! " # $ % & '( ) *' ' +, $ $ - $ (. $- $ ( / $ % / $ 0 -( 1( $ (2- -(

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "! " # $ % & '( ) *' ' +, $ $ - $ (. $- $ ( / $ % / $ 0 -( 1( $ (2- -("

Transkript

1 !"#$ %& '()*' ' +. $-$( /$% /$0 -(1($(2--(

2 3 #*'- # 4(5 (6" #7##0 7 $$(5 (6",7 - #, $$ -$(2,-0 # # *'6' (6" 6(50 #" #06 $8# 0 #0 7" 976 0#$ 6 $$" 76 $:;)8) (6",-07#$87 07" $8#< 6 $ < 6))70"

3 ,-$#',-$#' j register numarasını gösterir (1 j < k). (k register sayısıdır) T[i], i.tape alanının içeriini gösterir. R j, j.register içeriini gösterir. s p programdaki instruction sıra numarasını gösterir. c doal sayıdır. bir sonra çalıtırılacak instruction adresini saklar. Bütün instruction lar aksi belirtilmedii sürece program sayacını bir artırır. Register 0 akümülator olarak kullanılır. Aritmetik ve lojik ilemlerde kullanılır. Makinenin çalıması bir halt instruction ile sonlandırılır.

4 Tanım: RATM M = (k, )eklinde bir ikiliyle ifade edilir. k > 0 olmak üzere register sayısını gösterir. = ( 1, 2,..., p,) olmak üzere sonlu sayıda instruction a sahip programı gösterir. Burada her i bir instruction ı gösterir. p son instruction dır ve halt olduu varsayılır. Program içinde baka halt instruction ları olabilir. Tanım: RATM için konfigürasyon k+2 tuple dır ve (, R 0, R 1,..., R k-1, T) eklinde ifade edilir. Burada N program counter ve 0 ile p arasındadır. Halted konfigürasyonu için sıfırdır. R j, j.register in imdiki deeridir. (0 j < k) T, tape içeriini gösterir, sonlu sayıda pozitif tamsayı çifti kümesidir ve (N {0} x N {0}) (i 1) olmak üzere (i, m) T eklinde gösterilir. i.tape alanının içerii m dir. (m > 0)

5 Tanım: M = (k, ) bir RATM olsun. Bir konfigürasyon C=(, R 0, R 1,..., R k-1, T) bir adım sonra C8=(8, R8 0, R 1,..., R8 k-1, T8) konfigürasyonuna geçiyorsa C M C8eklinde gösterilir. Eer k instruction ı read jeklinde ise, (j < k) R 0 register ı tape biriminin R j ile gösterilen alanının deerini alır. Tape alanı R j register ı tarafından adreslenir. Böylece R8 0 = T(R j ) olur ve T(R j ) unique bir deere sahiptir ve (R j, m) T dir. 8 = + 1 olur. Eer k instruction ı add = ceklinde ise, (c 0) R8 0 = R 0 + c ve 8 = + 1 olur. Eer k instruction ı write j eklinde ise, (j < k) 8 = + 1 olur. Tape biriminde R j nin deeriyle belirtilen sıradaki alana R 0 yazılır. Eer k instruction ı jpos s eklinde ise, (1 s p) eer R 0 > 0 ise8=s olur. Eer R 0 0 ise 8 = + 1 olur. * M ilikisi, M ilikisinin reflexive, transitive closure udur. Örnek (Çarpma): M = (k, ) bir RATM için iki sayının çarpımını yapan mply adında bir instruction ekleyelim. Register 0 x deerine ve Register 1 y deerine sahip olsun. RATM halt durumuna ulaınca Register 0 içinde x.y deeri olacaktır. Çarpma ilemi ardarda toplama ilemleriyle yapılacaktır.

6 Örnek (Çarpma): (devam) x y x+x z w z = y / 2 y z - z - Balangıçta R0 = x ve R1 = y. - Sonuçta R0 = x.y dir. w = w + x - mply 1 ilemi gerçekletirilir. x = x + x - Program her iterasyonda 2-18 arasındaki ilemleri yapar k.iterasyonda Register 2 = x2 k y = z Register 3 = y / 2 k Register 1 = y / 2 k-1 Register 4 = x.(y mod 2 k ) Örnek: R 1 := R 2 + R load 1 2. add 2 3. sub = 1 4. store 1 Örnek: while x > 0 do x:= x 3 (x = Register 1) 1. load 1 2. jzero 6 3. sub = 3 4. store 1 5. jump 1

7 Örnek (Çarpma): w := x. y deerini hesaplar. w:= 0 while y > 0 do begin z:= half(y) if y z z 0 then w:= w + x x:= x + x y:= z end halt y R 1, x R 2, z R 3 ve w R 4 göstermektedir. Tanım: E, Σ ve {0, 1,, Σ 1} arasında bir bijection olsun (E() = 0). w = a 1 a 2 a n (Σ - ) * girii için bir RATM M = (k, ) nin balangıç konfigürasyonu (, R 0,, R k-1, T) olsun. Burada, = 1, R j = 0, ve T = {(1, E(a 1 )), (2, E(a 2 )),, (n, E(a n ))} M, w Σ * girii için halt durumuna ulatıında R 0 =1 ise bu string i kabul eder R 0 =0 ise bu string i red eder.

