilgisayar Destekli Boyutlandırma Arasınav (13 Kasım 29) No: Adı Soyadı: Đmza: Şekilde verilmiş olan düzlem kafes sistemin, a. (5 p.) Serbestlik

Detaylı

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 6.Düzlem ve Uzay kafes Sistemler Doç. Dr. NURHAYAT DEĞİRMENCİ Birbirlerine bağlı birden fazla parçadan yapılmış sistemlerin dengesi için dıs kuvvetlere ilaveten iç kuvvetler de düşünülmelidir.

Detaylı

Örnek 1 (Virtüel iş çözümü için; Bakınız : Ders Notu Sayfa 23 - Örnek 4)

Örnek 1 (Virtüel iş çözümü için; Bakınız : Ders Notu Sayfa 23 - Örnek 4) Örnek 1 (Virtüel iş çözümü için; Bakınız : Ders Notu Sayfa 23 - Örnek 4) Şekil 1.1. İzostatik sistem EA GA 0, EI = 2.10 4 knm 2, E = 2.10 8, t =10-5 1/, h =60cm (taşıyıcı eleman yüksekliği, her yerde)

Detaylı

ihmal edilmeyecektir.

ihmal edilmeyecektir. q h q q h h q q q y z L 2 x L 1 L 1 L 2 Kolon Perde y x L 1 L 1 L 1 = 6.0 m L 2 = 4.0 m h= 3.0 m q= 50 kn (deprem) tüm kirişler üzerinde 8 kn/m lik düzgün yayılı yük (ölü), tüm döşemeler üzerinde 3 kn/m

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. Des Notu: Hayi ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

Mesnetler A, B ve C noktalarõ şekildeki gibi Z doğrultusunda mesnetlenmiş (sabitlenmiş) tir.

Mesnetler A, B ve C noktalarõ şekildeki gibi Z doğrultusunda mesnetlenmiş (sabitlenmiş) tir. Problem M X-Y Düzleminde A Noktasında Dönebilen Düz Plak Beton E =3600 ksi, Poisson Oranõ= 0.2 Mevcut Serbestlikler UZ, RX, RY Mesnetler A, B ve C noktalarõ şekildeki gibi Z doğrultusunda mesnetlenmiş

Detaylı

Basit Kafes Sistemler

Basit Kafes Sistemler YAPISAL ANALİZ 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla kullanılan ahşap gergi elemanları

Detaylı

YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI YÜZÜNCÜ YIL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Yrd. Doç. Dr. Barış Erdil YAPI MÜHENDİSLİĞİ NEDİR? STRUCTURAL ENGINEERING IS

Detaylı

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz.

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz. ÇALIŞMA SORULARI Üniform yoğunluğa sahip plaka 270 N ağırlığındadır ve A noktasından küresel mafsal ile duvara bağlanmıştır. Ayrıca duvara C ve D noktasından bağlanmış halatlarla desteklenmektedir. Serbest

Detaylı

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 212 YAPI STATİĞİ I STABİLİTE STATİKÇE BELİRSİZLİK KİNEMATİK BELİRSİZLİK Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr

Detaylı

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method)

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Konular Düğüm Gerilimleri Yöntemi o Temel Kavramlar o Yönteme Giriş o Yöntemin Uygulanışı o Yöntemin Uygulanması o Örnekler

Detaylı

DÜZLEM KAFES SİSTEMLER. Copyright 2010 Pearson Education South Asia Pte Ltd

DÜZLEM KAFES SİSTEMLER. Copyright 2010 Pearson Education South Asia Pte Ltd Copyright 2010 Pearson Education South Asia Pte Ltd Aynı düzlem içinde birbirlerine uç noktalarından bağlanarak bir rijid yapı oluşturan çubuklar topluluğuna düzlem kafes sistemi denir. Bir kafes sistemi,

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

Girdi kuvvetleri ile makinaya değişik biçimlerde uygulanan dış kuvvetler kastedilmektedir (input forces). Çıktı kuvvetleri ise elde edilen kuvvetleri

Girdi kuvvetleri ile makinaya değişik biçimlerde uygulanan dış kuvvetler kastedilmektedir (input forces). Çıktı kuvvetleri ise elde edilen kuvvetleri ÇERÇEVELER Çerçeveler kafesler gibi genellikle sabit duran taşıyıcı sistemlerdir. Bir çerçeveyi kafesten ayıran en belirgin özellik, en az bir elemanının çok kuvvet elemanı (multi force member) oluşudur.

