STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN"

Transkript

1 Statik ers Notları Sınav Soru ve Çözümleri ĞHN MÜHENİSİK MEKNİĞİ STTİK

2 MÜHENİSİK MEKNİĞİ STTİK İÇİNEKİER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMERİ - İki Boutlu Kuvvet Sistemleri - Üç Boutlu Kuvvet Sistemleri 3. ENGE - üzlemde enge - Üç Boutta enge 4. YPIR - üzlem Kafes Sistemler - Çerçeveler ve Makinalar 5. SÜRTÜNME 6. KÜTE MERKEZERİ ve GEOMETRİK MERKEZER

3 STTİK 4 YPIR

4 STTİK 4.1 üzlem Kafes Sistemler

5 Statik Yapılar 4.1. üzlem Kafes Sistemler 1 Kafes sistemler, "alnızca iki kuvvet taşıan elemanlar"ın birbirine bağlanması ile ortaa çıkan apılardır. Bu elemanların, serbestçe dönen ve moment iletmediği farzedilen pimlerle birbirine bağlandığı düşünülür. Eğer elemanların tamamı anı düzlemde er alıorsa o zaman düzlem kafes sistemlerden bahsedilir. Elemanlar, elde edilen apının rijit olabilmesi için, üçgenler oluşturacak şekilde birleştirilirler. Rijit, çökmez. Yük taşıabilir. Rijit değil, çöker. Yük taşıamaz. İki üçgene bölünürse ük taşıabilecek hale gelir. ğır ükleri taşımakta kullanılan apıların kendi ağırlıklarının mümkün olduğu kadar hafif olması istenir. Bu amaçla krenler, köprüler, çatılar vb. apılar kafes sistem tekniği ile tasarlanır. Elemanların bağlantı noktalarından geçen doğru, taşıdığı kuvvetlerin ortak tesir çizgisidir ve bu kuvvetler çekme vea basma önünde olabilirler. Bir eleman herhangi bir erinden haali olarak kesilirse o kesitte elemanın ucundaki kuvveti dengeleecek şekilde bir kuvvet olduğu görülür.

6 Statik Yapılar 4.1. üzlem Kafes Sistemler 2 Kafes sistemlerin taşıdığı ükler, eğer aılı ük ise elemanları bağlaan pimlere ugulanan tekil üklere indirgenirler. Tekil ükler elemanların uç noktalarının dışında arada bir ere ugulanmaz. Kafes sistemlerin kendi ağırlıkları taşıdıkları üke nazaran, çoğunlukla, ihmal edilir. İhmal edilmediği zaman bir elemanın ağırlığı ikie bölünerek uç noktalarındaki pimlere ugulanır. üğüm Yöntemi Kafes sistemlerin tasarımı apılırken elemanların taşıdığı kuvvetler bulunmalıdır. Bu kuvvetleri bulmak amacı ile takip edilen iki temel aklaşım vardır: - üğüm öntemi, - Kesim öntemi. Kafes sistemin parçalarının birbirine birleştirildiği erlere düğüm denir. Bu düğümlerde elemanların birbirine bir pim vasıtası ile bağlandığı farzedilir. üğüm önteminde bu pimlerin dengesi incelenerek bilinmeenler bulunur. B F B C B G E ΣF = 0 ΣF = 0 pimi B G G G enge kategorisi bir noktada kesişen kuvvetler kategorisi olduğundan Bir düğümün dengesinden en fazla 2 bilinmeen bulunabilir.

7 Statik Yapılar 4.1. üzlem Kafes Sistemler 3 Kafes sistemin tamamının dengesinden de ilave denklemler elde edilebilir. Mesnet tepkileri bulunabilir.! Bir üçgeni oluşturan çubuklardaki kuvvetlerin kendi aralarında dengede olduğu sölenemez. F F F B G E C B G E C CE = 0 C E Özel düğümler F 3 = 0 F 3 = 0 F 2 = 0 F 1 F 2 F 1 F 2 F 1 P ΣF = 0 F 1 = F 2 ΣF = 0 F 3 = 0 ΣF = 0 F 1 = F 2 ΣF = 0 F 3 = 0 ΣF = 0 F 1 = P ΣF = 0 F 2 = 0

8 Statik Yapılar 4.1. üzlem Kafes Sistemler 4 F 1 F 2 F 1 F 2 F 3 F 3 P F 1 F 2 F 2 F1 F 2 F1 ΣF = 0 F 1 = F 2 F 3 F 1 = F 2 = F 3 P F 1 = F 2 = P F 4 F 1 = 0 F 1 F 2 ' F 2 = 0 EF = 0 F 3 ' ΣF ' = 0 F 1 = F 2 ΣF = 0 F 3 = F 4 ΣF = 0 ΣF ' = 0 F 1 = 0 F 2 = 0 İki sabit mesnet arasındaki çubuk kuvvet taşımaz. EF = 0

9 Statik Yapılar 4.1. üzlem Kafes Sistemler 5 Kafes sistemler tasarlanırken bazen ukarıdaki gibi iki tane kablo çapraz olarak takılabilir. Bu durumda kablolardan sadece birisi ük taşır. Eğer hangisinin ük taşıdığı kestirilemiorsa o zaman herhangi birisi ük taşıan eleman olarak alınır. iğerinin ük taşımadığı kabul edilir. Yapılan hesaplamanın sonucunda ük taşıdığı düşünülen kabloda çekme kuvveti bulunursa demekki apılan kabul doğrudur. Basma kuvveti bulunursa, bir kablo basma kuvveti taşıamaacağı için apılan kabulün tersi doğrudur. B B B B B B Bir düğümde çekme olan çubuk kuvveti diğer düğümde de çekmedir. B kuvveti düğümünde çekme ise B düğümünde de çekmedir. B B B B B B Bir düğümde basma olan çubuk kuvveti diğer düğümde de basmadır. B kuvveti düğümünde basma ise B düğümünde de basmadır.