8 Örnek: L = {a n b n c n : n 0} dilini tanıyan RATM programını yazınız. acount:= bcount:= ccount:= 0, n:= 1 while T[n] = 1 do n:= n + 1, acount:= acount + 1 while T[n] = 2 do n:= n + 1, bcount:= bcount + 1 while T[n] = 3 do n:= n + 1, ccount:= ccount + 1 if acount = bcount = ccount and T[n] = 0 then accept - E(a) = 1, E(b) = 2, E(c) = 3 else reject - accept için load =1, halt ve reject için load =0, halt yazılabilir.. $-$( Bir nondeterministic Turing makinesi (K,,, s, H) eklinde quintuple olarak ifade edilir. K,, s, H standart Turing makineleriyle aynıdır. geçi ilikisi ((K H) x) x ((K x ( {, }) kümesinin alt kümesidir. * M ilikisi, M ilikisinin reflexive, transitive closure udur. Bir konfigürasyon M için birden fazla konfigürasyona geçilebilir. M, w (Σ {, }) * giriini kabul eder eer h H, a Σ ve u, v Σ * için (s,w) * M (h,uav) ise.

9 /$% Context-free gramerler terminal () ve nonterminallerin (V-) kümesi olan bir alfabeye sahiptir. A u (A V-, ve u V * ). Bir context-free gramer balangıç string S ile balayıp sürekli sol taraftaki nonterminal yerine kuralların sa tarafını deitirmektedir. CFG de bütün kuralların sol tarafları bir nonterminale sahiptir. Bir unrestricted gramerde ise kuralların sol tarafı en az bir tane nonterminale sahip olmak kaydıyla bir string olabilir. Sonuçta üretilen string CFG deki gibi sadece terminallerden oluabilir. /$% Tanım: Bir unrestricted grammer G = (V,, R, S) eklinde quadruple ile gösterilir. V V bir alfabe terminaller kümesi S V balangıç sembolü R kurallar kümesi, R (V * (V )V * )xv * u v yazılabilir eer (u, v) R ise u G v yazılabilir eer w 1,w 2 V *,u8 v8 R için u = w 1 u8w 2, v = w 1 v8w 2 ise * G, G geçilerinin reflexive, transitive, closure udur. Bir w string i G grameri tarafından üretilir eer S * G w ise

10 /$% Örnek: G = (V,, R, S) grameri L = {a n b n c n :n 1} dilini üretir. V = {S, a, b, c, A, B, C, D, T a, T b, T c } ve = {a, b, c} R = { SABCS, lk iki kural (ABC) n T c üretir ST c, CAAC, Sonraki üç kural A,B,C leri sıralar BAAB, A n B n C n Tc oluur CBBC, CT c T c c, Dier kurallar C yerine c, B yerine b, CT c T b c, A yerine a yazar BT b T b b, BT b T a b, AT a T a a, T a e } /$% Örnek: (devam) a 2 b 2 c 2 string inin üretilii aaıdadır. R = { SABCS, S G ABCS ST c, G ABCABCS G ABACBCS CAAC, G AABCBCS G AABBCCS BAAB, G AABBCCT c G AABBCT c c CBBC, G AABBT b cc G AABT b bcc CT c T c c, G AAT a bbcc G AT a abbcc CT c T b c, G T a aabbcc G aabbcc BT b T b b, BT b T a b, AT a T a a, T a e }

11 /$0 Church-Turing thesis Bu derste farklı hesaplama süreçleri için farklı matematiksel modeller verilmitir. Özellikle bir dilin decide, semidecide edilmesi ve language generator ve hesaplama fonksiyonları için modeller gelitirilmitir. Bir Turing makinesinin özelliklerinin artırılması (RATM) aslında hesaplama kabiliyetini arttırmamaktadır. Bir hesaplama makinesi bir algoritmanın gerçekletirilmesi için tasarlanır. /$0 Church-Turing thesis (devam) Bütün giriler için halt durumuna ulaan Turing makineleri algoritmadır. Bu prensip Church-Turing thesis olarak adlandırılır. Semidecide yapan Turing makineleri algoritma deillerdir. Church-Turing tezinin doruluu matematiksel olarak ispatlanamamıtır, yanlılııda ispatlanamamıtır. Church-Turing tezine göre, Turing makinesiyle gerçekletirilemeyen hesaplamalar undecidable olarak adlandırılır.