Detaylı

Düzlem Kafes Sistemlerin ANSYS Paket Programı ile Optimum Geometri Tasarımı

Düzlem Kafes Sistemlerin ANSYS Paket Programı ile Optimum Geometri Tasarımı Fırat Üniv. Fen ve Müh. Bil. Dergisi Science and Eng. J of Fırat Univ. 19 (2), 201-207, 2007 19 (2), 201-207, 2007 Düzlem Kafes Sistemlerin ANSYS Paket Programı ile Optimum Geometri Tasarımı M. Yavuz SOLMAZ

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

Problem B. Beton duvar (perde) Beton. E = 29500 ksi, Poisson oranı = 0.2. Yapılacaklar

Problem B. Beton duvar (perde) Beton. E = 29500 ksi, Poisson oranı = 0.2. Yapılacaklar Problem B Beton duvar (perde) Beton E = 29500 ksi, Poisson oranı = 0.2 Yapılacaklar Duvarı modellerken shell (kabuk) elemanları kullanınız. A Perdesindeki kesme kuvvetini, eksenel kuvveti ve momenti hesaplayınız.

Detaylı

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur?

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur? 3.1 Koordinat sistemleri 3.2 Kartezyen koordinatlar 3.3 Vektörler 3.4 Vektörlerin bileşenleri 3.5 Vektörlerin toplanması 3.6 Vektörlerin çıkarılması 37Bii 3.7 Birim vektör 3 VEKTÖRLER Pilot uçağın kokpit

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL NO: DENEY GRUP NO:

Detaylı

SONLU ELEMANLAR (FINITE ELEMENTS) YÖNTEMİ

SONLU ELEMANLAR (FINITE ELEMENTS) YÖNTEMİ SONLU ELEMANLAR (FINITE ELEMENTS) YÖNTEMİ Sonlu Elemanlar Yöntemi, çeşitli mühendislik problemlerine kabul edilebilir bir yaklaşımla çözüm arayan bir sayısal çözüm yöntemidir. Uniform yük ır Sabit sın

Detaylı

Yapı Sistemlerinde Elverişsiz Yüklemeler:

Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapılara etkiyen yükler ile ilgili çeşitli sınıflama tipleri vardır. Bu sınıflamalarda biri de yapı yükleri ve ilave yükler olarak yapılan sınıflamadır. Bu sınıflama;

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

PROJE ANALİZİNDE KULLANILAN TEKNİKLER Kubilay Kavak Mart-2012 A) TEMEL BİLGİLER Temel Tanımlar Proje Analizi: Bir yatırımın yaratacağı faydaları ve yol açacağı maliyetleri karşılaştırarak yatırım teklifinin

Detaylı

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI.

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI. WEEK 4 BLM33 NUMERIC ANALYSIS Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 NONLINEAR EQUATION SYSTEM Two or more degree polinomial

Detaylı

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır.

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. Dizi Antenler Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. 1. Dizi antenin geometrik şekli (lineer, dairesel, küresel..vs.) 2. Dizi elemanları arasındaki

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

B düğüm noktasında aşağıya doğru 1'' lik yer değiştirme nedeniyle oluşacak mesnet reaksiyonlarını hesaplayınız.

B düğüm noktasında aşağıya doğru 1'' lik yer değiştirme nedeniyle oluşacak mesnet reaksiyonlarını hesaplayınız. Problem G Mesnet Çökmeli Çerçeve Çelik E = 29000 ksi, Poisson oranı = 0.3 Temel mafsallı Tüm kiriş-kolon bağlantıları rijit Yapılacaklar B düğüm noktasında aşağıya doğru 1'' lik yer değiştirme nedeniyle

Detaylı

Sadece kabloda sıcaklığın 100º Fahrenheit düşmesine bağlı olarak oluşan mesnet reaksiyonlarını ve yer değiştirmeleri belirleyiniz.