10 Statik Yapılar 4.1. üzlem Kafes Sistemler 6 Behcet Örnek Problem ĞHN 4/1 Şekildeki gibi mesnetlenmiş ve üklenmiş olan kafes sistemin her bir çubuğunun taşıdığı kuvveti bulunuz. Bütün üçgenler eşkenardır. Verilenler: 1 = 4 kn Çözüm 2 = 8 kn 3 = 2 kn o C Tekerlekli mesnette ortaa çıkan tepki kuvveti daima daanma üzeine diktir. 2 C düğümü: C C İstenenler: B =? Çubukların bounu 2 birim alalım. E =? BC =? ΣM = 0 B =? BE =? 4 (1) 8 (2) 2 (3) + C sin30 o (4) = 0 C =? C = 13 kn E =? ' 30 o C BC 30 o C = 13 kn C ΣF = 0 C sin30 o C sin = 0 ΣF ' = 0 C BC cos30 o = 0 30 o BC C = BC cos30 o C = BC cos C = 7.51 kn BC = kn

11 Statik Yapılar 4.1. üzlem Kafes Sistemler 7 Behcet Örnek Problem ĞHN 4/1 Şekildeki gibi mesnetlenmiş ve üklenmiş olan kafes sistemin her bir çubuğunun taşıdığı kuvveti bulunuz. Bütün üçgenler eşkenardır. Verilenler: 1 = 4 kn 2 = 8 kn 3 = 2 kn düğümü: B E Çözüm (devamı) Bir çubuğun bir düğümünde çekme olan çubuk kuvveti, diğer düğümünde de çekmedir. C kuvveti C düğümünde çekme olarak bulunduğu için C = 7.51 kn düğümünde de çekmedir. E düğümü: ΣF = 0 2 kn C sin B sin 2 = 0 E E BE E = 6.35 kn B düğümü: 8 kn İstenenler: B = 5.2 kn B =? ΣF = 0 E =? C cos + B cos E = 0 BC =? E = 6.35 kn B =? BE =? C =? E =? ΣF = 0 E + BE cos E cos = 0 ΣF = 0 E = 8.66 kn 4 kn BE sin + E sin 4 = 0 BE = 4.04 kn Yön belirtir. Seçilen önde değil, ters öndedir. B B BC = kn BE = 4.04 kn B = 5.2 kn ΣF = 0 B + BE cos B cos BC = 0 B = kn

12 Statik Yapılar 4.1. üzlem Kafes Sistemler 8 Behcet Örnek Problem ĞHN 4/2 Şekildeki gibi mesnetlenmiş ve üklenmiş olan kafes sistemin B ve BE çubuklarının taşıdığı kuvvetleri bulunuz. Bütün iç açılar a vea 120 o dir. Verilenler: FG G düğümü: 120 o 120 o G EG Çözüm E düğümü: BE E BE E EG = E EG EG = sin120 o sin120 o BE = EG = BE = EG = FG İstenenler: B =? EG BE =? B düğümü: B B BE B B B BE = B = BE = B = Bu kafes sistemin tamamı üçgenlerden medana gelmemiştir. Fakat rijit bir apı ortaa çıkmıştır, ük taşıabilmektedir.

13 Statik Yapılar 4.1. üzlem Kafes Sistemler 9 Behcet Örnek Problem ĞHN 4/3 Şekildeki gibi mesnetlenmiş olan kafes sistemin her bir çubuğunun kütlesi 40 kg olduğuna göre her bir çubuğa gelen ortalama kuvveti hesaplaınız. Verilenler: Çözüm W = mg m = 40 kg = 8 m g = 9.81 m/s 2 İstenenler: B =? E =? BC =? B =? BE =? C =? E =? C Kafes sistem ükleme açısından ve anı zamanda geometrik olarak simetrik olduğu için: E = C B = BC BE = B E düğümü: E = 1133 N W T = C = W T / 2 = 1373 N 1.5W E 30 o 30 o E BE ΣF = 0 W T = 40 (7) (9.81) = 2747 N Kafes sistemin tamamının ağırlığı düğümü: E ve B çubuklarının ağırlıklarının arısını düğümüne etki ettiririz. E cos30 o 1.5 W BE cos30 o = 0 BE = 454 N ΣF = 0 E sin30 o + BE sin30 o E = 0 E = 794 N Çubukların ağırlıklarını, ihmal etmediğimiz zaman, uç noktalarındaki pimlere etki eden iki kuvvete böleriz. Bir çubuğun ağırlığına W dielim. W E B = 1373 N ΣF = 0 W = 392 N W E sin = 0 ΣF = 0 E = 1133 N B E cos = 0 B = 566 N

14 Statik Yapılar 4.1. üzlem Kafes Sistemler 10 Behcet Örnek Problem ĞHN 4/4 Şekildeki gibi mesnetlenmiş ve üklenmiş olan kafes sistem, dış taraftaki çubuklardan ve içerideki iki çapraz kablodan oluşmuştur. C ve B kabloları basma taşıamaan elemanlardır. ükü (a) B düğümüne, (b) C düğümüne ugulandığı zaman elemanlarda ortaa çıkan kuvvetleri bulunuz. Verilenler: Çözüm İki tane kablo çapraz olarak takıldığı zaman kablolardan sadece birisi ük taşır. Eğer hangisinin ük taşıdığı kestirilemiorsa o zaman herhangi birisi ük taşıan eleman olarak alınır. iğerinin ük taşımadığı kabul edilir. C nin çekme taşıdığını ve B nin ük taşımadığını kabul edelim. B = 0 (a) ükü B den ugulanıor: B düğümü: C düğümü: düğümü: C BC = B B İstenenler: BC B =? C =? ΣF = 0 B = 0 =? BC =? ΣF = 0 BC = B =? C =? BC = C C C C C = 4 / 3 C = 5 / 3 C ΣF = 0 = 0 C kuvveti pozitif çıktı. emekki apılan seçim doğrudur. C kablosu ük taşır. B kablosu taşımaz. B = 0

15 Statik Yapılar 4.1. üzlem Kafes Sistemler 11 Behcet Örnek Problem ĞHN 4/4 Şekildeki gibi mesnetlenmiş ve üklenmiş olan kafes sistem, dış taraftaki çubuklardan ve içerideki iki çapraz kablodan oluşmuştur. C ve B kabloları basma taşıamaan elemanlardır. ükü (a) B düğümüne, (b) C düğümüne ugulandığı zaman elemanlarda ortaa çıkan kuvvetleri bulunuz. Verilenler: Çözüm (devamı) İki tane kablo çapraz olarak takıldığı zaman kablolardan sadece birisi ük taşır. Eğer hangisinin ük taşıdığı kestirilemiorsa o zaman herhangi birisi ük taşıan eleman olarak alınır. iğerinin ük taşımadığı kabul edilir. C nin çekme taşıdığını ve B nin ük taşımadığını kabul edelim. B = 0 (b) ükü C den ugulanıor: B düğümü: C düğümü: düğümü: B B İstenenler: BC B =? C =? ΣF = 0 B = 0 =? BC =? ΣF = 0 BC = 0 B =? C =? 3 C 5 4 C C C C = 4 / 3 C = 5 / 3 C C ΣF = 0 = 0 C kuvveti pozitif çıktı. emekki apılan seçim doğrudur. C kablosu ük taşır. B kablosu taşımaz. B = 0

16 Statik Yapılar 4.1. üzlem Kafes Sistemler 12 Kesim Yöntemi Elemanların taşıdığı kuvvetleri bulmak amacı ile aşağıdaki gibi kesim apılarak sadece kafes sistemin bir kısmının dengesi incelenebilir. engesi incelenen kısmın denge kategorisi genel kategori ise üç tane bağımsız denklem vardır. F G B C E F G B GE BE BC ΣF = 0 ΣF = 0 ΣM = 0 Yandaki denklemler erine alternatif denge denklemleri de kullanılabilir. Bilinmeenlerden iki tanesinin tesir çizgisinin kesiştiği bir noktaa göre moment alınarak bir denklemden bir bilinmeen direk olarak bulunabilir. Kesim öntemi ile en fazla 3 bilinmeen bulunabilir. olaısı ile, mecbur kalmadıkça, bir kesimde 3 ten fazla eleman kesmemee dikkat edilir. Eğer bilinmeen saısı 3 ten fazla ise birden fazla kesim apılabilir. F Belirsiz durum ortaa çıkmaması için Kesim çizgisi düğümlerden geçmemelidir.! Mesnet tepkileri kafes sistemin tamamının dengesinden de bulunabilir. Kafes sistemlerin çözümünde sadece düğüm öntemini vea sadece kesim öntemini kullanmak erine iki öntem birlikte de kullanılabilir.

17 Statik Yapılar 4.1. üzlem Kafes Sistemler 13 Behcet Örnek Problem ĞHN 4/5 Şekildeki gibi mesnetlenmiş ve üklenmiş olan kafes sistemin BC, BE ve BF elemanlarındaki kuvvetleri bulunuz. Üçgenler eşkenardır. Verilenler: Çözüm BC BE 1 sin EF 1 B ΣM E = 0 ΣM = 0 BF EF BC (sin ) (1) = 0 BC (sin ) BE sin (1) = 0 ΣF = 0 İstenenler: BC = /sin BC = BE = /sin BF sin = 0 BC =? BE =? BF =? BF = /sin

18 Statik Yapılar 4.1. üzlem Kafes Sistemler 14 Behcet Örnek Problem ĞHN 4/6 Şekildeki gibi mesnetlenmiş ve üklenmiş olan kafes sistemin GM elemanındaki kuvveti bulunuz. Verilenler: Çözüm 12 m 1 3 GH GM 9 m 6 m 8 3 m 5 MN 3 α K S ΣM S = 0 İstenenler: K = 4 Kafes sistemin tamamının dengesinden bulunur. GM sinα (12) + (12) + (9) + (/2) (6) K (6) = 0 GM = 0 GM =? GM çubuğundaki kuvveti, düğüm öntemi ile bulmamız istensedi altı tane pimin dengesini incelememiz gerekecekti. Burada bir tek denge denklemi ile sonuca gidilmiştir.

19 Statik Yapılar 4.1. üzlem Kafes Sistemler 15 Behcet Örnek Problem ĞHN 4/7 Şekildeki gibi mesnetlenmiş ve üklenmiş olan kafes sistemin IJ elemanındaki kuvveti bulunuz. Verilenler: Çözüm 7 Boutlar metre cinsindendir. IJ İstenenler: = 150 kn Kafes sistemin tamamının dengesinden bulunur. ΣM = 0 IJ (7) + 75 (10) + 25 (16) (20) = 0 IJ = kn IJ =? IJ çubuğundaki kuvveti, düğüm öntemi ile bulmamız istensedi beş tane pimin dengesini incelememiz gerekecekti. Burada bir tek denge denklemi ile sonuca gidilmiştir.

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve leri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boyutlu Kuvvet

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çöümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki outlu Kuvvet

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

BÖLÜM 4 YAPISAL ANALİZ (KAFESLER-ÇERÇEVELER-MAKİNALAR)

BÖLÜM 4 YAPISAL ANALİZ (KAFESLER-ÇERÇEVELER-MAKİNALAR) BÖLÜM 4 YAPISAL ANALİZ (KAESLER-ÇERÇEVELER-MAKİNALAR) 4.1 Kafesler: Basit Kafes: İnce çubukların uçlarından birleştirilerek luşturulan apıdır. Bileştirme genelde 1. Barak levhalarına pimler ve kanak vasıtası

Detaylı

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümleri MÜH 110 Statik Dersi - 1. Çalışma Soruları 03 Mart 2017

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümleri MÜH 110 Statik Dersi - 1. Çalışma Soruları 03 Mart 2017 KÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) ölümleri SRU-1) Mühendislik apılarında kullanılan elemanlar için KSN (Tarafsız eksen) kavramını tanımlaınız ve bir kroki şekil çizerek

Detaylı

STATİK-MUKAVEMET 1. YIL İÇİ SINAVI m m. 4.5 m

STATİK-MUKAVEMET 1. YIL İÇİ SINAVI m m. 4.5 m dı /Soadı : No : İmza: STTİK-MUKVEMET 1. YI İÇİ SINVI 06-11-2013 Örnek Öğrenci No 010030403 abcd DF deki çekme kuvveti 15(a+c)kN olduğuna göre E noktasındaki bağ kuvvetlerini 20 kn 20 kn 20 kn 20 kn h

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve ektörler - Newton Kanunları 2. KUET SİSTEMLEİ - İki Boyutlu

Detaylı

TEST SORULARI Adı /Soyadı : No : İmza: xaxxbxcde STATİK-MUKAVEMET 1.YILİÇİ SINAVI

TEST SORULARI Adı /Soyadı : No : İmza: xaxxbxcde STATİK-MUKAVEMET 1.YILİÇİ SINAVI dı /Soadı : No : İmza: STTİK-MUKVEMET 1.YIİÇİ SINVI 21-03-2011 Örnek Öğrenci No 010030403 ---------------------abcde R= 5(a +b) cm Şekildeki taşııcı sistemin bağ kuvvetlerini bulunuz =2(a+e) N =(a) m =2(a

Detaylı

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 4 BÖLÜM IV. Düzlem Kafesler. En çok kullanılan köprü kafesleri. En çok kullanılan çatı kafesleri

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 4 BÖLÜM IV. Düzlem Kafesler. En çok kullanılan köprü kafesleri. En çok kullanılan çatı kafesleri İ.T.Ü. Makina akültesi ÖLÜM IV üzlem Kafesler En çok kullanılan köprü kafesleri En çok kullanılan çatı kafesleri İ.T.Ü. Makina akültesi Mühendislik olalarında genel olarak birden çok katı cisim birbirine

Detaylı

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir. A-36 malzemeden çelik çubuk, şekil a gösterildiği iki kademeli olarak üretilmiştir. AB ve BC kesitleri sırasıyla A = 600 mm ve A = 1200 mm dir. A serbest ucunun ve B nin C ye göre yer değiştirmesini belirleyiniz.

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta) KAFES SİSTEMLER STATİK (4. Hafta) Düz eksenden oluşan çubukların birbiriyle birleştirilmesiyle elde edilen sistemlere kafes sistemler denir. Çubukların birleştiği noktalara düğüm noktaları adı verilir.

Detaylı

YAPISAL ANALİZ DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

YAPISAL ANALİZ DOÇ.DR. KAMİLE TOSUN FELEKOĞLU YAPISAL ANALİZ DOÇ.DR. KAMİLE TOSUN FELEKOĞLU 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla

Detaylı

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8-

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8- 1 STATİK Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8- Giriş 2 Denge denklemlerini, mafsala bağlı elemanlarda oluşan yapıları analiz etmek için kullanacağız. Bu analiz, dengede olan bir yapının

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLEİ - İki Boyutlu Kuvvet

Detaylı

Kafes Sistemler. Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir.

Kafes Sistemler. Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Kafes Sistemler Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Kafes Sistemler Birçok uygulama alanları vardır. Çatı sistemlerinde, Köprülerde, Kulelerde, Ve benzeri

Detaylı

6.12 Örnekler PROBLEMLER

6.12 Örnekler PROBLEMLER 6.1 6. 6.3 6.4 6.5 6.6 6.7 Çok Parçalı Taşıyıcı Sistemler Kafes Sistemler Kafes Köprüler Kafes Çatılar Tam, Eksik ve Fazla Bağlı Kafes Sistemler Kafes Sistemler İçin Çözüm Yöntemleri Kafes Sistemlerde

Detaylı

ÇATI MAKASINA GELEN YÜKLER

ÇATI MAKASINA GELEN YÜKLER ÇATI MAKASINA GELEN YÜKLER Bir yapıyı dış etkilere karşı koruyan taşıyıcı sisteme çatı denir. Belirli aralıklarla yerleştirilen çatı makaslarının, yatay taşıyıcı eleman olan aşıklarla birleştirilmesi ile

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PO.D. MUAT DEMİ AYDIN ***Bu ders notları bir sonraki slatta verilen kanak kitaplardan alıntılar apılarak hazırlanmıştır. Mühendisler için Vektör Mekaniği: STATİK.P. Beer, E.. Johnston Çeviri Editörü: Ömer

Detaylı

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN Yapı Sistemleri: İzostatik (Statikçe Belirli) Sistemler : Bir sistemin tüm kesit tesirlerini (iç kuvvetlerini) ve mesnet reaksiyonlarını

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ

KARADENİZ TEKNİK ÜNİVERSİTESİ KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Makine Mühendisliği Bölümü MM 1000 STATİK ÖDEV II Son teslim tarihi: 13 Mayıs Cuma 10:00 (I, II. Öğretim Grupları) Soru Çözümü: 13 Mayıs Cuma 14:00,

Detaylı

Nlαlüminyum 5. αlüminyum

Nlαlüminyum 5. αlüminyum Soru 1. Bileşik bir çubuk iki rijit mesnet arasına erleştirilmiştir. Çubuğun sol kısmı bakır olup kesit alanı 60 cm, sağ kısmı da alüminum olup kesit alanı 40 cm dir. Sistem 7 C de gerilmesidir. Alüminum

Detaylı

KONU 3. STATİK DENGE

KONU 3. STATİK DENGE KONU 3. STATİK DENGE 3.1 Giriş Bir cisme etki eden dış kuvvet ve momentlerin toplamı 0 ise cisim statik dengededir denir. Kuvvet ve moment toplamlarının 0 olması sırasıyla; ötelenme ve dönme denge şartlarıdır.

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

Saf Eğilme (Pure Bending)

Saf Eğilme (Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde, doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki deformasonları incelenecek. Burada çıkarılacak formüller, en kesiti an az bir eksene göre simetrik

Detaylı

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3-

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- 1 STATİK Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- Moment KUVVET SİSTEMLERİ 2 Moment, bir kuvvetin bir nokta veya bir eksen etrafında oluşturduğu döndürme etkisinin ölçüsüdür. Momentin büyüklüğü

Detaylı

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

STATİK KUVVET ANALİZİ (2.HAFTA)

STATİK KUVVET ANALİZİ (2.HAFTA) STATİK KUVVET ANALİZİ (2.HAFTA) Mekanik sistemler üzerindeki kuvvetler denge halindeyse sistem hareket etmeyecektir. Sistemin denge hali için gerekli kuvvetlerin hesaplanması statik hesaplamalarla yapılır.

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS erdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 285 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

TAŞIMA GÜCÜ. n = 17 kn/m3 YASD

TAŞIMA GÜCÜ. n = 17 kn/m3 YASD TAŞIMA GÜCÜ PROBLEM 1: Diğer bilgilerin şekilde verildiği durumda, a) Genişliği 1.9 m, uzunluğu 15 m şerit temel; b) Bir kenarı 1.9 m olan kare tekil temel; c) Çapı 1.9 m olan dairesel tekil temel; d)

Detaylı

MÜHENDİSLER İÇİN VEKTÖR MEKANİĞİ: STATİK. Bölüm 1 Temel Kavramlar ve İlkeler

MÜHENDİSLER İÇİN VEKTÖR MEKANİĞİ: STATİK. Bölüm 1 Temel Kavramlar ve İlkeler MÜHENDİSLER İÇİN VEKTÖR MEKANİĞİ: STATİK Bölüm 1 Temel Kavramlar ve İlkeler Mekanik Mekanik Rijit-Cisim Mekaniği Şekil değiştiren Cismin Mekaniği Statik Dinamik Dengedeki Cisimler Hareketsiz veya durgun

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı KOCEİ ÜNİVERSİTESİ Mühendislik akültesi Makina Mühendisliği ölümü Mukavemet I inal Sınavı dı Soadı : 9 Ocak 0 Sınıfı : h No : SORU : Şekildeki ucundan ankastre, ucundan serbest olan kirişinin uzunluğu

Detaylı

Elemanlardaki İç Kuvvetler

Elemanlardaki İç Kuvvetler Elemanlardaki İç Kuvvetler Bölüm Öğrenme Çıktıları Yapı elemanlarında oluşan iç kuvvetler. Eksenel kuvvet, Kesme kuvvet ve Eğilme Momenti Denklemleri ve Diyagramları. Bölüm Öğrenme Çıktıları Elemanlarda

Detaylı

Girdi kuvvetleri ile makinaya değişik biçimlerde uygulanan dış kuvvetler kastedilmektedir (input forces). Çıktı kuvvetleri ise elde edilen kuvvetleri

Girdi kuvvetleri ile makinaya değişik biçimlerde uygulanan dış kuvvetler kastedilmektedir (input forces). Çıktı kuvvetleri ise elde edilen kuvvetleri ÇERÇEVELER Çerçeveler kafesler gibi genellikle sabit duran taşıyıcı sistemlerdir. Bir çerçeveyi kafesten ayıran en belirgin özellik, en az bir elemanının çok kuvvet elemanı (multi force member) oluşudur.

Detaylı

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 6.Düzlem ve Uzay kafes Sistemler Doç. Dr. NURHAYAT DEĞİRMENCİ Birbirlerine bağlı birden fazla parçadan yapılmış sistemlerin dengesi için dıs kuvvetlere ilaveten iç kuvvetler de düşünülmelidir.

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

YAPI STATİĞİ MESNETLER

YAPI STATİĞİ MESNETLER YAPI STATİĞİ MESNETLER Öğr.Gör. Gültekin BÜYÜKŞENGÜR STATİK Kirişler Yük Ve Mesnet Çeşitleri Mesnetler Ve Mesnet Reaksiyonları 1. Kayıcı Mesnetler 2. Sabit Mesnetler 3. Ankastre (Konsol) Mesnetler 4. Üç

Detaylı

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 212 YAPI STATİĞİ I STABİLİTE STATİKÇE BELİRSİZLİK KİNEMATİK BELİRSİZLİK Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz.