12 = >0 >0 *''?"A":

1 $/ " {ww R : w {a, b} * } ## S asa, S bsb S e#(3 * 5 $(6 )# (2 #$,(- (25 #5

1 $/  {ww R : w {a, b} * } ## S asa, S bsb S e#(3 * 5 $(6 )# (2 #$,(- (25 #5 !"#$ %& '()*' ' +,./0% 1 $/02 2 3 " {ww R : w {a, b} * } ## #4 S asa, S bsb S e#(3 5 2'5" * 5 $(6 )# (2 #$ 5#77 #" ' #" (25 #5 #" 8)5*# 73'" 5#$#$257" 379()379" :))##2)7 5)32) #5 6*" :5)$#$2#5" ;! Pushdown

Detaylı

! " # $ % & '( ) *' ' +, -. /.,

!  # $ % & '( ) *' ' +, -. /., !"#$ %& '()*' ' +,-./.,-. 0 12.30.420 ,-./.,-,-.5' $-.5 6# #",-.5 2(3 # #",-.5 6') 7 2(3 87" $-.5.$-.5) 7 # * ",222 2 #5# * #)7 #7",-./.,- Theorem: Context-free diller union, concatenation ve Kleene star

Detaylı

! " # $ % & '( ) *' ' +, -. / $ 2 (.- 3( 3 4. (

!  # $ % & '( ) *' ' +, -. / $ 2 (.- 3( 3 4. ( !"#$ %& '()*' ' +,-. / 0 100$ 2 (.-3( 34.( ,-. '45 45 6#5 6+ 6"#0" '7086 $ $ 89 44" :#! ;{0, 1, 2, 3,..., 9}, L * olarak tanımlı olsun ve sadece 2 ye veya 3 e bölünebilen ve önünde 0 olmayan pozitif sayılara

Detaylı

! " # $ % & '( ) *' ' +, -. /) /) 0 # /) %, %, 1 2

!  # $ % & '( ) *' ' +, -. /) /) 0 # /) %, %, 1 2 !"#$ %& '()*' ' +,-./) /) 0 #/) %,%, 12 $$(/3#/ " '$$(/34" '$$(//44 / 4 /4/ 4# ##4" 5-6/'$##/" 7#! a(a * b * )b regular expression ile önce bir a üretilir. Ardından iki durumdan birisine göre devam edilir.

Detaylı

,$( -./(,$( 0$0$ 1 2 134(,$(

,$( -./(,$( 0$0$ 1 2 134(,$( !"#$ %& '()*' ' + -./( 0$0$ 1 2 134( 5(/ 4 2 " $#56L = {a n b n c n : n 0}222 #.(.)", #22(# 7# 2", #6,489: 7", #24$62.. ' # #2(; 7 #", #2, #2.24$;7" $.7 2# < #44 )" -2 # 22)#( #4# 7 #7= 8"- 2 " >"",.'#

Detaylı

+,- #'. L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir

+,- #'. L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir !"#$ %& '()*' ' #'. L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir b L, z L / #* ) {red, blue, red} ile {red, blue} aynıdır {3, 1, 9}, {9, 1, 3} ve {3, 9, 1} aynıdır / 0 Bir elemana sahip

Detaylı

BM312 Ders Notları - 3 2014

BM312 Ders Notları - 3 2014 DETERMİNİSTİK SONLU OTOMATLAR (DETERMINISTIC FINITE AUTOMATA) Bir Sonlu Otomat (FA) sabit ve sonlu kapasitede bir merkezi işlem ünitesine sahiptir. Giriş bilgisini input tape üzerinden string olarak alır.

Detaylı

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR 2012-2013 Karakter Dizgisi Karakter Dizgisi Üzerine İşlemler Altdizgi Tanım 3.1.1: Bir X kümesi üzerinde bir karakter dizgisi (string)

Detaylı

BAĞLAMDAN BAĞIMSIZ VE BAĞLAMDAN BAĞIMSIZ OLMAYAN DİLLER (CONTEXT-FREE AND NON-CONTEXT-FREE LANGUAGES)

BAĞLAMDAN BAĞIMSIZ VE BAĞLAMDAN BAĞIMSIZ OLMAYAN DİLLER (CONTEXT-FREE AND NON-CONTEXT-FREE LANGUAGES) BAĞLAMDAN BAĞIMSIZ VE BAĞLAMDAN BAĞIMSIZ OLMAYAN DİLLER (CONTEXT-FREE AND NON-CONTEXT-FREE LANGUAGES) Context-free dillerin üretilmesi için context-free gramer ler kullanılmaktadır. Context-free dillerin

Detaylı

10. DİREKT ÇARPIMLAR

10. DİREKT ÇARPIMLAR 10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü

Detaylı

BÖLÜM 2 Biçimsel Dillerin Matematiksel Temelleri

BÖLÜM 2 Biçimsel Dillerin Matematiksel Temelleri BÖLÜM 2 Biçimsel Dillerin Matematiksel Temelleri 2.1 Kümeleri tümevarım yolu ile tanımlama E tanımlanacak küme olsun: Taban: Yapı taşı elemanları kümesi veya taban B ile gösterilsin. Bu kümenin içindeki