Sadece kabloda sıcaklığın 100º Fahrenheit düşmesine bağlı olarak oluşan mesnet reaksiyonlarını ve yer değiştirmeleri belirleyiniz. Problem V Sıcaklık Yüklemesi Çelik E = 29000 ksi Poisson oranı = 0.3 Sıcaklık genleşme katsayısı = 0.0000065 (Fahrenheit) Kiriş-kolon bağlantıları rijit Kablo her iki ucundan mafsallı Yapılacaklar Sadece

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 3. TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) 1 PROBLEM 2.5 v 1 ve v 2

Detaylı

AÇI YÖNTEMİ Slope-deflection Method

AÇI YÖNTEMİ Slope-deflection Method SAKARYA ÜNİVERSİTESİ İNŞAAT ÜHENDİSLİĞİ BÖLÜÜ Department of Civil Engineering İN 303 YAPI STATIĞI II AÇI YÖNTEİ Slope-deflection ethod Y.DOÇ.DR. USTAA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

Sonlu Elemanlar Yöntemi ile Üzerinde Motor Bağlı Bir Çelik Kafes Kiriş Ayaklı Konsola Ait Düşey Kirişin Mukavemet Analizi

Sonlu Elemanlar Yöntemi ile Üzerinde Motor Bağlı Bir Çelik Kafes Kiriş Ayaklı Konsola Ait Düşey Kirişin Mukavemet Analizi Ulud. Üniv. Zir. Fak. Derg., (23) 17(2): 81-9 Sonlu Elemanlar Yöntemi ile Üzerinde Motor Bağlı Bir Çelik Kafes Kiriş Ayaklı Konsola Ait Düşey Kirişin Mukavemet Analizi Muharrem ZEYTİNOĞLU * ÖZET Kaldırma,

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

MAK4061 BİLGİSAYAR DESTEKLİ TASARIM

MAK4061 BİLGİSAYAR DESTEKLİ TASARIM MAK4061 BİLGİSAYAR DESTEKLİ TASARIM (Shell Mesh, Bearing Load,, Elastic Support, Tasarım Senaryosunda Link Value Kullanımı, Remote Load, Restraint/Reference Geometry) Shell Mesh ve Analiz: Kalınlığı az

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

KESME KUVVETİ MUKAVEMET

KESME KUVVETİ MUKAVEMET 1 MUKAVEMET KESME KUVVETİ Perçin hesabı nda üç tahkik vardı r. 1- perçinde kesme tahkiki 2- en ince levhada ezilme tahkiki 3- levhada gerilme tahkiki N = perçin sayı sı d = perçin çapı A = perçin kesit

Detaylı

ÇALIŞMA SORULARI 1) Yukarıdaki şekilde AB ve BC silindirik çubukları B noktasında birbirleriyle birleştirilmişlerdir, AB çubuğunun çapı 30 mm ve BC çubuğunun çapı ise 50 mm dir. Sisteme A ucunda 60 kn

Detaylı

2. DA DEVRELERİNİN ANALİZİ

2. DA DEVRELERİNİN ANALİZİ 2. DA DEVRELERİNİN ANALİZİ 1 Hatları birbirini kesmeyecek şekilde bir düzlem üzerine çizilebilen devrelere Planar Devre adı verilir. Hatlarında kesişme olan bazı devreler de (şekil-a) kesişmeleri yok edecek

Detaylı

A ve B düğüm noktalarında X yönündeki yer değiştirmeleri ve mesnet reaksiyonlarını bulunuz.

A ve B düğüm noktalarında X yönündeki yer değiştirmeleri ve mesnet reaksiyonlarını bulunuz. Problem D Eğimli Mesnetler Çelik E = 29000 ksi, Poisson oranı = 0.3 Tüm elemanların 10 feet uzunluğundadır. Yapılacaklar A ve B düğüm noktalarında X yönündeki yer değiştirmeleri ve mesnet reaksiyonlarını

Detaylı

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI tasarım BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI Nihat GEMALMAYAN, Hüseyin ĐNCEÇAM Gazi Üniversitesi, Makina Mühendisliği Bölümü GĐRĐŞ Đlk bisikletlerde fren sistemi

Detaylı

TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 KAFES KÖPRÜLER

TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 KAFES KÖPRÜLER TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 DR. MUSTAFA KUTANİS SLIDE 1 KAFES KÖPRÜLER DR. MUSTAFA KUTANİS SAÜ İNŞ.MÜH. BÖLÜMÜ

Detaylı

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 8. Konu TORK VE DENGE TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 8. Konu TORK VE DENGE TEST ÇÖZÜMLERİ 11. SINI SRU BANASI 1. ÜNİE: UVVE VE HAREE 8. onu R VE DENE ES ÇÖZÜMERİ 8 ork ve Denge est 1 in Çözümleri. 1 k x 1 k x 1 x 1 x 1. (+) ( ) x 1 k r k x x k x r x k k x noktasına göre tork alalım. oplam tork;

Detaylı

BASINÇ ÇUBUKLARI. Yapısal çelik elemanlarının, eğilme momenti olmaksızın sadece eksenel basınç kuvveti altında olduğu durumlar vardır.

