BÖLÜM 4 YAPISAL ANALİZ (KAFESLER-ÇERÇEVELER-MAKİNALAR)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BÖLÜM 4 YAPISAL ANALİZ (KAFESLER-ÇERÇEVELER-MAKİNALAR)"

Transkript

1 BÖLÜM 4 YAPISAL ANALİZ (KAESLER-ÇERÇEVELER-MAKİNALAR) 4.1 Kafesler: Basit Kafes: İnce çubukların uçlarından birleştirilerek luşturulan apıdır. Bileştirme genelde 1. Barak levhalarına pimler ve kanak vasıtası ile, 2. Büük çaplı birleştirme parçalarına tutturarak gerçekleşir. Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

2 Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

3 4.1.1 Düzlem Kafesler: Kafesin tüm elemanları anı düzlem içindedir. Kabuller: 1. Tüm ükler bağlantı nkatalarından etkitilir. 2. Bağlantılar sürtünmesiz pimlerle apılmışlardır. 3. Tüm elemanlar çift kuvvet elemanıdır. 4. Elemanlar sadece çeki vea basıa zrlanırlar. Kafesler arıca rijit larak kabul edilir. Yani ükleme altında ve destek nktalarından arıldıklarında şeklillerinin değişmediği kabul edilir. En basit kafes apısı: Kafes apısının luşturulması: ABC kafes apısına B ve C birleşim nktalarından BD ve DC çubukları eklendiğinde kafes sistemi genişletilmiş lunacaktır. Yeni sistem ine rijittir. Çubuk ekleme işine devam edilerek basit kafes apısı genişetilebilir. Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

4 Hesap: m = ( j - 3 ) m=çubuk saısı j=bağlantı nktası saısı r=reaksin kuvveti saısı İzstatiklik şartı: m< 2j r m= 2j r m> 2j r Stabil değil Statikle çözülebilir Statik larak tanımsız Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

5 Kafeslerin Analizi 1. Dış denge Reaksin kuvvetleri bulunur. 2. İç denge Herbir çubuktaki kuvvetler bulunur. -Düğüm Yöntemi -Kesme Yöntemi Düğüm Yöntemi Düğüm dengesi göz önüne alınır. Düğümün SCD ı çizilir Kiriş elemanları çift kuvvet elemanlarıdır. Düğümün SCD ı eş nktasal kuvvetlerdir. İki denge denklemi mevcuttur.( ) Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

6 Örnek Prblem 4.1. Her bir çubuktaki kuvvetleri bulunuz. ÇÖZÜM: A ( ) ( ) 500 A C A A = 500 N A = C M C 2 A = C = 500 N BC BC BA sin 45 BC BC = N ( ) = N C cs 45 ( ) = 500 N T BA cs 45 CA ( ) = 500 N T C C CA 707.1sin 45 = 500 N A A = 500 N A A = 500 N Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

7 Yüksüz çubuklar (sıfır kuvvet elemanları) Kafes apılarında bazı çubuklar ük taşımazlar. Bu üksüz çubukların bulunma kuralları: 1. İki eleman birbirine bağlı ise ve bu bağlantı nktası ükün ugulandığı nkta vea mesnet nktası değilse, bu iki eleman ük taşımır demektir. 2. İkisi rtak çizgide lacak şekilde üç çubuğun bağlandığı düğüme dışarıdan ükleme k ise rtak çizgide lmaan çubuk üksüzdür. Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

8 Örnek Prblem 4.2 Yandaki çatı kafesteki bş çubukları bulalım. Düğüm öntemi ile çözümlemede bazen bazı çubukların çekie mi ksa basıa mı çalıştığı ilk anda belirlenemeebilir. Bu üzden düğüm öntemini ugulamada genel bir prsedürün rtaa knulması önem arz etmektedir. Düğüm öntemi aşağıdaki sırada ugulanmalıdır. 1. Tüm kafesin Serbest Cisim Diagramı çizilir ve mesnet tepkileri bulunur. 2. En az bir, en fazla iki bilinmeecek lacak şekilde düğümlerin Serbest Cisim Diagramları çizilir. 3. Düğümlerin SCD nda bilinen kuvvetler kendi önlerinde, bilinmeen tüm kuvvetler düğümden dışarı lacak şekilde (çeki) erleştirilir. Bilinmeen kuvvette snuç pzitifse çubuk çekidir ve negatifse çubuk basıdır madde ugulanmaacaksa gözlem snucu bilinmeen kuvvetin önü belirtilir. Bilinmeen kuvvette snuç pzitifse alınan ön dğrudur ve negatifse alınan ön terstir. Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

9 Örnek Prblem 4.3. Yandaki kafeste her bir çubuktaki kuvvetlerin şiddetini ve çubukların basıa vea çekie zrlandıklarını bulunuz. ÇÖZÜM: 4 1 AD + AB 17 2 P AD + AB ( ) ( ).687 P T AD.943 P C AB Simetriden : ( ) ( ).943 P T CD.943 P C CB A A A + C P= 0 M Pa+ C (2a) C P P = A = DB ( P) ( P) = 1.33 P T DB ( ) Çubuklardaki kuvvetlerin önleri CD (T) AD (T) CB (C) AB (C) DB (T) Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

10 Kesme Yöntemi Eğer bir apı dengede ise içerisinden çıkarılan bir parçası da dengededir. Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

11 Örnek Prblem 4.4 GE, GC ve BC çubuklarındaki kuvvetleri bulunuz. ÇÖZÜM: 400 A A = 400 N A A + D 1200 M 1200(8) 400(3) + D (12) D A = 900 N = 300 N BC M G 300(4) 400(3) + (3) = 800 N (T) BC GE GE M C 300(8) (3) GE = 800 N = 800 N (C) GC GC = 0 5 = 500 N (T) CEVAP: Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

12 Örnek Prblem 4.5 C çubuğundaki kuvvetleri bulunuz. ÇÖZÜM: Menet tepkileri: O ( ) ( )( ) ( )( ) ( ) C sin 45 12m 3kN 8 m 4.75kN 4m 0 C M + =.589kN C Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