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

Formal Diller Ve Otomat Teorisi

Formal Diller Ve Otomat Teorisi Formal Diller Ve Otomat Teorisi Ismail Kadayif Canakkale Onsekiz Mart Universitesi Bilgisayar Muhendisligi 4/5/2004 Formal Diller 1.1 Strings ve Languages (Diller) alphabet (character set): Sonlu sayida

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

ndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı

ndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı ndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı Meral SÜER * ve Sedat LHAN * Batman Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü,72060 Batman, Türkiye Dicle Üniversitesi,

Detaylı

BAĞLAMDAN BAĞIMSIZ (CONTEXT-FREE) GRAMERLER (CFG) VE DİLLER (CFL)

BAĞLAMDAN BAĞIMSIZ (CONTEXT-FREE) GRAMERLER (CFG) VE DİLLER (CFL) BAĞLAMDAN BAĞIMSIZ (CONTEXT-FREE) GRAMERLER (CFG) VE DİLLER (CFL) Dil tanıyıcı cihaz bir dile ait geçerli string leri kabul eder. Dil üreteci cihaz bir dile ait string leri oluşturur. Dil üreteci cihazlar

Detaylı

Şekil. 64 Kelimelik Yığıtın Blok Şeması

Şekil. 64 Kelimelik Yığıtın Blok Şeması 1 YIĞIT (STACK) KURULUMU Çoğu bilgisayarın MİB de yığıt veya LIFO (Last In First Out) bulunur. Yığıt bir bellek parçasıdır ve son depolanan bilgi ilk geri dönen bilgi olur. Yığıta aktarılan son bilgi yığıtın

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

Sonlu Durum ve Turing Makineleri

Sonlu Durum ve Turing Makineleri Sonlu Durum ve Turing Makineleri Ders 12 Yrd.Doç.Dr. İbrahim TÜRKYILMAZ Sonlu Durum Makinesi Sonlu durum makinesi aşağıdakilerden oluşur: a) Bir σ başlangıç durumu, b) Sonlu sayıda duruma sahip olan sonlu

Detaylı

Bölüm 2 Matematik Dili

Bölüm 2 Matematik Dili Bölüm 2 Matematik Dili Kümeler p Küme(Set) = ayrık nesnelerden oluşmuş topluluğa küme denir p Kümenin elemanları element olarak adlandırılır p Kümeler nasıl gösterilir Liste şeklinde p Örnek: A = {,3,5,7}

Detaylı

Semantik (Semantics): ifadelerin, deyimlerin, ve program birimlerinin anlamı Sentaks ve semantik bir dilin tanımı sağlar

Semantik (Semantics): ifadelerin, deyimlerin, ve program birimlerinin anlamı Sentaks ve semantik bir dilin tanımı sağlar PDP 3 1 Sentaks (Syntax): ifadelerin (statements), deyimlerin (expressions), ve program birimlerinin biçimi veya yapısı Semantik (Semantics): ifadelerin, deyimlerin, ve program birimlerinin anlamı Sentaks

Detaylı

BM-311 Bilgisayar Mimarisi

BM-311 Bilgisayar Mimarisi 1 BM-311 Bilgisayar Mimarisi Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Bilgisayar Bileşenleri Bilgisayarın Fonksiyonu Instruction Cycle Kesmeler (Interrupt lar)

Detaylı

BM 375 Bilgisayar Organizasyonu Dersi Vize Sınavı Cevapları 10 Nisan 2009

BM 375 Bilgisayar Organizasyonu Dersi Vize Sınavı Cevapları 10 Nisan 2009 1-) Instruction Cycle State Diagram ı çizip herbir state için gerçekleştirilen işlemleri detaylı bir şekilde açıklayınız. Instruction state cycle da üstteki kısımlar CPU dışında alttaki kısımlar CPU içinde

Detaylı

FORMEL DİLLER VE SOYUT MAKİNALAR. Hafta 1

FORMEL DİLLER VE SOYUT MAKİNALAR. Hafta 1 FORMEL DİLLER VE SOYUT MAKİNALAR Hafta 1 DİL VE FORMEL DİL KAVRAMLARI Dil, insanların karmaşık iletişim sistemlerini edinme ve kullanma becerisidir. Bir dilin formel olabilmesi için bazı niteliklerinin

Detaylı

BM-311 Bilgisayar Mimarisi. Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü

BM-311 Bilgisayar Mimarisi. Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü BM-311 Bilgisayar Mimarisi Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Bilgisayar Bileşenleri Bilgisayarın Fonksiyonu Instruction Cycle Kesmeler (Interrupt lar) Bus