BASINÇ ÇUBUKLARI. Yapısal çelik elemanlarının, eğilme momenti olmaksızın sadece eksenel basınç kuvveti altında olduğu durumlar vardır. BASINÇ ÇUBUKLARI BASINÇ ÇUBUKLARI Yapısal çelik elemanlarının, eğilme momenti olmaksızın sadece eksenel basınç kuvveti altında olduğu durumlar vardır. Kafes sistemlerdeki basınç elemanları, yapılardaki

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

STATİK (1. Hafta) Giriş TEMEL KAVRAMLAR

STATİK (1. Hafta) Giriş TEMEL KAVRAMLAR Giriş STATİK (1. Hafta) Mühendislik öğrencilerine genellikle ilk yıllarda verilen temel derslerin başında gelir. Sabit sistemler üzerindeki kuvvet ve momentleri inceleyen bir bilim dalıdır. Kendisinden

Detaylı

Tüketici rantı tüketicinin ödemeye razı olduğuyla gerçekten ödediği arasındaki farktır. İçgüdüsl olarak tüketicinin elinde kalan miktar.

Tüketici rantı tüketicinin ödemeye razı olduğuyla gerçekten ödediği arasındaki farktır. İçgüdüsl olarak tüketicinin elinde kalan miktar. Sloan Yönetim Okulu 15.010/15.011 Massachusetts Teknoloji Enstitüsü PROBLEM ÇÖZME NOTLARI #2 Devlet Müdahalesiyle Rant Analizi Cuma Eylül 17, 2004 BUGÜNKÜ PROBLEM ÇÖZMEIN ÖZETİ 1. Tüketici ve Üretici Rantının

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

SONLU ELEMANLAR YÖNTEMI ile (SAP2000 UYGULAMASI) 3D Frame Analysis. Reza SHIRZAD REZAEI

SONLU ELEMANLAR YÖNTEMI ile (SAP2000 UYGULAMASI) 3D Frame Analysis. Reza SHIRZAD REZAEI SONLU ELEMANLAR YÖNTEMI ile (SAP2000 UYGULAMASI) 3D Frame Analysis Reza SHIRZAD REZAEI SONLU ELEMANLAR YÖNTEMİ Sonlu Elemanlar (SE)Yöntemi, çesitli mühendislik problemlerine kabul edilebilir bir yaklasımla

Detaylı

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi 4. 4. Cismin ğırlığı Düzlemsel landa ğırlık erkezi - İntegrasyon Yöntemi Düzlemsel Eğride ğırlık erkezi - İntegrasyon Yöntemi 4.3 Bileşik Plak ve Teller 4.4 Pappus Guldinus Teoremleri 4.5 Üç Boyutlu Cisimlerde

Detaylı

İç direnç ve emk. Seri bağlı dirençler. BÖLÜM 28 Doğru Akım Devreleri. İç direnç ve emk. ve emk. Elektromotor kuvvet (emk) kaynakları.

İç direnç ve emk. Seri bağlı dirençler. BÖLÜM 28 Doğru Akım Devreleri. İç direnç ve emk. ve emk. Elektromotor kuvvet (emk) kaynakları. BÖLÜM 8 Doğru Akım Devreleri Elektromotor Kuvveti emk iç direnç Seri ve Paralel Bağlı Dirençler Eşdeğer direnç Kirchhoff Kuralları Düğüm kuralı İlmek kuralı Devreleri Kondansatörün yüklenmesi Kondansatörün

Detaylı

PARALEL KUVVETLERİN DENGESİ

PARALEL KUVVETLERİN DENGESİ ARALEL KUVVETLERİN DENGESİ aralel kuvvetler eğer aynı yönlü ise bileşke kuvvet iki kuvvetin arasında ve büyük kuvvete daha yakın olur. Bileşke kuvvetin bulunduğu noktadan cisim asılacak olursak cisim dengede

Detaylı

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 4 BÖLÜM IV. Düzlem Kafesler. En çok kullanılan köprü kafesleri. En çok kullanılan çatı kafesleri

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 4 BÖLÜM IV. Düzlem Kafesler. En çok kullanılan köprü kafesleri. En çok kullanılan çatı kafesleri İ.T.Ü. Makina akültesi ÖLÜM IV üzlem Kafesler En çok kullanılan köprü kafesleri En çok kullanılan çatı kafesleri İ.T.Ü. Makina akültesi Mühendislik olalarında genel olarak birden çok katı cisim birbirine