13 Örnek Prblem 4.6 EB çubuğundaki kuvveti bulunuz. ÇÖZÜM: Bu prblemi tek kesme ile apamaız. Şekilde gösterildiği gibi iki kesme apılması gerekir. ED ED M ED B 1000(4) (2) 4000(4) sin 30 (4) = 3000 N = 3000 N (C) E E EB E E cs cs 30 = 3000 N = 3000 N (C) sin sin = 2000 N (T) EB Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

14 Kafes Çeşitleri -Çatı Kafesler: -Köprü Kafesler: Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

15 Örnek Prblem 4.7. DE, EH ve HG çubuklarındaki kuvvetleri bulunuz. M A A 20(4) 20(8) 40(12) + G (16) A G = 45 kn A + G A = 65 kn H 45(4) + (4) DE = 45 kn = 45 kn ( C) DE = 5 kn ( T) EH DE EH 45 HG = 45 kn ( T) HG M Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

16 4.1.2 Uza Kafesler: Uza kafeste temel eleman tetrahedrndur. Tetrahedrnlarda 6 eleman ve 4 düğüm mevcuttur. Kafesi genişletebilmek için üç eleman ve bir düğüm eklemek gerekir. Düğüm öntemi ile çözüm apılabilir. z Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

17 Örnek Prblem 4.8: ÇÖZÜM: P= 4 j AB AC = AB = AC r 2i+ 2j 2k AE = = = 0.577i j 0.577k AE AE AE AE r AE AE j k ( ) AC AB = P+ + + z.577 AE AC AE = = = 4kN AB AC AE AB ( T ) AE AE = BE BD = R cs B BE = 4+ RBsin45 = z BD BE = R = 5.66kN B = 2kN Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

18 4.2. Çerçeveler ve Makinalar: Çk önlü kuvvetlerin geldiği elemanların luşturduğu apılardır. Hareketsiz lup ükü desteklemek için kullanılan apılara çerçeve denir. İçerisinde hareketli parçaların lduğu ükü aktarmak ve değiştirmek gibi görevleri lan apılara makine denir. Her iki apıda da çözüm rtaktır: 1. Sistem parçalara arılarak Serbest Cisim Diagramları çizilir. Bazen bunu aparken dış çizgi sınırları alınır. Tüm kuvvetler gösterilir. 2. Çift kuvvet elemanları belirlenir. 3. Temas halindeki elemanlara ait rtak kuvvetler eşit şiddetli ve zıt önlüdür. 4. Eğer iki vea daha fazla eleman sistem larak ele alınırsa, bunların arılmasına gerek ktur. Serbest cisim diagramlarında birleşim erlerindeki kuvvetler gösterilmez. Arılan nktalarda kuvvetlerin gösterilmesi gerekir. Yu kar ıda ki örn ekt e de görüldüğü gibi çerçevei B nktasından aırmaa gerek ktur. Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

19 Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

20 Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

21 Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

22 Örnek Prblem 4.9: Yandaki çerçeve elemanlarında mesnet tepkilerini i bulunuz. ÇÖZÜM: B 2000(2) + C (4) C AB AB C AB M = 1000 N sin 60 + C 2000 = N cs 60 C = N Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

23 Örnek Prblem 4.10: Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

24 Örnek SCD ları: Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

25 Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

26 Makinalara örnekler: Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

27 Örnek Prblem 4.11 CD M E CD CD ( ) 5(4) sin (1) = lb ( ) E cs E = lb A ( )( ) ( )( ) ( ) sin cs E 1.75 A A A M = 36.0 lb Ugulanan kuvvetin 7 katı etki mevcut!!!!! Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

28 Örnek Prblem E ve AD pistnlarına gelen kuvvetleri bulunuz. Kepçenin içinde 1500 kg ük mevcuttur. E pistnu gösterilen knumda HG elemanına diktir. H 1250(9.81)(0.5) + (1.5sin 30 ) E = 8175 N = 8.18 kn ( T) E M AD M C 1250(9.81)(2 cs ) (cs 40 )(0.25) = N = 158 kn (C) AD Bu sunumun hazırlanılmasında ararlanılan kanak: Hibbeler, Engineering Mechanics: Statics,9e, Prentice Hall

6.12 Örnekler PROBLEMLER

6.12 Örnekler PROBLEMLER 6.1 6. 6.3 6.4 6.5 6.6 6.7 Çok Parçalı Taşıyıcı Sistemler Kafes Sistemler Kafes Köprüler Kafes Çatılar Tam, Eksik ve Fazla Bağlı Kafes Sistemler Kafes Sistemler İçin Çözüm Yöntemleri Kafes Sistemlerde

Detaylı

Çerçeveler ve Basit Makinalar

Çerçeveler ve Basit Makinalar Çerçeveler ve Basit Makinalar Çeşitli elemanların birbirlerine bağlanması ile oluşan sistemlerdir. Kafes sistemlerden farklı olarak, elemanlar birbirlerine 2 den fazla noktadan bağlanabilir ve dış kuvvetler

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS erdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 285 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

7. STABİLİTE HESAPLARI

7. STABİLİTE HESAPLARI 7. STABİLİTE HESAPLARI Çatı sistemlerinde; Kafes kirişlerin (makasların) montaj aşamasında ve kafes düzlemine dik rüzgar ve deprem etkileri altında, mesnetlerini birleştiren eksen etrafında dönerek devrilmelerini

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta) KAFES SİSTEMLER STATİK (4. Hafta) Düz eksenden oluşan çubukların birbiriyle birleştirilmesiyle elde edilen sistemlere kafes sistemler denir. Çubukların birleştiği noktalara düğüm noktaları adı verilir.

Detaylı

Maddesel Nokta Statiği 2.1. HAFTA. Đçindekiler S T A T İ K :

Maddesel Nokta Statiği 2.1. HAFTA. Đçindekiler S T A T İ K : --11-- Maddesel Nkta Statiği 2.1. HATA --22-- Đçindekiler Mekaniğe Giriş Đki kuvvetin bileşkesi Vektörler Vectörel işlemler Bir nktada kesişen kuvvetlerin bileşkesi Örnek Prblem 2.1 Örnek Prblem 2.2 Bir

Detaylı

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 4 BÖLÜM IV. Düzlem Kafesler. En çok kullanılan köprü kafesleri. En çok kullanılan çatı kafesleri

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 4 BÖLÜM IV. Düzlem Kafesler. En çok kullanılan köprü kafesleri. En çok kullanılan çatı kafesleri İ.T.Ü. Makina akültesi ÖLÜM IV üzlem Kafesler En çok kullanılan köprü kafesleri En çok kullanılan çatı kafesleri İ.T.Ü. Makina akültesi Mühendislik olalarında genel olarak birden çok katı cisim birbirine

Detaylı

YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla

Detaylı

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 6.Düzlem ve Uzay kafes Sistemler Doç. Dr. NURHAYAT DEĞİRMENCİ Birbirlerine bağlı birden fazla parçadan yapılmış sistemlerin dengesi için dıs kuvvetlere ilaveten iç kuvvetler de düşünülmelidir.

Detaylı

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz.

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz. ÇALIŞMA SORULARI Üniform yoğunluğa sahip plaka 270 N ağırlığındadır ve A noktasından küresel mafsal ile duvara bağlanmıştır. Ayrıca duvara C ve D noktasından bağlanmış halatlarla desteklenmektedir. Serbest

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. Des Notu: Hayi ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

Girdi kuvvetleri ile makinaya değişik biçimlerde uygulanan dış kuvvetler kastedilmektedir (input forces). Çıktı kuvvetleri ise elde edilen kuvvetleri

Girdi kuvvetleri ile makinaya değişik biçimlerde uygulanan dış kuvvetler kastedilmektedir (input forces). Çıktı kuvvetleri ise elde edilen kuvvetleri ÇERÇEVELER Çerçeveler kafesler gibi genellikle sabit duran taşıyıcı sistemlerdir. Bir çerçeveyi kafesten ayıran en belirgin özellik, en az bir elemanının çok kuvvet elemanı (multi force member) oluşudur.

Detaylı

Basit Kafes Sistemler

Basit Kafes Sistemler YAPISAL ANALİZ 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla kullanılan ahşap gergi elemanları

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

MOMENT DAĞITMA HARDY CROSS YÖNTEMİ

MOMENT DAĞITMA HARDY CROSS YÖNTEMİ SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSİĞİ BÖÜMÜ Department of Civil Engineering İNM 208 YAPI STATIĞI II MOMENT DAĞITMA HARDY CROSS YÖNTEMİ Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVELER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

Algoritma, Akış Şeması ve Örnek Program Kodu Uygulamaları Ünite-9

Algoritma, Akış Şeması ve Örnek Program Kodu Uygulamaları Ünite-9 Örnek 1 Algritma, Akış Şeması ve Örnek Prgram Kdu Uygulamaları Ünite-9 Klavyeden girilen A, B, C sayılarına göre; A 50'den büyük ve 70'den küçük ise; A ile B sayılarını tplayıp C inci kuvvetini alan ve

Detaylı

Yapı Sistemlerinde Elverişsiz Yüklemeler:

Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapılara etkiyen yükler ile ilgili çeşitli sınıflama tipleri vardır. Bu sınıflamalarda biri de yapı yükleri ve ilave yükler olarak yapılan sınıflamadır. Bu sınıflama;

Detaylı

AÇI YÖNTEMİ Slope-deflection Method

AÇI YÖNTEMİ Slope-deflection Method SAKARYA ÜNİVERSİTESİ İNŞAAT ÜHENDİSLİĞİ BÖLÜÜ Department of Civil Engineering İN 303 YAPI STATIĞI II AÇI YÖNTEİ Slope-deflection ethod Y.DOÇ.DR. USTAA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 212 YAPI STATİĞİ I STABİLİTE STATİKÇE BELİRSİZLİK KİNEMATİK BELİRSİZLİK Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr

Detaylı

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun Dolu Gövdeli Kirişler TAŞIYICI SİSTEM TASARIMI 1 Prof Dr Görün Arun 072 ÇELİK YAPILAR Kirişler, Çerçeve Dolu gövdeli kirişler: Hadde mamulü profiller Levhalı yapma en-kesitler Profil ve levhalarla oluşturulmuş

Detaylı

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.1 7.2 Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.4 Örnekler Kendi Ağırlığını Taşıyan Kablolar (Zincir Eğrisi)

Detaylı

ÇELİK PREFABRİK YAPILAR

ÇELİK PREFABRİK YAPILAR ÇELİK PREFABRİK YAPILAR 2. Bölüm Temel, kolon kirişler ve Döşeme 1 1. Çelik Temeller Binaların sabit ve hareketli yüklerini zemine nakletmek üzere inşa edilen temeller, şekillenme ve kullanılan malzemenin

Detaylı

ÇELİK YAPILARDA BAYRAK LEVHALARININ SİSMİK DAVRANIŞININ ARAŞTIRILMASI

ÇELİK YAPILARDA BAYRAK LEVHALARININ SİSMİK DAVRANIŞININ ARAŞTIRILMASI Osmangazi Üniversitesi Müh.Mim.Fak.Dergisi C.XVII, S.1, 2003 Eng.&Arch.Fac.Osmangazi Universit, Vol.XVII, No: 1, 2003 ÇELİK YAPILARDA BAYRAK LEVHALARININ SİSMİK DAVRANIŞININ ARAŞTIRILMASI Yavuz Selim TAMA

Detaylı

203 Mukavemet I 2014-15 Güz Dönemi Alıştırmalar I 19.10.2015

203 Mukavemet I 2014-15 Güz Dönemi Alıştırmalar I 19.10.2015 203 Mkavemet I 201-15 Güz Dönemi Alıştırmalar I 1. İçi dl silindirik AB ve BC milleri B nktasından kaynaklanmış ve şekilde görüldüğü gii yüklenmiştir. d 1 =50mm, d 2 =30mm ise her milin tam rtasında lşacak

Detaylı

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI tasarım BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI Nihat GEMALMAYAN, Hüseyin ĐNCEÇAM Gazi Üniversitesi, Makina Mühendisliği Bölümü GĐRĐŞ Đlk bisikletlerde fren sistemi

Detaylı

STATİK (1. Hafta) Giriş TEMEL KAVRAMLAR

STATİK (1. Hafta) Giriş TEMEL KAVRAMLAR Giriş STATİK (1. Hafta) Mühendislik öğrencilerine genellikle ilk yıllarda verilen temel derslerin başında gelir. Sabit sistemler üzerindeki kuvvet ve momentleri inceleyen bir bilim dalıdır. Kendisinden

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul Prefabrik Yapılar Uygulama-1 Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul 2010 Sunuma Genel Bir Bakış 1. Taşıyıcı Sistem Hakkında Kısa Bilgi 1.1 Sistem Şeması 1.2 Sistem Detayları ve Taşıyıcı Sistem

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta) TAŞIYICI SİSTEMLER VE MESNET TEPKİLERİ STATİK (3. Hafta) Taşıyıcı Sistemler Bir yapıya etki eden çeşitli kuvvetleri güvenlik sınırları içinde taşıyan ve bu kuvvetleri zemine aktaran sistemlere taşıyıcı

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi 8. Sürtünme Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr

Detaylı

SU DALGALARINDA GİRİŞİM

SU DALGALARINDA GİRİŞİM SU DALGALARINDA GİRİŞİM Yukarıda iki kaynağın oluşturduğu dairesel su dalgalarının meydana getirdiği girişim deseni gösterilmiştir Burada kesikli çizgiler dalga çukurlarını, düz çizgiler dalga tepelerini

Detaylı

Üçüncü Kitapta Neler Var?

Üçüncü Kitapta Neler Var? Üçüncü Kitapta Neler Var?. Kümeler 7 0. Kartezyen çarpım - Bağıntı 4. Fnksiynlar 4 74 4. İşlem 7 84. Mdüler Aritmetik 8 00 6. Plinmlar 0 0 7. İkinci Dereceden Denklemler 6 8. Eşitsizlikler 7 6 9. Parabl

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

PARABOL TEST / 1. 1. Aþaðýdaki fonksiyonlardan hangisinin grafiði parabol. 5. Aþaðýdaki fonksiyonlardan hangisinin grafiði A(0,2) noktalarýndan geçer?

PARABOL TEST / 1. 1. Aþaðýdaki fonksiyonlardan hangisinin grafiði parabol. 5. Aþaðýdaki fonksiyonlardan hangisinin grafiði A(0,2) noktalarýndan geçer? PARABOL TEST /. Aþaðýdaki fnksinlardan hangisinin grafiði parabl belirtir? 5. Aþaðýdaki fnksinlardan hangisinin grafiði A(0,) nktalarýndan geçer? A) f()=5 f()=+ C) f()= D) f()= f()= 4 + + A) f()= f()=

Detaylı

Genel Bilgi. İz Düşüm Düzlemleri ve Bölgeler. Yrd. Doç. Dr. Garip GENÇ Şekil: İz düşüm düzlemlerine bakış doğrultuları. Page 1.

Genel Bilgi. İz Düşüm Düzlemleri ve Bölgeler. Yrd. Doç. Dr. Garip GENÇ Şekil: İz düşüm düzlemlerine bakış doğrultuları. Page 1. TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Uzaydaki cisimlerin eksiksiz bir anlatımı için, ana boyutlarıyla birlikte parçanın bitmiş hallerinden ve üzerindeki işlemlerle birlikte diğer

Detaylı

12-A. Fizik Bilimine Giriş TEST. 4. Aşağıda verilen büyüklüklerden hangisi fizik bilimindeki. 1. Aşağıdaki büyüklüklerden hangisi türetilmiş bir

12-A. Fizik Bilimine Giriş TEST. 4. Aşağıda verilen büyüklüklerden hangisi fizik bilimindeki. 1. Aşağıdaki büyüklüklerden hangisi türetilmiş bir -A TEST izik Bilimine Giriş AZANIM AVRAMA TEST. Aşağıdaki büyüklüklerden hangisi türetilmiş bir büyüklüktür? 4. Aşağıda verilen büyüklüklerden hangisi fizik bilimindeki temel bir büyüklüktür? A) Işık şiddeti

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

SBS MATEMATİK DENEME SINAVI

SBS MATEMATİK DENEME SINAVI SS MTEMTİK DENEME SINVI 8. SINIF SS MTEMTİK DENEME SINVI. 4.. Güneş ile yut gezegeni arasındaki uzaklık 80000000 km dir. una göre bu uzaklığın bilimsel gösterimi aşağıdakilerden hangisidir? ),8.0 9 km

Detaylı

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz.

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz. a, b,c R,a 0 olmak koşulula f ()=a 2 +b+c fonksionuna ikinci dereceden bir değişkenli fonksion ve bu fonksionun belirttiği eğrie de parabol denir. Uarı ir parabolün grafiği başkatsaı olan a saısına bağlı

Detaylı

Işığın Modülasyonu. 2008 HSarı 1

Işığın Modülasyonu. 2008 HSarı 1 şığın Mdülasynu 008 HSarı 1 Ders İçeriği Temel Mdülasyn Kavramları LED şık Mdülatörler Elektr-Optik Mdülatörler Akust-Optik Mdülatörler Raman-Nath Tipi Mdülatörler Bragg Tipi Mdülatörler Magnet-Optik Mdülatörler

Detaylı

ÇELĐK PREFABRĐK YAPILAR

ÇELĐK PREFABRĐK YAPILAR ÇELĐK PREFABRĐK YAPILAR 2. Bölüm Temel, kolon kirişler ve Döşeme 1 1. Çelik Temeller Binaların sabit ve hareketli yüklerini zemine nakletmek üzere inşa edilen temeller, şekillenme ve kullanılan malzemenin

Detaylı

2009 Kasım. www.guven-kutay.ch MUKAVEMET DEĞERLERİ ÖRNEKLER. 05-5a. M. Güven KUTAY. 05-5a-ornekler.doc

2009 Kasım. www.guven-kutay.ch MUKAVEMET DEĞERLERİ ÖRNEKLER. 05-5a. M. Güven KUTAY. 05-5a-ornekler.doc 2009 Kasım MUKAVEMET DEĞERLERİ ÖRNEKLER 05-5a M. Güven KUTAY 05-5a-ornekler.doc İ Ç İ N D E K İ L E R 5. MUKAVEMET HESAPLARI İÇİN ÖRNEKLER...5.3 5.1. 1. Grup örnekler...5.3 5.1.1. Örnek 1, aturalı mil

Detaylı

TEST SORULARI Öğlen STATİK-MUKAVEMET 1. YIL İÇİ SINAVI. Adı /Soyadı : No : İmza: Örnek Öğrenci No xaxxxxbcd

TEST SORULARI Öğlen STATİK-MUKAVEMET 1. YIL İÇİ SINAVI. Adı /Soyadı : No : İmza: Örnek Öğrenci No xaxxxxbcd STTİK-MUKVEMET 1. YI İÇİ SINVI dı /Soadı : No : İmza: 06-11-2013-Öğlen Örnek Öğrenci No 010030403 abcd Şekildeki kabloda minimum ve maksimum kablo kuvvetleri ile 1 ve 2 uzunluklarını bulunuz Kablo denklem

Detaylı

8.1 8.2 8.3 8.4. Kesit Tesir Diyagramları Örnekler PROBLEMLER

8.1 8.2 8.3 8.4. Kesit Tesir Diyagramları Örnekler PROBLEMLER 8.1 8.2 8.3 8.4 İç Kuvvetler Bir Noktada Kesit Tesirlerinin Hesabı Örnekler Doğru Eksenli Çubuklarda Kesit Tesirleri Kesim Yöntemi Örnekler Doğru Eksenli Çubuklarda Kesit Tesirleri Diferansiel Denge Denklemleri

Detaylı

ÇALIŞMA SORULARI 1) Yukarıdaki şekilde AB ve BC silindirik çubukları B noktasında birbirleriyle birleştirilmişlerdir, AB çubuğunun çapı 30 mm ve BC çubuğunun çapı ise 50 mm dir. Sisteme A ucunda 60 kn

Detaylı

ç ç Ö Ç Ş Ç ç Ç ç ç ç Ö ç Ç Ş ç ç Ş Ç Ş Ö Ö Ş ç Ö ç ç ç ç Ş Ö Ç Ç Ş ç ç Ş Ş Ş Ö ç ç ç ç Ö Ş Ç Ö Ö ç «Ö ç Ş ç Ç «ÇŞ Ş Ö Ç ç Ö ç Ç Ş Ö Ö ç ç ç Ö Ş Ö ç Ö ç Ç Ş Ç «ç Ö Ç Ş ç ç ç «ç Ç Ş Ö Ö Ç ç ç Ş ç ç Ö ç

Detaylı

Ğ Ğ ş ç ş ç ç ç ş ç ç Ş ç «ş ş Ö Ş Ş ş ş ç Ö Ş ş Ü ç ç ş ş ş ç Ş ş ç ç ç ş ç ş ş ş ç ç ç ş Ç ş ş ç ş ç ş ş Ş ş ç ş ç ç ş ç ş ç ç ş ç ç ş Ü ş çş ş ş Çş Ç Ü çş ş Ç çş ç ş Ş Ö Ö ş ç ç ç ş ç ç ç ş ş ç ç ş

Detaylı

T E M E L L E R. q zemin q zemin emniyet q zemin 1.50 q zemin emniyet

T E M E L L E R. q zemin q zemin emniyet q zemin 1.50 q zemin emniyet T E E L L E R 1 Temeller taşııcı sistemin üklerini zemine aktaran apı elemanlarıdır. Üst apı üklerinin ugun şekilde zemine aktarılması sırasında, taşııcı sistemde ek etkiler oluşabilecek çökmelerin ve

Detaylı

TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 KAFES KÖPRÜLER

TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 KAFES KÖPRÜLER TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 DR. MUSTAFA KUTANİS SLIDE 1 KAFES KÖPRÜLER DR. MUSTAFA KUTANİS SAÜ İNŞ.MÜH. BÖLÜMÜ

Detaylı

KİRİŞ YÜKLERİ HESABI GİRİŞ

KİRİŞ YÜKLERİ HESABI GİRİŞ KİRİŞ YÜKLERİ HESABI 1 GİRİŞ Betonarme elemanlar üzerlerine gelen yükleri emniyetli bir şekilde diğer elemanlara veya zemine aktarmak için tasarlanırlar. Tasarımda boyutlandırma ve donatılandırma hesapları

Detaylı

KENAR TETİKLEMELİ D FLİP-FLOP

KENAR TETİKLEMELİ D FLİP-FLOP Karadeniz Teknik Üniversitesi Bilgisaar Mühendisliği Bölümü Saısal Tasarım Laboratuarı KENAR TETİKLEMELİ FLİP-FLOP 1. SR Flip-Flop tan Kenar Tetiklemeli FF a Geçiş FF lar girişlere ugulanan lojik değerlere

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz.

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz. BTMIŞ YÜZEYLERE ELEN HİDROSTTİK KUVVETLER DÜZLEM YÜZEYLER Yata Yüeler Sıvı üei Yata bir dülem üee gelen idrostatik kuvvetin büüklüğünü ve etkime noktasını bulmak istioru. d d Kuvvetin Büüklüğü :Şekil deki

Detaylı

STATİK DENGE VE KUVVET ANALİZİ Static Equilibrium and Force Analysis

STATİK DENGE VE KUVVET ANALİZİ Static Equilibrium and Force Analysis STATİK DENGE VE KUVVET ANALİZİ Static Equilibrium and Force Analysis Bu bölümde durağan halde dengede olan rijit sistemlere etki eden kuvvetlerin hesaplanması görülecektir. In this chapter we learn the

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

KÜRESEL AYNALAR ÇUKUR AYNA. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir.

KÜRESEL AYNALAR ÇUKUR AYNA. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir. KÜRESEL AYNALAR Yansıtıcı yüzeyi küre parçası olan aynalara denir. Küresel aynalar iki şekilde incelenir. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir.eğer

Detaylı

ENERJİ SİSTEMLERİNDE KESME YÖNTEMİ İLE GÜVENİLİRLİK ANALIZI

ENERJİ SİSTEMLERİNDE KESME YÖNTEMİ İLE GÜVENİLİRLİK ANALIZI 6Ci1t, lsay1 (Mart 2002) Eneji Sistemlerinde Kesme Y önterni ile Güvenilirlik Anafu FVatansever, FUysal, EYamkğ1u, YUyarğh ENERJİ SİSTEMLERİNDE KESME YÖNTEMİ İLE GÜVENİLİRLİK ANALIZI Fahri VATANSEVER,

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS 009 he MGraw-Hill Companies, In. All rights reserved. - Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS ( τ ) df da Uygulanan

Detaylı

Çok Parçalı Basınç Çubukları

Çok Parçalı Basınç Çubukları Çok Parçalı Basınç Çubukları Çok parçalı basınç çubukları genel olarak k gruba arılır. Bunlar; a) Sürekl brleşk parçalardan oluşan çok parçalı basınç çubukları b) Parçaları arasında aralık bulunan çok

Detaylı

Zorlamalı Titreşim ş Testleri

Zorlamalı Titreşim ş Testleri Zorlamalı Titreşim ş Testleri Prof. Dr. Uğurhan Akyüz SERAMAR Çalıştayı 01 Ekim 2010 Hatay, Türkiye Amaç 2 Yapı sistemlerinin deprem, rüzgar, vb. dinamik yüklere maruz kaldığında gösterdiği davranışı belirleyen

Detaylı

ÇATILAR. Celal Bayar Üniversitesi Turgutlu Meslek Yüksekokulu İnşaat Bölümü. Öğretim Görevlisi Tekin TEZCAN İnşaat Yüksek Mühendisi

ÇATILAR. Celal Bayar Üniversitesi Turgutlu Meslek Yüksekokulu İnşaat Bölümü. Öğretim Görevlisi Tekin TEZCAN İnşaat Yüksek Mühendisi ÇATILAR Celal Bayar Üniversitesi Turgutlu Meslek Yüksekokulu İnşaat Bölümü Öğretim Görevlisi Tekin TEZCAN İnşaat Yüksek Mühendisi ÇATILAR Bir yapıyı üstünden etkileyen yağmur, kar, rüzgar, sıcak ve soğuk

Detaylı

DERS 6. Çok Değişkenli Fonksiyonlarda Maksimum Minimum

DERS 6. Çok Değişkenli Fonksiyonlarda Maksimum Minimum DERS Çok Değişkenli onksionlarda Maksimum Minimum.. Yerel Maksimum Yerel Minimum. z denklemi ile tanımlanan iki değişkenli bir onksionu ve bu onksionun tanım kümesi içinde ab R verilmiş olsun. Tanım. Eğer

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

1. HARİTA BİLGİSİ ve TOPOĞRAFİK HARİTALAR

1. HARİTA BİLGİSİ ve TOPOĞRAFİK HARİTALAR 1 1. HARİTA BİLGİSİ ve TOPOĞRAFİK HARİTALAR Harita nedir? Yeryüzünün veya bir parçasının belli bir rana göre küçültülerek ve belirli işaretler kullanılarak yatay düzlem üzerinde gösterilmesine harita adı

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

ÇELİK PREFABRİK YAPILAR

ÇELİK PREFABRİK YAPILAR ÇELİK PREFABRİK YAPILAR 5. Bölüm Prefabrik Çelik Kirişli Çatılar 6. Bölüm Dairesel Kesitli Çelik Yapılar PREFABRİK ÇELİK KİRİŞLİ ÇATILAR 5. Çelik Kirişli Çatılar Çatılar; çatı kaplaması, mertekler, aşıklar

Detaylı

İ İ ö ö ğ ğ ö İ İ ğç İ İç ğç İ ö İ ğ ö ğ ö İ Ş ğç İ ğ ğ Ö Ç ğ İ ö ö ö ö Ö ç ç ğ ğ ç ç ö Ç ğ ğ ö Ç Ç ç ö ğ ç ö ç ç ğ Ö ç ç ğ ç ç ğ ğ ö ç ğ Ş ç ç ğ Ş ç ğ ö ç ö Ş ğ ğ ğ ğ ğ Ş Ş Ö ç ç Ç ç İ İİ ğ ö ç İ ö ö

Detaylı

Q6.1. Motor. Kablo. Asansör

Q6.1. Motor. Kablo. Asansör Q6.1 Asansör bir kablo ile sabit hızla yukarı doğru hareket etmektedir. Aşağıdaki ifadelerden hangisi doğrudur? A. Kablo asansör üzerine pozitif iş yapar, ve Asansör kablo üzerine pozitif iş yapar. Kablo

Detaylı

BASINÇ ALTINDAKİ ÇELİK ELEMANLARIN TAŞIMA GÜCÜ HESABI

BASINÇ ALTINDAKİ ÇELİK ELEMANLARIN TAŞIMA GÜCÜ HESABI BASINÇ ALTINDAKİ ÇELİK ELEMANLARIN TAŞIMA GÜCÜ HESABI Dr. O. Özgür Eğilmez Yardımcı Doçent İzmir Yüksek Teknoloji Enstitüsü İnşaat Mühendisliği Bölümü Zamanda Yolculuk İÇERİK Taşıma Gücü Hesabı ve Amaç

Detaylı

BÖLÜM 3: İLETİM HAT TEORİSİ

BÖLÜM 3: İLETİM HAT TEORİSİ BÖLÜM 3: İLETİM HAT TEORİSİ 1 İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla(ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin iletimini gerçekleştirmek

Detaylı

Elektrik Yük ve Elektrik Alan

Elektrik Yük ve Elektrik Alan Bölüm 1 Elektrik Yük ve Elektrik Alan Bölüm 1 Hedef Öğretiler Elektrik yükler ve bunların iletken ve yalıtkanlar daki davranışları. Coulomb s Yasası hesaplaması Test yük kavramı ve elektrik alan tanımı.

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

2. KUVVETLERİN VEKTÖREL TOPLANMASI. Hazırlayan Arş. Grv. A. E. IRMAK

2. KUVVETLERİN VEKTÖREL TOPLANMASI. Hazırlayan Arş. Grv. A. E. IRMAK 2. KUVVETLERİN VEKTÖREL TOPLANMASI AMAÇ Hazırlaan Arş. Grv. A. E. IRMAK Eş zamanlı kuvvetler etkisinde dengede bulunan bir cismin incelenmesi, analitik ve vektörel metotları kullanarak denge problemlerinin

Detaylı

BETONARME ÇERÇEVELERİN DEPREM HESABINDA TASARIM İVME SPEKTRUMU UYUMLU DİNAMİK YÖNTEMLERİN KARŞILAŞTIRILMASI

BETONARME ÇERÇEVELERİN DEPREM HESABINDA TASARIM İVME SPEKTRUMU UYUMLU DİNAMİK YÖNTEMLERİN KARŞILAŞTIRILMASI BETONARME ÇERÇEVELERİN DEPREM HESABINDA TASARIM İVME SPEKTRUMU UYUMLU DİNAMİK YÖNTEMLERİN KARŞILAŞTIRILMASI ÖZET: O. Merter 1 ve T. Uçar 2 1 Araştırma Görevlisi Doktor, İnşaat Mühendisliği Bölümü, Dokuz

Detaylı

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Arş. Gör. KAZIM EVECAN 25.05.2015

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Arş. Gör. KAZIM EVECAN 25.05.2015 Mühendislik Fakültesi Elektrik-Elektrnik Mühendisliği Bölümü Arş. Gör. KAZIM EVECAN 5.05.05 Özet: Bu dkümanda haberleşme elektrniği dersine başlamadan önce hatırlanması gereken ve temel bilgiler özet halinde

Detaylı

Uzay Çatı Sistemlerinin ANSYS Paket Programı Kullanılarak Statik Analizi

Uzay Çatı Sistemlerinin ANSYS Paket Programı Kullanılarak Statik Analizi Fırat Üniv. Fen ve Müh. Bil. Der. Science and Eng. J of Fırat Univ. 18 (1), 105-112, 2006 18 (1), 105-112, 2006 Uzay Çatı Sistemlerinin ANSYS Paket Programı Kullanılarak Statik Analizi M. Yavuz SOLMAZ

Detaylı

Bilginin Görselleştirilmesi

Bilginin Görselleştirilmesi Bilginin Görselleştirilmesi Bundan önceki konularımızda serbest halde azılmış metinlerde gerek duduğumuz bilginin varlığının işlenmee, karşılaştırmaa ve değerlendirmee atkın olmadığını, bu nedenle bilginin

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

Kesit Görünüşler. Kesit Görünüşler

Kesit Görünüşler. Kesit Görünüşler Kesit Görünüşler Bir parçanın içkısmında bulunan delikleri, boşlukları belirtmek ve ölçülendirebilmek için hayali olarak kesildiği farzedilerek çizilen görünüştür. geometrisi bulunan parçalar daha kolay

Detaylı

Taşıyıcı Sistem İlkeleri

Taşıyıcı Sistem İlkeleri İTÜ Mimarlık Fakültesi Mimarlık Bölümü Yapı ve Deprem Mühendisliği Çalışma Grubu BETONARME YAPILAR MIM 232 Taşıyıcı Sistem İlkeleri 2015 Bir yapı taşıyıcı sisteminin işlevi, kendisine uygulanan yükleri

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

Ü Ğ Ğ Ğ Ğ Ğ ş Ğ Ğ Ö Ğ ö ö ş ş ö ş Ğ Ğ Ğ Ğ ş ö ş ş ö ş ş ç ş ş ç ş ş ş ş ç ö ö ö ş ö ö ş ç ç ö ö ç Ç Ç ş ş Ğ ç ş ş ş ş ç ş ö ş ç ş ö ş ş ö ç ş ş ö Ö ç ş ö ş ö Ö ç ş ş ş ç ş ö ş ş ç ç ö ö ç ş Ö ö ş ö ö ş

Detaylı

ş Ğ İ İ ş ş ş ş ç ş ş ç ç ş ş ş ş ş ş İ ş ş ç ç ş ş ç ş ş ş ş ş ş ş ş ş ş ş ş ş ç ş ş ş ş ş İ ş ş ş ç ş ş ş ş ş ş ş ç Ü ç ş ş ş ş ş ş ş ç ş ş ş ç ç ş ş ş ş İ ş ş ş ş ş ç ç ş ç ç ş ş ş ş ş ş ş ş ş ç ş ş

Detaylı

Yıldız Teknik Üniversitesi İnşaat Müh. Bölümü Yapı Anabilim Dalı ÇELİK YAPI TASARIMI PROJE ÇİZİM AŞAMALARI

Yıldız Teknik Üniversitesi İnşaat Müh. Bölümü Yapı Anabilim Dalı ÇELİK YAPI TASARIMI PROJE ÇİZİM AŞAMALARI Yıldız Teknik Üniversitesi İnşaat Müh. Bölümü Yapı Anabilim Dalı ÇELİK YAPI TASARIMI PROJE ÇİZİM AŞAMALARI ÇİZİMLER Vaziyet Planı (1/100 veya 1/50) Detaylar Paftası (1/5 veya 1/2) Yarım Çerçeve (1/10 veya

Detaylı

KAFES SİSTEMLER. Mühendislik Yapıları. birleştirilen doğrusal elemanlar) oluşurlar.

KAFES SİSTEMLER. Mühendislik Yapıları. birleştirilen doğrusal elemanlar) oluşurlar. KAFES SİSTEMLER Mühendislik Yapıları a) Kafesler: İki-kuvvet elemanlarından (uçlarından birleştirilen doğrusal elemanlar) oluşurlar. b) Çerçeveler: En az bir birçok kuvvetin etkisindeki eleman içerenler

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ MEKANİK ANABİLİM DALI STATİK 042 13 12 DERSİ NOTLARI ŞUBAT 2008. Prof. Dr.

YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ MEKANİK ANABİLİM DALI STATİK 042 13 12 DERSİ NOTLARI ŞUBAT 2008. Prof. Dr. YILDIZ TEKNİK ÜNİVERSİTESİ İNŞT MÜHENDİSLİĞİ ÖLÜMÜ MEKNİK NİLİM DLI STTİK 04 3 DERSİ NTLRI ŞUT 008 Prof. Dr. Turgut KCTÜRK . Giriş ve ana ilkeler. Vektörler ve kuvvetler, maddesel noktaların statiği Tanımlar

Detaylı

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ tasarım BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ Nihat GEMALMAYAN Y. Doç. Dr., Gazi Üniversitesi, Makina Mühendisliği Bölümü Hüseyin ĐNCEÇAM Gazi Üniversitesi,

Detaylı

AB 7. ÇERÇEVE PROGRAMI İŞBİRLİĞİ ÖZEL PROGRAMI VE KAPASİTELER ÖZEL PROGRAMI PROJE TEKLİFİ DEĞERLENDİRME KRİTERLERİ. İçindekiler:

AB 7. ÇERÇEVE PROGRAMI İŞBİRLİĞİ ÖZEL PROGRAMI VE KAPASİTELER ÖZEL PROGRAMI PROJE TEKLİFİ DEĞERLENDİRME KRİTERLERİ. İçindekiler: İçindekiler: ÇP lerde Hakemlik Prje tekliflerinin değerlendirilmesi Değerlendirme Süreci Evaluatin criteria applicable t Cllabrative prject prpsals Işbirliği Prjeleri Değerlendirme Kriterleri Evaluatin

Detaylı

Çalışma platformları, bir yükü kaldırmak, ulaşılamayan

Çalışma platformları, bir yükü kaldırmak, ulaşılamayan MKLE Yasin ksungur, Mehmet li Güler İR MKSLI ÇLIŞM PLTORMUNUN TSRIMI VE NLİZİ Yasin ksungur * TO Ekonomi ve Teknoloji Üniversitesi, Makine Mühendisliği ölümü, nkara asinaksungur@ande.com Mehmet li Güler

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

3.1 ZEMĐN BETONUNA ETKĐ EDEN YÜKLER VE YÜKLEME ŞEKĐLLERĐ

3.1 ZEMĐN BETONUNA ETKĐ EDEN YÜKLER VE YÜKLEME ŞEKĐLLERĐ 3. ZEMĐN BETONUNA ETKĐ EDEN YÜKLER VE YÜKLEME ŞEKĐLLERĐ Zemin plağı üzerine etki eden dış ükler, plakta momentlerin oluşmasına sebep olurlar. Kolon ve taban plakası vasıtasıla plağa etkien tekil ükler

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

09/10 5.H MUKAVEMET I : MUKAVEMET I : 5. Hafta. - Statikçe belirsiz (axial) problemler ve. - Isıl Gerilmeler. Eksenel Yükleme 2008 NM

09/10 5.H MUKAVEMET I : MUKAVEMET I : 5. Hafta. - Statikçe belirsiz (axial) problemler ve. - Isıl Gerilmeler. Eksenel Yükleme 2008 NM 5. Hafta 1 - Statikçe belirsiz (axial) problemler ve - Isıl Gerilmeler Background Şu ana kadar gördüğümüz problemlerin hepsinde; kuvvetlerin ve gerilmelerin aşağıdaki denge denklemleri yardımıyla bulunması

Detaylı

2014-2015 EĞİTİM-ÖĞRETİM YILI BİLİŞİM TEKNOLOJİLERİ VE YAZILIM DERSİ 6. SINIF 2. DÖNEM 2. SINAV ÇALIŞMA NOTLARI

2014-2015 EĞİTİM-ÖĞRETİM YILI BİLİŞİM TEKNOLOJİLERİ VE YAZILIM DERSİ 6. SINIF 2. DÖNEM 2. SINAV ÇALIŞMA NOTLARI 2014-2015 EĞİTİM-ÖĞRETİM YILI BİLİŞİM TEKNOLOJİLERİ VE YAZILIM DERSİ 6. SINIF 2. DÖNEM 2. SINAV ÇALIŞMA NOTLARI İşletim Sisteminde Yapılan Uygulamalar Bir Bilgisayarda Hangi İşletim Sistemi Yüklü Olduğunu

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 6 Yapısal Analiz Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 6. Yapısal Analiz Şekilde görüldüğü

Detaylı

T.C. MİMAR SİNAN GÜZEL SANATLAR ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS DERS TANITIM FORMU

T.C. MİMAR SİNAN GÜZEL SANATLAR ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS DERS TANITIM FORMU T.C. MİMAR SİNAN GÜZEL SANATLAR ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS DERS TANITIM FORMU Dersin Adı İnsan Kaynakları Yönetimi Kdu Dönemi Zrunlu/Seçmeli MSGSÜ Kredi AKTS İST 373 3

Detaylı