Detaylı

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar Algoritma ve Programlamaya Giriş mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar İçerik Algoritma Akış Diyagramları Programlamada İşlemler o o o Matematiksel Karşılaştırma Mantıksal Programlama

Detaylı

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES)

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) 00000000001 AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) plam cevaplama süresi 150 akikadır. (,5 saat) SAYISAL BÖLÜM SAYISAL - 1 TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal

Detaylı

yurdugul@hacettepe.edu.tr VB de Veri Türleri 1

yurdugul@hacettepe.edu.tr VB de Veri Türleri 1 yurdugul@hacettepe.edu.tr 1 VB de Veri Türleri 1 Byte 1 aretsiz tamsay Integer 2 aretli Tamsay Long 4 aretli Tamsay Single 4 Gerçel say Double 8 Gerçel say Currency 8 Gerçel say Decimal 14 Gerçel say Boolean

Detaylı

-A Grubu- MKT103 Görsel Programlama 2015/2016 Güz Dönemi Final Sınavı

-A Grubu- MKT103 Görsel Programlama 2015/2016 Güz Dönemi Final Sınavı KOCAELİ ÜNİVERSİTESİ 14.10.2016 MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ MKT103 Görsel Programlama 2015/2016 Güz Dönemi Final Sınavı Öğretim Üyesi: Prof. Dr. Hasan OCAK Sınav Süresi: 80 dakika. Her

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

Bileenler arasndaki iletiim ise iletiim yollar ad verilen kanallar yardm ile gerçekleir: 1 Veri Yollar 2 Adres Yollar 3 Kontrol Yollar

Bileenler arasndaki iletiim ise iletiim yollar ad verilen kanallar yardm ile gerçekleir: 1 Veri Yollar 2 Adres Yollar 3 Kontrol Yollar Von Neumann Mimarisinin Bileenleri 1 Bellek 2 Merkezi lem Birimi 3 Giri/Çk Birimleri Yazmaçlar letiim Yollar Bileenler arasndaki iletiim ise iletiim yollar ad verilen kanallar yardm ile gerçekleir: 1 Veri

Detaylı

FORMEL DİLLER VE SOYUT MAKİNALAR. Hafta 2

FORMEL DİLLER VE SOYUT MAKİNALAR. Hafta 2 FORMEL DİLLER VE SOYUT MAKİNALAR Hafta 2 OTOMATA TEORİSİ Otomata teorisi (özdevinim kuramı ya da otomat teorisi), teorik bilgisayar biliminde soyut makineleri (ya da daha uygun bir deyimle soyut 'matematiksel'

Detaylı

Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) :5-3 = = 11 ( C )

Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) :5-3 = = 11 ( C ) Önce ÇARPMA ve Bölme, sonra Toplama ve Çıkarma. 3.4+10:5-3 = 12+2-3 = 11 ( C ) Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) 72:24+64:16 = 3+4 = 7 ( B

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

Sınav Dağılım & IMKB Endeks

Sınav Dağılım & IMKB Endeks Sınav Dağılım & IMKB Endeks Ege Üniversitesi Bilgisayar Mühendisliği Veri Yapıları Proje-1 Hüseyin YAŞAR 05-06-7657 Didem KAYALI 05-06-7669 Umut BENZER 05-06-7670 Özlem GÜRSES 05-07-8496 Sürüm: 0.2 Bölüm

Detaylı

DSP DONANIMI. Pek çok DSP için temel elemanlar aşağıdaki gibidir.

DSP DONANIMI. Pek çok DSP için temel elemanlar aşağıdaki gibidir. DSP DONANIMI Pek çok DSP için temel elemanlar aşağıdaki gibidir. Çarpıcı yada çarpıcı- toplayıcı (MPY/MAC) Aritmetik lojik birim (ALU) Öteleyici (SHIFTER) Adres üreteci (AG) Komut yada program sıralayıcı

Detaylı

MUTLAK DEĞER Test -1

MUTLAK DEĞER Test -1 MUTLAK DEĞER Test -. < x < olduğuna göre, x x ifadesinin eşiti aşağıdakilerden 7 B) 7 x C) x 7 D) x 7 E) 7 x 5. y < 0 < x olduğuna göre, y x x y x y ifadesinin eşiti aşağıdakilerden xy B) xy C) xy D) xy

Detaylı

Syntax Analysis. 4/5/2004 Formal Diller 4.1

Syntax Analysis. 4/5/2004 Formal Diller 4.1 Syntax Analysis Her programlama dilinin yazilan bir programin syntax olarak dogru olup olmadigini belirleyen kurallari vardir. Programlama dillerinin syntactic yapisi Contex-Free Grammer / BNF (Backus-Naur

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif tamsayılar

Detaylı

Dilbilgisi ve Diller

Dilbilgisi ve Diller Dilbilgisi ve Diller Doç.Dr.Banu Diri 1. Her biçimsel dil belirli bir alfabe üzerinde tanımlanır. 2. Alfabe sonlu sayıda simgelerden oluşan bir kümedir. 3. Alfabedeki simgelerin arka arkaya getirilmesi

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ 1 SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif

Detaylı

ECEM ERDURU GAMZE SERİN ZEHRA SABUR EMİNE ÖLMEZ. o TAMSAYILAR KONUSU ANLATILMAKTADIR

ECEM ERDURU GAMZE SERİN ZEHRA SABUR EMİNE ÖLMEZ. o TAMSAYILAR KONUSU ANLATILMAKTADIR ECEM ERDURU GAMZE SERİN ZEHRA SABUR EMİNE ÖLMEZ o TAMSAYILAR KONUSU ANLATILMAKTADIR Sıfırın sağındaki sayılar pozitif tam sayılar, sıfırın solundaki sayılar negatif tam sayılardır. Pozitif tam sayılar,

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

BİL-142 Bilgisayar Programlama II

BİL-142 Bilgisayar Programlama II BİL-142 Bilgisayar Programlama II (C/C++) Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş Kontrol Yapıları if Seçme Deyimi if... else Seçme Deyimi while Tekrar

Detaylı

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur.

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur. FAKTÖRİYEL TANIM Pozitif ilk n tam sayının çarpımı 1.2.3 n = n! biçiminde gösterilir. n Faktöriyel okunur. 1!=1 2!=1.2=2 3!=1.2.3=6 4!=1.2.3.4=24 5!=1.2.3.4.5=120 gibi. Özel olarak; 0! = 1 olarak tanımlanmıştır.

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

Bölüm 3. Sentaks ve semantik tarifi ISBN 0-321-49362-1

Bölüm 3. Sentaks ve semantik tarifi ISBN 0-321-49362-1 Bölüm 3 Sentaks ve semantik tarifi ISBN 0-321-49362-1 Bölüm 3 Konuları Giriş Genel olarak sentaks tarifi Sentaks tarifinin matematiksel yöntemleri Özellik gramerleri (Attribute Grammars) Programların anlamını

Detaylı

1. Satı ve Daıtım lemleri " # $ "!!

1. Satı ve Daıtım lemleri  # $ !! 1. Satı ve Daıtım lemleri " " " " " %& % ' (& " & ' ( Stok kartı ilemlerine girmeden pratik bir ekilde ilem ) " & * + (& ", ) (& Satı Fatura ilemlerinde bu alan tıklayarak veya F 2 - " '"(& ". / 0 " &

Detaylı

BM-311 Bilgisayar Mimarisi

BM-311 Bilgisayar Mimarisi 1 BM-311 Bilgisayar Mimarisi Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Operand türleri Assembly dili 2 İşlemcinin yapacağı iş makine komutlarıyla belirlenir. İşlemcinin

Detaylı

#$% &'#(# Konular. Bits of Information. Binary Özellikler Superimposed Coding Signature Formation Deerlendirme

#$% &'#(# Konular. Bits of Information. Binary Özellikler Superimposed Coding Signature Formation Deerlendirme !" #$% &'#(# Konular Binary Özellikler Deerlendirme Binary Özellikler Bir binary özellik iki deer alabilir (kapalı veya açık; var veya yok gibi) Bir kiiye ait bilgiler binary olarak aaıdaki gibi gösterilebilir

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

Toplam Olasılık Prensibi

Toplam Olasılık Prensibi 1 Toplam Olasılık Prensibi A 1, A 2,, A n karşılıklı kapsamayan ve birlikte tamamlayan olaylar kümesi olsun: A k A A j 0 = 0 k j j nn j j 1 = 1 B, S içinde herhangi bir olay ise k j AA j = ise S ise Pr[A

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

MODÜLER ARİTMETİK. Örnek:

MODÜLER ARİTMETİK. Örnek: MODÜLER ARİTMETİK Bir doğal sayının ile bölünmesinden elde edilen kalanlar kümesi { 0,, } dir. ile bölünmesinden elde edilen kalanlar kümesi { 0,,, } tür. Tam sayılar kümesi üzerinde tanımlanan {( x, y)

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

2. Dereceden Denklemler

2. Dereceden Denklemler . Dereceden Denklemler Yazım hataları olabilir. Tam olarak tashih edilmemiştir. Hataları osmanekiz000@gmail.com mail adresine bildirilseniz makbule geçer.. a + b + 5c = c(a + b) ise a b =? C: 9. ( 4) (

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

BM312 Ders Notları 2014

BM312 Ders Notları 2014 Kümeler ve Bağıntılar Bir küme nesnelerden oluşur L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir c L, k L şeklinde ifade edilir. Elemanların sırası ve tekrarı önemli değildir {üzüm, kiraz,

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 11 Mayıs Matematik Soruları ve Çözümleri E) 2.

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 11 Mayıs Matematik Soruları ve Çözümleri E) 2. Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal I / Mayıs 2008 Matematik Soruları ve Çözümleri 3 3. + : 7 4 7 4 işleminin sonucu kaçtır? A) 4 3 B) 4 5 C) 7 4 D) 5 7 E) 2

Detaylı

2. (x 1 + x 2 + x 3 + x 4 + x 5 ) 10 ifadesinin açılımında kaç terim vardır?

2. (x 1 + x 2 + x 3 + x 4 + x 5 ) 10 ifadesinin açılımında kaç terim vardır? Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız. Sınavın ilk 30 dakikasında sınıftan çıkılmayacaktır.

Detaylı

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1 SOYUT CEBÝR ( Genel Tekrar Testi-1) 1. A = { k k Z, < k 4 } 4. N tam sayılar kümesinde i N için, k 1 B = { k Z, 1 k < 1 } k 1 A = 1 i,i 1 i ( ] kümeleri verildiğine göre, aşağıdakilerden hangisi doğrudur?

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR Kümeler Koşullu ve Mantıksal Denklik Kümeler Kümeler Ayrık Kümeler De-Morgan Kuralı Z (Zahlen; alm.) tamsayılar kümesi Z negatif tamsayılar kümesi, Z nonneg

Detaylı

ALES / İLKBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ

ALES / İLKBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL- TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal Ağırlıklı ALES Puanınızın (ALES-SAY)

Detaylı

Merkezi İşlem Birimi MİKROİŞLEMCİ SİSTEMLERİ. MİB Yapısı. MİB in İç Yapısı. MİB Altbirimleri. MİB in İç Yapısı

Merkezi İşlem Birimi MİKROİŞLEMCİ SİSTEMLERİ. MİB Yapısı. MİB in İç Yapısı. MİB Altbirimleri. MİB in İç Yapısı Merkezi İşlem Birimi MİKROİŞLEMCİ SİSTEMLERİ Doç. Dr. Şule Gündüz Öğüdücü http://ninova.itu.edu.tr/tr/dersler/bilgisayar-bilisim-fakultesi/0/blg-1/ Merkezi İşlem Birimi (MİB): Bilgisayarın temel birimi

Detaylı

TAM SAYILAR. Tam Sayılarda Dört İşlem

TAM SAYILAR. Tam Sayılarda Dört İşlem TAM SAYILAR Tam Sayılarda Dört İşlem Pozitif ve negatif tam sayılar konu anlatımı ve örnekler içermektedir. Tam sayılarda dört işlem ve bu konuyla ilgili örnek soru çözümleri bulunmaktadır. Grup_09 29.11.2011

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

Dr. Cahit Karaku. Algoritma, bir ii yapmak için, balangıç durumundan açıkça belirlenmi bir son durumda sonlanan, ilemler (adımlar) kümesidir.

Dr. Cahit Karaku. Algoritma, bir ii yapmak için, balangıç durumundan açıkça belirlenmi bir son durumda sonlanan, ilemler (adımlar) kümesidir. 1 Dr. Cahit Karaku Algoritma, bir ii yapmak için, balangıç durumundan açıkça belirlenmi bir son durumda sonlanan, ilemler (adımlar) kümesidir. Algoritma sözcü ü, Harzem de do an, Türk kökenli matematikçi

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

1. LabVIEW ile Programlama

1. LabVIEW ile Programlama 1. LabVIEW ile Programlama LabVIEW ile programlama mantığı, program kodu yazılan programlama mantığına benzemekle birlikte, kontrol adı verilen nesneler arasında veri yolu bağlantısı ile program akışı

Detaylı

K uark projesi. Temel Özellikler :

K uark projesi. Temel Özellikler : K uark projesi Temel Özellikler : Kuark işlemcisi 16 bit kelime uzunluğuna sahip bir işlemcidir. Veri ve komut belleği aynıdır ve en fazla 4 Gigabyte bellek adresleyebilir. İşlemcimiz paralel çalışabilecek

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

Mikroişlemcili Sistemler ve Laboratuvarı

Mikroişlemcili Sistemler ve Laboratuvarı SAKARYA ÜNİVERSİTESİ Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü Mikroişlemcili Sistemler ve Laboratuvarı Hafta04 : 8255 ve Bellek Organizasyonu Doç.Dr. Ahmet Turan ÖZCERİT

Detaylı

FORMEL DİLLER VE SOYUT MAKİNALAR. Hafta 3

FORMEL DİLLER VE SOYUT MAKİNALAR. Hafta 3 FORMEL DİLLER VE SOYUT MAKİNALAR Hafta 3 Karmaşıklık CHOMSKY HİYERARŞİSİ 0 1 2 3 Özyinelemeli - Sayılabilir Diller : Turing Makinesi (Recursively Enumerable Languages : Turing Machine) Bağlama - Duyarlı

Detaylı

Sayı sistemleri-hesaplamalar. Sakarya Üniversitesi

Sayı sistemleri-hesaplamalar. Sakarya Üniversitesi Sayı sistemleri-hesaplamalar Sakarya Üniversitesi Sayı Sistemleri - Hesaplamalar Tüm sayı sistemlerinde sayılarda işaret kullanılabilir. Yani pozitif ve negatif sayılarla hesaplama yapılabilir. Bu gerçek

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

Bölüm 2 Matematik Dili. Kümeler

Bölüm 2 Matematik Dili. Kümeler Bölüm 2 Matematik Dili Kümeler Küme(Set) = ayrık nesnelerden oluşmuş topluluğa küme denir Kümenin elemanları element olarak adlandırılır Kümeler nasıl gösterilir Liste şeklinde Örnek: A = {1,3,5,7} Tanım

Detaylı

4- ALGORİTMA (ALGORITHM)

4- ALGORİTMA (ALGORITHM) (ALGORITHM) Algoritma: Bir Problemin çözümünün, günlük konuşma diliyle adım adım yazılmasıdır. Algoritma sözcüğü Ebu Abdullah Muhammed İbn Musa el Harezmi adındaki Türkistan'lı alimden kaynaklanır. Bu

Detaylı

Pozisyon Kontrol Sistemi Üzerine Karakteristik Yapı Çalı ması: STANBUL - 2010

Pozisyon Kontrol Sistemi Üzerine Karakteristik Yapı Çalı ması: STANBUL - 2010 Pozisyon Kontrol Sistemi Üzerine Karakteristik Yapı Çalıması: Set Üzerinde Kullanılacak Ekipman: 1 Motor sürücü ve çıkı potansiyometresi, 1 Ayarlama amplifikatörü, 1 Türevsel amplifikatör, 1 Toplama amplifikatörü,

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

#$% &'#(# Konular. Direct File Organization. Progressive Overflow Buckets Linear Quotient Brent s Method Binary Tree

#$% &'#(# Konular. Direct File Organization. Progressive Overflow Buckets Linear Quotient Brent s Method Binary Tree !" #$% &'#(# Konular Progressive Overflow Buckets Linear Quotient Brent s Method Progressive overflow Coalesced hashing temel dezavantajı linkler için ek yer gerektirmesidir Progressive overflow (linear

Detaylı

Pascal Programlama Dili

Pascal Programlama Dili Pascal Programlama Dili Öğr. Gör. Özgür ZEYDAN Z.K.Ü. Çevre Müh. Bölümü Pascal Programlarının Yapısı Program program_adı; Uses unitler type Özel veri tipleri Const Sabitler Label etiketler var değişken

Detaylı

Matematiksel Operatörler

Matematiksel Operatörler Matematiksel Operatörler Genel olarak matematiksel işlemlerde kullanılan operatörlerdir. Operatör Anlamı Açıklama ^ Üs Alma C^3 Matematikdeki üs operatörüdür. Verilen ilk sayının ikinci sayı kadar kuvvetini

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

BÖLÜM 3. A. Deneyin Amac

BÖLÜM 3. A. Deneyin Amac BÖLÜM 3 TRSTÖRLÜ DORULTUCULAR A. Deneyin Amac Tek faz ve 3 faz tristörlü dorultucularn çalmasn ve davranlarn incelemek. Bu deneyde tek faz ve 3 faz olmak üzere tüm yarm ve tam dalga tristörlü dorultucular,

Detaylı

Hatalar ve Bilgisayar Aritmetiği

Hatalar ve Bilgisayar Aritmetiği Hatalar ve Bilgisayar Aritmetiği Analitik yollardan çözemediğimiz birçok matematiksel problemi sayısal yöntemlerle bilgisayarlar aracılığı ile çözmeye çalışırız. Bu şekilde Sayısal yöntemler kullanarak

Detaylı

Leyla Bugay Doktora Nisan, 2011

Leyla Bugay Doktora Nisan, 2011 ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904

Detaylı

Yukardaki gibi sonsuz döngülü programlara Ctrl+Break tuş takımı ile müdahale edilmesi gerekir, aksi halde program sonsuz döngüye girer.

Yukardaki gibi sonsuz döngülü programlara Ctrl+Break tuş takımı ile müdahale edilmesi gerekir, aksi halde program sonsuz döngüye girer. Döngüsü En basit döngü yapısıdır. Hiçbir kontrol yapılmadan ve ifadeleri arasındaki satırların işlem görmesi için kullanılır. Bu yapıda programın terkedilmesi için herhangi bir kontrol olmadığından, döngü

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

Sonlu Durumlu Makineler

Sonlu Durumlu Makineler Sonlu Durumlu Makineler Geri besleme büyüleyici bir mühendislik prensibidir. Başlangıçta basit olan bir cihazı daha karışık bir sürece döndürebilir. geri beslemenin kasıtlı olarak şaşırtıcı etkileriyle

Detaylı