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

DÜZLEM ÇUBUK ELEMAN RİJİTLİK MATRİSİNİN DENEYSEL OLARAK BELİRLENMESİ

DÜZLEM ÇUBUK ELEMAN RİJİTLİK MATRİSİNİN DENEYSEL OLARAK BELİRLENMESİ XIX. ULUSAL MEKANİK KONGRESİ 24-28 Ağustos 2015, Karadeniz Teknik Üniversitesi, Trabzon DÜZLEM ÇUBUK ELEMAN RİJİTLİK MATRİSİNİN DENEYSEL OLARAK BELİRLENMESİ Orhan Yapıcı 1, Emre Karaman 2, Sezer Öztürk

Detaylı

Yapõlacaklar : DL + LL + PRESTRESS yükleme kombinasyonu için moment diagramõnõ belirleyiniz.

Yapõlacaklar : DL + LL + PRESTRESS yükleme kombinasyonu için moment diagramõnõ belirleyiniz. 1 Problem I Öngerilmeli Beton Kiriş Beton : E =4400 ksi, Poisson Oranõ = 0.2 f c = 6 ksi Ön germe kuvveti = 200 kips Yapõlacaklar : DL + LL + PRESTRESS yükleme kombinasyonu için moment diagramõnõ belirleyiniz.

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ tasarım BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ Nihat GEMALMAYAN Y. Doç. Dr., Gazi Üniversitesi, Makina Mühendisliği Bölümü Hüseyin ĐNCEÇAM Gazi Üniversitesi,

Detaylı

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR.

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR. UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ LİNEER CEBİR DERSİ 0 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜÜNLEME SORULARI ÖĞR.GÖR.İNAN ÜNAL www.inanunal.com UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ MAKİNE MÜHENDİSLİĞİ

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MOMENT DAĞITMA HARDY CROSS YÖNTEMİ

MOMENT DAĞITMA HARDY CROSS YÖNTEMİ SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSİĞİ BÖÜMÜ Department of Civil Engineering İNM 208 YAPI STATIĞI II MOMENT DAĞITMA HARDY CROSS YÖNTEMİ Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 40 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI TEORİ Bir noktada oluşan gerinim ve gerilme değerlerini

Detaylı

Güçlendirme Alternatiflerinin Doğrusal Olmayan Analitik Yöntemlerle İrdelenmesi

Güçlendirme Alternatiflerinin Doğrusal Olmayan Analitik Yöntemlerle İrdelenmesi YDGA2005 - Yığma Yapıların Deprem Güvenliğinin Arttırılması Çalıştayı, 17 Şubat 2005, Orta Doğu Teknik Üniversitesi, Ankara. Güçlendirme Alternatiflerinin Doğrusal Olmayan Analitik Yöntemlerle İrdelenmesi

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

Problem F. Hidrostatik Basınca Maruz Duvar. Beton. E = 3600 ksi, Poisson oranı = 0.2. Sınır Şartları

Problem F. Hidrostatik Basınca Maruz Duvar. Beton. E = 3600 ksi, Poisson oranı = 0.2. Sınır Şartları Problem F Hidrostatik Basınca Maruz Duvar Beton E = 3600 ksi, Poisson oranı = 0.2 Sınır Şartları 1. Durum: Duvar sadece altından tutulmuş 2. Durum: Duvar altından ve kenarlarından tutulmuş Yapılacaklar

Detaylı

İ İ ö ö ğ ğ ö İ İ ğç İ İç ğç İ ö İ ğ ö ğ ö İ Ş ğç İ ğ ğ Ö Ç ğ İ ö ö ö ö Ö ç ç ğ ğ ç ç ö Ç ğ ğ ö Ç Ç ç ö ğ ç ö ç ç ğ Ö ç ç ğ ç ç ğ ğ ö ç ğ Ş ç ç ğ Ş ç ğ ö ç ö Ş ğ ğ ğ ğ ğ Ş Ş Ö ç ç Ç ç İ İİ ğ ö ç İ ö ö

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir.