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz. BTMIŞ YÜZEYLERE ELEN HİDROSTTİK KUVVETLER DÜZLEM YÜZEYLER Yata Yüeler Sıvı üei Yata bir dülem üee gelen idrostatik kuvvetin büüklüğünü ve etkime noktasını bulmak istioru. d d Kuvvetin Büüklüğü :Şekil deki

Detaylı

MÜHENDİSLİK YAPILARI ÇERÇEVELER VE MAKİNALAR

MÜHENDİSLİK YAPILARI ÇERÇEVELER VE MAKİNALAR MÜHENDİSLİK YAPILARI ÇERÇEVELER VE MAKİNALAR ÇERÇEVELER Çerçeveler kafesler gibi genellikle sabit duran taşıyıcı sistemlerdir. Bir çerçeveyi kafesten ayıran en belirgin özellik, en az bir elemanının çok

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 5 Ağırlık merkezi STATİK Bir cisim moleküllerden meydana gelir. Bu moleküllerin her birine yer çekimi kuvveti etki eder. Bu yer çekimi kuvvetlerinin cismi meydana getiren

Detaylı

BURKULMA DENEYİ DENEY FÖYÜ

BURKULMA DENEYİ DENEY FÖYÜ T.C. ONDOKUZ MYIS ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ MKİN MÜHENDİSLİĞİ BÖLÜMÜ BURKULM DENEYİ DENEY FÖYÜ HZIRLYNLR Prof.Dr. Erdem KOÇ Yrd.Doç.Dr. İbrahim KELEŞ EKİM 1 SMSUN BURKULM DENEYİ 1. DENEYİN MCI

Detaylı

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz.

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz. ÇALIŞMA SORULARI Üniform yoğunluğa sahip plaka 270 N ağırlığındadır ve A noktasından küresel mafsal ile duvara bağlanmıştır. Ayrıca duvara C ve D noktasından bağlanmış halatlarla desteklenmektedir. Serbest

Detaylı

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University CHAPTER BÖLÜM MECHANICS MUKAVEMET OF I MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Basit Eğilme Lecture Notes: J. Walt Oler Teas Tech Universit Düzenleen: Era Arslan 2002 The McGraw-Hill

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK STATİK (Ders Notları) Kaynak: Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige, Wiley Yardımcı Kaynak: Mühendislik Mekaniği: Statik, R.C Hibbeler & S.C. Fan, Literatür

Detaylı

Aşağıdaki Web sitesinden dersle ilgili bilgi alınabilir. Ders, uygulama ve ödevlerle ilgili bilgiler yeri geldiğinde yayınlanacaktır.

Aşağıdaki Web sitesinden dersle ilgili bilgi alınabilir. Ders, uygulama ve ödevlerle ilgili bilgiler yeri geldiğinde yayınlanacaktır. MK 04: MUKVEMET Öğr.Gör.Dr. hmet Taşkesen MUKVEMET GİRİŞ DERS STLERİ Öğr.Gör.Dr. hmet Taşkesen, Makina Bölümü, Tel: 1680/1844, e-posta: taskesen@gazi.edu.tr Teorik Ders (3 saat) + Ödevler + Quizler Uygulama

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Companies, Inc. All rights reserved. T E CHAPTER 7 Gerilme MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Dönüşümleri Fatih Alibeoğlu 00 The McGraw-Hill

Detaylı

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 8. Konu TORK VE DENGE ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 8. Konu TORK VE DENGE ETKİNLİK VE TEST ÇÖZÜMLERİ 11. SINI NU ANAIMI 1. ÜNİE: UVVE VE HAREE 8. onu R VE DENGE EİNİ VE ES ÇÖZÜMERİ 8 ork ve Denge 1. Ünite 8. onu (ork ve Denge) A nın Çözümleri 1. Çubuk dengede olduğuna göre noktasına göre toplam tork sıfırdır.

Detaylı

Kafes Sistemler. Doğru eksenli çubukların birbirlerine mafsallı olarak birleşmesinden meydana gelen taşıyıcı sistemlere Kafes Sistemler denir.

Kafes Sistemler. Doğru eksenli çubukların birbirlerine mafsallı olarak birleşmesinden meydana gelen taşıyıcı sistemlere Kafes Sistemler denir. KAFES SİSTEMLER Doğru eksenli çubukların birbirlerine mafsallı olarak birleşmesinden meydana gelen taşıyıcı sistemlere Kafes Sistemler denir. Özellikle büyük açıklıklı dolu gövdeli sistemler öz ağırlıklarının

Detaylı

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

DÜZLEM KAFES SİSTEMLER. Copyright 2010 Pearson Education South Asia Pte Ltd

DÜZLEM KAFES SİSTEMLER. Copyright 2010 Pearson Education South Asia Pte Ltd Copyright 2010 Pearson Education South Asia Pte Ltd Aynı düzlem içinde birbirlerine uç noktalarından bağlanarak bir rijid yapı oluşturan çubuklar topluluğuna düzlem kafes sistemi denir. Bir kafes sistemi,

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

STATİK DOÇ.DR. KAMİLE TOSUN FELEKOĞLU. Ders notları için: GÜZ JEOLOJİ MÜH.

STATİK DOÇ.DR. KAMİLE TOSUN FELEKOĞLU. Ders notları için: GÜZ JEOLOJİ MÜH. STATİK STATİK DOÇ.DR. KAMİLE TOSUN FELEKOĞLU Ders notları için: http://kisi.deu.edu.tr/kamile.tosun/ 2014-2015 GÜZ JEOLOJİ MÜH. ÖÖ/İÖ 54-58 2 Değerlendirme 1. Ara sınav (%25) 2. Ara sınav (%25) Final (%50)

Detaylı

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50 YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50 Toplam 100 1 Mukavemet ve Statiğin Önemi 2 Statiğin

Detaylı

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.1 7.2 Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.4 Örnekler Kendi Ağırlığını Taşıyan Kablolar (Zincir Eğrisi)

Detaylı

YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla

Detaylı

7. STABİLİTE HESAPLARI

7. STABİLİTE HESAPLARI 7. STABİLİTE HESAPLARI Çatı sistemlerinde; Kafes kirişlerin (makasların) montaj aşamasında ve kafes düzlemine dik rüzgar ve deprem etkileri altında, mesnetlerini birleştiren eksen etrafında dönerek devrilmelerini

Detaylı

Kesit Tesirleri Tekil Kuvvetler

Kesit Tesirleri Tekil Kuvvetler Statik ve Mukavemet Kesit Tesirleri Tekil Kuvvetler B ÖĞR.GÖR.GÜLTEKİN BÜYÜKŞENGÜR Çevre Mühendisliği Mukavemet Şekil Değiştirebilen Cisimler Mekaniği Kesit Tesiri ve İşaret Kabulleri Kesit Tesiri Diyagramları

Detaylı

Mekanik, Statik Denge

Mekanik, Statik Denge Mekanik, Statik Denge Mardin Artuklu Üniversitesi 2. Hafta-01.03.2012 İdris Bedirhanoğlu url : www.dicle.edu.tr/a/idrisb e-mail : idrisbed@gmail.com 0532 657 14 31 Statik **Statik; uzayda kuvvetler etkisi

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 14.MATEMATİK YARIŞMASI 8. SINIFLAR FİNAL SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 14.MATEMATİK YARIŞMASI 8. SINIFLAR FİNAL SORULARI 8 SINIFLAR FİNAL SORULARI 1 3+ 1 denkleminin çözüm kümesini bulunuz ( R ) Aritmetik bir dizinin ilk 0 teriminin toplamı 400 ve dördüncü terimi olduğuna göre, birinci terimini bulunuz 3 4 öğrencinin katıldığı

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ TEKNOLOJİNİN BİLİMSEL İLKELERİ Öğr. Gör. Fatih KURTULUŞ 4.BÖLÜM: STATİK MOMENT - MOMENT (TORK) Moment (Tork): Kuvvetin döndürücü etkisidir. F 3 M ile gösterilir. Vektörel büyüklüktür. F 4 F 3. O. O F 4

Detaylı

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine etkiyenf r kuvvetini göstermektedir. Parçacık A noktasından r r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve d r A dan A ne

Detaylı

Çerçeveler ve Basit Makinalar

Çerçeveler ve Basit Makinalar Çerçeveler ve Basit Makinalar Çeşitli elemanların birbirlerine bağlanması ile oluşan sistemlerdir. Kafes sistemlerden farklı olarak, elemanlar birbirlerine 2 den fazla noktadan bağlanabilir ve dış kuvvetler

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

Basit Kafes Sistemler

Basit Kafes Sistemler YAPISAL ANALİZ 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla kullanılan ahşap gergi elemanları

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi 1 Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Kafes Sistemler Turesses

Kafes Sistemler Turesses Kafes Sistemler Turesses Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Turesses are a carrier system formed by the bar elements. Each bar element connects to others

Detaylı

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ 1. BÖLÜM FİZİĞİN DĞASI - VEKÖRLER DENGE - MMEN - AĞIRLIK MERKEZİ FİZİĞİN DĞASI - VEKÖRLER - DENGE - MMEN - AĞIRLIK MERKEZİ SRULAR 1. I. ork (x) II. Güç (P) III. Açısal momentum (L) Yukarıdakilerden hangisi

Detaylı

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun Dolu Gövdeli Kirişler TAŞIYICI SİSTEM TASARIMI 1 Prof Dr Görün Arun 072 ÇELİK YAPILAR Kirişler, Çerçeve Dolu gövdeli kirişler: Hadde mamulü profiller Levhalı yapma en-kesitler Profil ve levhalarla oluşturulmuş

Detaylı

R 1Y kn R 1X R 1Z R 4Y R 3Y 4 R 4X R 3Z R 3X R 4Z. -90 kn. 80 kn 80 kn R 1Y =10 R 1X =-10 R 4Y =10 R 1Z =0 R 3Y =70 4 R 3X =-70 R 4X =0

R 1Y kn R 1X R 1Z R 4Y R 3Y 4 R 4X R 3Z R 3X R 4Z. -90 kn. 80 kn 80 kn R 1Y =10 R 1X =-10 R 4Y =10 R 1Z =0 R 3Y =70 4 R 3X =-70 R 4X =0 27. Uzay kafes örnek çözümleri Örnek 27.: Şekil 27. de verilen uzay kafes sistem çelik borulardan imal edilecektir. a noktasındaki dış yüklerden oluşan eleman kuvvetleri, reaksiyonlar, gerilmeler ve düğüm

Detaylı

EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ

EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ Özgür EKER EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ Eğim: ETKİNLİK : Bir bisiklet arışındaki iki farklı parkur aşağıdaki gibidir. I. parkurda KL 00 metre ve II. parkurda AB 00 metre olduğuna

Detaylı

Bölüm 3 - Parçacık Dengesi. Spring 2002 Equilibrium of a Particle 1

Bölüm 3 - Parçacık Dengesi. Spring 2002 Equilibrium of a Particle 1 Bölüm 3 - Parçacık Dengesi Spring 2002 Equilibrium of a Particle 1 3 Boyutta denge 0 Burada parçacık üzerineetkiyen tüm kuvvetlerin toplamıdır. Spring 2002 Equilibrium of a Particle 2 Spring 2002 Equilibrium

Detaylı

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 1. Konu VEKTÖRLER TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 1. Konu VEKTÖRLER TEST ÇÖZÜMLERİ 11. SINI SOU BANKASI 1. ÜNİTE: KUVVET VE HAEKET 1. Konu VEKTÖLE TEST ÇÖZÜMLEİ 1 Vektörler Test 1 in Çözümleri 3. 4 N 1. 1,2 = 2 3 2 3 120 4 N 4 N 6 N 4 N Şekil I Şekil II A Şekil I Şekil II A 3 Değeri

Detaylı

Çerçeve ve Makineler

Çerçeve ve Makineler Çerçeve ve Makineler Hedefler Mafsal (pim) ile tutturulmuş çerçeve ve makine elemanlarına etki eden kuvvetlerin analizi. Çerçeve ve Makineler Çok kuvvet elemanı içeren mafsal ile tutturulmuş yapılardır.

Detaylı

Arş. Gör. Melda A. ÇAKIROĞLU Sayfa 1 21.04.2006/11:10 Osman GENÇEL

Arş. Gör. Melda A. ÇAKIROĞLU Sayfa 1 21.04.2006/11:10 Osman GENÇEL Arş Gör Melda A ÇAKIROĞLU Safa 04006/:0 MUKAVEMET GİRİŞ - Mekanik Tanımı - Elastisite - İdeal Kavramlar (elastik cisim- homogen- izotrop- hooke asası) İÇ KUVVETLER ve NORMAL KUVVET HALİ - Normal Gerilme

Detaylı

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Newton un II. yasası Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Bir cisme F A, F B ve F C gibi çok sayıda kuvvet etkiyorsa, net kuvvet bunların

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

TEMEL MEKANİK 10. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 10. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 10 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

Yapıda döşeme üzerinde bulunan sabit ve hareketli yükleri kolonlara aktaran yapı elemanı olan kiriş,

Yapıda döşeme üzerinde bulunan sabit ve hareketli yükleri kolonlara aktaran yapı elemanı olan kiriş, ÖÜ Q.. ĐZOSTTĐK SĐSTEER ÖÜ : Yapıda döşeme üzerinde bulunan sabit ve hareketli ükleri kolonlara aktaran apı elemanı olan kiriş,. ir boutu diğerine göre küçük olan [b,h

Detaylı

diferansiyel hale getiren) bir integrasyon çarpanı olur? belirleyiniz, bu çarpanı kullanarak denklemin çözümünü bulunuz.

diferansiyel hale getiren) bir integrasyon çarpanı olur? belirleyiniz, bu çarpanı kullanarak denklemin çözümünü bulunuz. Diferansiel Denklemler I /8 Çalışma Soruları 9.0.04 A. Aşağıda istenilenleri elde ediniz!. ( e +. d + ( e + k. d 0 denkleminin tam diferansiel denklem olabilmesi için ugun k saısını belirleiniz. Bu k saısı

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta) TAŞIYICI SİSTEMLER VE MESNET TEPKİLERİ STATİK (3. Hafta) Taşıyıcı Sistemler Bir yapıya etki eden çeşitli kuvvetleri güvenlik sınırları içinde taşıyan ve bu kuvvetleri zemine aktaran sistemlere taşıyıcı

Detaylı

Konikler ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Hüseyin AZCAN

Konikler ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Hüseyin AZCAN Konikler Yazar Doç.Dr. Hüsein AZCAN ÜNİTE 7 Amaçlar Bu ünitei çalıştıktan sonra; lise ıllarından da tanıdığınız çember, elips, parabol ve hiperbol gibi konik kesitleri olarak adlandırılan geometrik nesneleri

Detaylı

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( )

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( ) 1 3 4 5 6 T AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI (13.11.008) Ad-Soad: No: Grup: 1) a) İdeal ve gerçek akışkan nedir? Hız dağılımlarını çiziniz. Pratikte ideal akışkan var mıdır? Açıklaınız. İdeal Akışkan;

Detaylı

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1. Ders: MAT6 Konu: Matrisler, Denklem Sistemleri. A = matrisi bulunuz.. A = a b c d e f ve B = ÇALIŞMA SORULARI- olmak üzere X = AX + B olacak şekilde bir X matrisi satır basamak hale getirildiğinde en fazla

Detaylı

MAKİNE 1 G BAHAR YARIYILI STATİK DERSİ 1.VİZE SORULARI VE CEVAPLARI

MAKİNE 1 G BAHAR YARIYILI STATİK DERSİ 1.VİZE SORULARI VE CEVAPLARI MKİNE 1 G1-3 H YIYILI TTİK Eİ 1.VİZE OULI VE EVPLI oru 1: Şekilde ölçüleri verilen homojen dolu cismin kütle merkezinin koordinatlarını hesaplaınız. 1 9 9 ξ =?, η =?, ζ =? 15 3 1 4 5 5 r = 1 6 =19 z (

Detaylı

Eksenel Yükleme Amaçlar

Eksenel Yükleme Amaçlar Eksenel Yükleme Amaçlar Geçtiğimiz bölümlerde eksenel yüklü elemanlarda oluşan normal gerilme ve normal şekil değiştirme konularını gördük, Bu bölümde ise deformasyonların bulunması ile ilgili bir metot

Detaylı