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir. KANUNLAR : Elektrik ve elektronikle ilgili konuları daha iyi anlayabilmek için, biraz hesap biraz da kanun bilgisine ihtiyaç vardır. Tabii bunlar o kadar zor hasaplar değil, yalnızca Aritmetik düzeyinde

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Problemlerin İçerisinde Sõkça Geçen Pencere Alõntõlarõnõn Çevirisi

Problemlerin İçerisinde Sõkça Geçen Pencere Alõntõlarõnõn Çevirisi Problemlerin İçerisinde Sõkça Geçen Pencere Alõntõlarõnõn Çevirisi 1Divide Selected Frames Seçilen Çerçeveleri Böl Divide 2 into Frames 2 Frames Çerçeveye Böl Last/First ratio Break at intersections with

Detaylı

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir.

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir. İşaretli Tamsayı Gösterimi 1. İşaretli Büyüklük Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir. Örnek

Detaylı

2. Sonsuz uzunluk kabul edilebilmesi için çubuklar ne kadar uzunlukta olmalıdır? Resim 1

2. Sonsuz uzunluk kabul edilebilmesi için çubuklar ne kadar uzunlukta olmalıdır? Resim 1 Örnek 3-9*: 5 mm çapında çok uzun bir çubuğun bir ucu T b =100 C sabit sıcaklıkta tutulmaktadır. Çubuğun yüzeyi T =25 C de ve ısı transfer katsayısı (h) 100 W/m 2 K olan çevresindeki hava (air) ile temastadır.

Detaylı

EĞİK ATIŞ Ankara 2008

EĞİK ATIŞ Ankara 2008 EĞİK ATIŞ Ankara 8 EĞİK ATIŞ: AMAÇ: 1. Topun ilk hızını belirlemek. Ölçülen menzille hesaplanan menzili karşılaştırmak 3. Bir düzlem üzerinde uygulanan eğik atışda açıyla menzil ve tepenoktası arasındaki

Detaylı

Aks yük hesaplamaları. Aks yükleri ve yük hesaplamaları ile ilgili genel bilgi

Aks yük hesaplamaları. Aks yükleri ve yük hesaplamaları ile ilgili genel bilgi Aks yükleri ve yük hesaplamaları ile ilgili genel bilgi Kamyonları kullanan tüm taşıma tipleri kamyon şasisinin belli bir üstyapı tarafından desteklenmesini gerektirir. Aks yükü hesaplamalarının amacı

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

BÖLÜM 12-15 HARMONİK OSİLATÖR

BÖLÜM 12-15 HARMONİK OSİLATÖR BÖLÜM 12-15 HARMONİK OSİLATÖR Hemen hemen her sistem, dengeye yaklaşırken bir harmonik osilatör gibi davranabilir. Kuantum mekaniğinde sadece sayılı bir kaç problem kesin olarak çözülebilmektedir. Örnekler

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 6 Yapısal Analiz Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 6. Yapısal Analiz Şekilde görüldüğü

Detaylı

Bilgisayar Grafikleri

Bilgisayar Grafikleri Bilgisayar Grafikleri Konular: Cismin Tanımlanması Bilindiği gibi iki boyutta noktalar x ve y olmak üzere iki boyutun koordinatları şeklinde ifade edilirler. Üç boyutta da üçüncü boyut olan z ekseni üçücü

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

KAYMALI YATAKLAR. Kaymalı Yataklar. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik ve Mimarlık Fakültesi Makine Mühendisliği Bölümü

KAYMALI YATAKLAR. Kaymalı Yataklar. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik ve Mimarlık Fakültesi Makine Mühendisliği Bölümü KAYMALI YATAKLAR Prof. Dr. İrfan KAYMAZ Mühendislik ve Mimarlık Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Eksenel yataklama türleri Yatak malzemeleri Hidrodinamik

Detaylı

Öngerilmeli Beton Sürekli Kirişlerin Bilgisayarla Hesabı

Öngerilmeli Beton Sürekli Kirişlerin Bilgisayarla Hesabı Öngerilmeli Beton Sürekli Kirişlerin Bilgisayarla Hesabı ÖZET Bu çalışmada öngerilmeli beton sürekli kirişlerin tasarımını Yük-Dengeleme yöntemiyle yapan bir bilgisayar programı geliştirilmiştir. Program

Detaylı

MATRİS DEPLASMAN YÖNTEMİ

MATRİS DEPLASMAN YÖNTEMİ SAARYA ÜNİVERSİTESİ M İNŞAAT MÜHENİSİĞİ BÖÜMÜ epartment of Civil Engineering İNM YAI STATIĞI II MATRİS EASMAN YÖNTEMİ Y.OÇ.R. MUSTAA UTANİS tanis@saarya.ed.tr Saarya Üniversitesi, İnşaat Mühendisliği Bölümü

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı