MateMito AKILLI MATEMATİK DEFTERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MateMito AKILLI MATEMATİK DEFTERİ"

Transkript

1 Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum. Artık matematik dersinde eğleniyorum. 9 Artık matematiği ezberlemiyorum. Artık matematik sorularını çözüyorum. Artık daha fazla matematik etkinliği yapıyorum.

2 Bu kitabın her hakkı Arı Defter ve Dağıtım a aittir. İçindeki şekil, yazı, resim ve grafiklerin yayınevinin izni olmaksızın, elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemi ile çoğaltılması, yayımlanması ve depolanması yasaktır. YAZAR Mehmet Ali VARIŞLI KAPAK TASARIM İhsan SONDOĞAN GRAFİK-TASARIM Ebru PEKÜN BASIM YERİ İhlas Gazetecilik A.Ş. ( ) Arı Defter ve Dağıtım İnternet Bilişim Hizmetleri Güneşli Yolu Cad. İkebana Evleri H Blok D:26 Bahçelievler/İSTANBUL Tel: Faks: /ariyayin /ariyayin 2 Ar tık Matematiği Çok Seveceksiniz!

3 Ar tık Matematiği Çok Seveceksiniz! Merhabalar; Hazırlamış olduğumuz bu akıllı matematik defterleri ile siz saygıdeğer öğretmenlerimizin işlerini biraz daha kolaylaştırırken sevgili öğrencilerimizin de matematiği daha da sevmelerini sağlamak istedik. Akıllı defterlerin amacı, not tutma sıkıntısı yaşayan öğrencilerin ve konu yetiştirme telaşına giren öğretmenlerimizin işlerini kolaylaştırmaktır. Akıllı matematik defteri ek bir kaynak olarak algılanmasını istemeyiz. Çünkü bu defter ile öğrenciye ek kaynak aldırmıyoruz, DEFTER İHTİYACINI karşılıyoruz. Bu defteri alan bir öğrencinin başka bir defter almasına gerek yoktur. Akıllı matematik defterlerinde konu anlatım yerleri boş bırakılmıştır. Çünkü her öğretmenin konuyu anlatımı farklı olabilmektedir. Konuyu pekiştirici sorular ise, hazır yazılmış olarak verildiği için hem daha fazla soru çözülebilecek hem de bolca etkinlik yapılarak konu daha kolay ve daha zevkli öğretilecektir. Geometri bölümünde; bazen şekillerin öğrenciler tarafından çizmeleri istenmekte, bazen de hazır şekiller verilmektedir. Her konunun sonunda yer verilen kareli kağıt bölümüne ise, eksik kalındığını düşündüğünüz bölümleri yazabileceğiniz gibi etkinlikler için de kullanabilirsiniz. Herkese başarılar dileriz. Mehmet Ali VARIŞLI Bu defterin hazırlanma aşamasında desteğini ve sabrını esirgemeyen eşim Zeynep e ve biricik oğlum Fatih e teşekkür ederim. Ar tık Matematiği Çok Seveceksiniz! 3

4 İÇİNDEKİLER 1. ÜNİTE 1.1. Kümelerde Temel Kavramlar Alt Küme ve Öz Alt Küme Kümelerde İşlemler Kartezyen Çarpım Küme Problemleri ÜNİTE 2.1. Gerçek Sayılar Birinci Dereceden Bir Bilinmeyenli Denklemler Aralık Kavramı ve Eşitsizlikler Mutlak Değer Birinci Dereceden İki Bilinmeyenli Denklemler Üslü İfadeler ve Denklemler Köklü Sayılar Oran Orantı Sayı Problemleri Kesir Problemleri Yaş Problemleri Yüzde Kâr ve Zarar Problemleri Faiz ve Karışım Problemleri İşçi ve Havuz Problemleri Hareket Problemleri ÜNİTE 3.1. Fonksiyonlar Fonksiyon Çeşitleri Ar tık Matematiği Çok Seveceksiniz!

5 1. ÜNİTE KAZANIMLARI Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler kullanılır. Evrensel küme, boş küme, sonlu küme ve sonsuz küme kavramlarını örneklerle açıklar. Alt küme kavramını ve özelliklerini açıklar. İki kümenin eşitliğini açıklar. Kümelerde birleşim, kesişim, fark ve tümleme işlemlerini yapar; bir işlem arasındaki ilişkileri ifade eder. İki kümenin kartezyen çarpımını açıklar. Kümelerde işlemleri kullanarak problem çözer. Ar tık Matematiği Çok Seveceksiniz! 5

6 6 Ar tık Matematiği Çok Seveceksiniz!

7 KÜMELERDE T EMEL KAVRAMLAR a. Küme Kavramı Küme kavramını ve özelliklerini tanımlayalım. Ar tık Matematiği Çok Seveceksiniz! 7

8 Örnek 1 Aşağıda verilen ifadelerden küme belirtenleri belirleyelim. Haftanın günleri Çirkin ördekler Sınıfımızdaki erkek öğrenciler İlimizdeki bazı ilçeler 5 ile 10 arasındaki doğal sayılar Okulumuzdaki zeki öğrenciler Yüksek net yapan öğrenciler Kısa boylu kızlar Ç ile başlayan günler Denizli'nin güzel parkları Örnek 2 Aşağıda verilen ifadelerin küme belirtecek şekilde boşlukları dolduralım. Çantamdaki... kalemler Sınıfımızdaki... kız öğrenciler İlimizdeki... ilçeler Türkiye'deki...harfi ile başlayan iller Okulumuzdaki... öğrenciler Örnek 3 Aşağıda verilen ifadelerin küme belirtmeyecek şekilde boşlukları dolduralım. Sınıfımızdaki...kız öğrenciler Çantamdaki... silgiler İlimizdeki... mahalleler Alfabemizdeki... harfler Sitemizdeki... daireler 8 Ar tık Matematiği Çok Seveceksiniz!

9 b. Kümelerin Gösterimi Kümelerin gösteriliş yöntemlerini tanımlayalım. 1. Liste Yöntemi: 2. Venn Şeması Yöntemi: 3. Or tak Özellik Yöntemi: Ar tık Matematiği Çok Seveceksiniz! 9

10 Örnek 4 Aşağıda verilen ifadeleri liste yöntemiyle gösterip eleman sayılarını bulalım. Haftanın P harfiyle başlayan günleri 10 dan küçük asal sayılar "MATEMİTO" kelimesindeki harfler Alfabemizdeki sesli harfler sayısının rakamları Örnek 5 Aşağıda verilen ifadeleri venn şeması yöntemiyle gösterelim. "ANKARA" kelimesindeki harfler Çift rakamlar A = {1, 5,, 7, } Örnek 6 Aşağıda verilen ifadeleri ortak özellik yöntemiyle gösterelim. A = {1, 3, 5, 7, 9} B = {Cuma, Cumartesi} B = {11, 12, 13, 14, 15} D = {0, 1, 2, 3,...,100} E = {4, 8, 12, 16, 20} F = { 2, 1, 0, +1, +2} 10 Ar tık Matematiği Çok Seveceksiniz!

11 Örnek 7 Aşağıda verilen A ve B kümelerine göre, boş bırakılan yerlere veya sembollerini yazalım. A 2... B 8... A 6 8 B 2... A 9... B A 7... B B 4... A Örnek 8 Aşağıda ortak özellik yöntemiyle gösterilen kümeleri liste yöntemi ile gösterip eleman sayılarını bulalım. A = {x: x < 10, x N} B = {x: 2 < x < 5, x Z} C = {x: 18 > x > 0, x = 3k, k N} D= {x x 2 9, x Z} E = {x 2 < x +6, x = 2k, k N} F = {x x = 2k +1, k N} G = {x : x 2 < 1,x Z} Ar tık Matematiği Çok Seveceksiniz! 11

12 Örnek 9 Aşağıda liste yöntemi ile verilen kümelerin eleman sayılarını bulalım. A = {1, 2, 3, 4, 5, {6, 7}} s (A) = B = {8, 9, {8, 9}} s(b) = C = {a, b, c, {c}} s(c) = D = {HONDA} s(d) = E = {SARI, EV} s(e) = F = {SARIEV} s(f) = G = {1, 2, {3, 4}} s(g) = H = {{1, 2, 3}} s(h) = I = {S, A, R, I, E, V} s(i) = Örnek 10 Aşağıda venn şeması ile gösterilen kümeleri ortak özellik yöntemiyle gösterelim. A B C D E F Ar tık Matematiği Çok Seveceksiniz!

13 c. Boş Küme, Eşit Küme Boş küme ve eşit kümeyi tanımlayalım. Ar tık Matematiği Çok Seveceksiniz! 13

14 Örnek 11 Aşağıda verilen kümelerden hangilerinin boş küme olduğunu belirleyelim. Uçan inekler kümesi Negatif doğal sayılar kümesi A = {x x 2 = 4, x gerçek sayı} B = {x : 5 < x < 6, x Z} C = {x : 7 < x < 6, x N} D = {x 11 < x 2 < 15, x N} E = {x x.(x 1) = 0, x N} F = {x x 2 = 1, x N} Örnek 12 A = {x 0 < x < 10, x = 2k, k N} B = {2, 4, 6, 8} C = {x x 2 < 65, x çift doğal sayı} Yukarıda verilen kümelerin eşitliğini gösterelim. 14 Ar tık Matematiği Çok Seveceksiniz!

15 d. Sonlu ve Sonsuz Küme Aşağıda verilen kümelerin eleman sayılarını bularak sonlu ve sonsuz kümeyi tanımlayalım. A = {x 6< x < 20, x = 3k, k N} B = {x x > 0, x = 3k, k N} Ar tık Matematiği Çok Seveceksiniz! 15

16 Örnek 13 Aşağıdaki kümelerin sonlu küme veya sonsuz küme olup olmadığını belirleyelim. A = {x: x 2 < 64, x N } B = {x : x > 10, x Z} C = {x: x, üç basamaklı doğal sayılar} D = {x x = 2k 1 ve k tam sayı} E = {x 0 < x < 1, x R} F = {x x çift doğal sayı} G = {x x 2 = x, x Z} H = {x 5 < x 2 < 100, x Z} I = {x: x 3 > 8, x N} 16 Ar tık Matematiği Çok Seveceksiniz!

17 Ar tık Matematiği Çok Seveceksiniz! 17

18 18 Ar tık Matematiği Çok Seveceksiniz!

19 Alt Küme ve Öz Alt Küme Alt küme ve öz alt kümeyi tanımlayarak özelliklerini belirleyelim. Ar tık Matematiği Çok Seveceksiniz! 19

20 Örnek 1 "A = {1, 2, 3, }" kümesinin alt kümelerini bulalım. Örnek 2 "A = {a, b, c}" kümesinin öz alt kümelerini bulalım. Örnek 3 Aşağıda venn şeması ile gösterilen kümelerdeki alt küme ifadelerini bulalım. A B K L M P R S Örnek 4 Aşağıda verilen kümelere göre "A B" ifadesini gösterelim. A = {0, 2, 4} B = {x x çift rakamlar} 20 Ar tık Matematiği Çok Seveceksiniz!

21 Örnek 5 Aşağıda verilen kümelere göre, alt küme ifadelerini bulalım. A = {5, 10, 15} B = {x x = 5k, k N} C = {5, 10} Örnek 6 A = {a, b, c, d}, B = {c, d, e}, C = {a, b} Yukarıda verilen kümelere göre, aşağıdaki boşluklara veya sembollerinden uygun olanı yazalım. {c, d}... B {a}... A {a, b, c}... C {a, b, c, d}... A {d, e}... C {c, d, e, a}... B Örnek 7 A = {1, 2, 3, 4} B = {1, 2, {3}, {4}} Yukarıda verilen kümelere göre, aşağıdaki boşluklara veya sembollerinden uygun olanı yazalım. A... B {1, 2}... A {3}... A {4}... B {{3}, {4}}... B {1, 2, 3}... B {{4}}... A {{3}}... A {1, 2, {3}}... A Örnek 8 "A = {1, 2, 3, 4}, B A ve B A" olacak şekilde kaç farklı B kümesi olduğunu bulalım. Ar tık Matematiği Çok Seveceksiniz! 21

22 Örnek 9 Aşağıda verilen kümelere göre, alt kümeleri belirleyelim. A B C Örnek 10 6 elemanlı kümenin alt küme sayısı A, 4 elemanlı bir kümenin öz alt küme sayısı B dir. Buna göre, "A + B" toplamını bulalım. Örnek 11 Alt küme sayısı 256 olan kümenin eleman sayısını bulalım. Örnek 12 Öz alt küme sayısı 63 olan bir kümenin eleman sayısını bulalım. Örnek 13 Bir kümenin alt küme sayısı ile öz alt kümesinin sayısının toplamı 127 olan bir kümenin eleman sayısını bulalım. 22 Ar tık Matematiği Çok Seveceksiniz!

23 Örnek 14 Alt küme sayıları toplamı 52 olan üç kümenin eleman sayıları toplamını bulalım. Örnek 15 K,K L dir. 2.s(L) s(k) = 12 Buna göre, "s(l) + s(k)" toplamının en küçük değerini bulalım. Örnek 16 A = {1, {p, r}, {p, r, s}, {p, r, s, t}} kümesinin alt küme sayısı ile öz alt küme sayısının toplamını bulalım. Örnek 17 Eleman sayısı 2 azaltıldığında alt kümelerinin eleman sayısı 48 azalan bir kümenin eleman sayısını bulalım. Ar tık Matematiği Çok Seveceksiniz! 23

24 Örnek 18 T V ve T Z olmak üzere; V = {5, 6, 7, 8}, Z = {5, 6, 9, 10, 4} Buna göre, kaç farklı T kümesi yazılabileceğini bulalım. Örnek 19 "A = {a, b, c, d, e}" kümesi için aşağıdaki soruları cevaplayalım. a) Alt küme sayısı kaçtır? b) Alt kümelerinin kaç tanesinde a elemanı bulunur? c) Alt kümelerinin kaç tanesinde e elemanı bulunmaz? d) Alt kümelerinin kaç tanesinde a ve d elemanları bulunmaz? e) Alt kümelerinin kaç tanesinde a elemanı bulunur b elemanı bulunmaz? f) Alt kümelerinin kaç tanesinde a veya b elemanı bulunur? 24 Ar tık Matematiği Çok Seveceksiniz!

25 Örnek 20 "{5, 6, 7, 8, 9}" kümesine göre aşağıdaki soruları cevaplayalım. a) Alt küme sayısı kaçtır? b) 2 elemanlı kaç tane alt kümesi vardır? c) 3 elemanlı kaç tane alt kümesi vardır? d) En çok 3 elemanlı kaç tane alt kümesi vardır? e) En az 3 elemanlı kaç tane alt kümesi vardır? f) 3 elemanlı alt kümelerinin kaç tanesinde eleman olarak 6 bulunur? g) 2 elemanlı alt kümelerinin kaç tanesinde eleman olarak 8 bulunmaz? h) 4 elemanlı alt kümelerinin kaç tanesinde eleman olarak 5 bulunur, 7 bulunmaz? Ar tık Matematiği Çok Seveceksiniz! 25

26 Örnek 21 "A = {a, b, c, d, e, f}" kümesinin 5 elemanlı alt kümelerinin kaç tanesinde a ve b bulunurken c nin bulunmadığını bulalım. Örnek 22 2 elemanlı alt kümelerinin sayısı 45 olan bir kümenin 3 elemanlı alt küme sayısını bulalım. Örnek 23 "A = {1, 2, 3, 4, 5}" kümesinin alt kümelerinin kaç tanesinde 2 veya 3 ten yalnız birinin olduğunu bulalım. Örnek 24 "A = {a, b, c, d, e}" kümesinin 3 elemanlı alt kümelerinin kaç tanesinde a veya e nin olduğunu bulalım. 26 Ar tık Matematiği Çok Seveceksiniz!

27 Örnek 25 "A = {x x, rakam}" kümesinin alt kümelerinin kaçında en az bir tane çift rakam olduğunu bulalım. Örnek 26 "B = {x x, bir basamaklı doğal sayı}" kümesinin alt kümelerinin kaçında en çok 1 tane asal sayı olduğunu bulalım. Örnek 27 En çok iki elemanlı alt kümelerinin sayısı 16 olan bir kümenin eleman sayısını bulalım. Örnek 28 6 elemanlı bir kümenin en az bir elemanlı alt küme sayısı A, en çok bir elemanlı alt küme sayısı B dir. Buna göre, "A + B" toplamını bulalım. Ar tık Matematiği Çok Seveceksiniz! 27

28 Örnek 29 "{a, b, c} A {a, b, c, d, e, f}" koşulunu sağlayan kaç tane A kümesi yazılabileceğini bulalım. Örnek 30 "{1, 2} B {1, 2, 3, 4, 5}" koşulunu sağlayan kaç tane 4 elemanlı B kümesi yazılabileceğini bulalım. Örnek 31 3 elemanlı alt küme sayısı, 2 elemanlı alt küme sayısının 3 katı olan bir kümenin eleman sayısını bulalım. 28 Ar tık Matematiği Çok Seveceksiniz!

29 Ar tık Matematiği Çok Seveceksiniz! 29

30 30 Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

AKILLI MATEMATİK DEFTERİ

AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito Artık matematiği çok seviyorum. AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematik dersinde eğleniyorum. 2 Artık az yazarak çok soru çözüyorum.

Detaylı

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Ar tık Matematiği Çok Seveceksiniz! Artık. Artık matematiği ezberlemiyorum. matematik. sorularını çözüyorum. MateMito AKILLI MATEMATİK ÖDEVİ ...

Ar tık Matematiği Çok Seveceksiniz! Artık. Artık matematiği ezberlemiyorum. matematik. sorularını çözüyorum. MateMito AKILLI MATEMATİK ÖDEVİ ... Ar tık Matematiği Çok Seveceksiniz! 7 MateMito AKILLI MATEMATİK DEFTERİ matematikten korkmuyorum. matematik dersinde eğleniyorum. matematiği çok seviyorum. az yazarak çok soru çözüyorum. matematiği ezberlemiyorum.

Detaylı

SONUÇ YAYINLARI. 9. Sınıf Kümeler

SONUÇ YAYINLARI. 9. Sınıf Kümeler 9. SINIF SONUÇ YYINLRI 9. Sınıf Kümeler Bu kitabın tamamının ya da bir kısmının, kitabı yayımlayan şirketin önceden izni olmaksızın elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılması,

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

AKILLI TÜRKÇE DEFTERİ

AKILLI TÜRKÇE DEFTERİ TürkçeMino Artık Türkçe yi daha çok seviyorum. AKILLI TÜRKÇE DEFTERİ Artık Türkçe den korkmuyorum. Artık Türkçe dersinde eğleniyorum. 4 Artık az yazarak çok zaman kazanıyorum. Artık kelimeleri doğru yazıyorum.

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç Not: Starboard programında dosya aç kısmından dosyayı seçerek açabilirsiniz. Yazı karakterlerinde bozulma oluyorsa program kapatılıp tekrar açıldığında yazı düzelecektir. Ben yaptığımda düzelmişti. Andropi

Detaylı

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim.

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim. Önsöz Değerli Öğrenciler, u fasikül ortaöğretimde başarınızı yükseltmeye, üniversite giriş sınavlarında yüksek puan almanıza yardımcı olmak için özenle hazırlanmıştır. Konular anlamlı bir bütün oluşturacak

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

1) Aşağıdaki varlıklar içerisinde küme oluşturabilecek bir topluluğu yuvarlak içerisine alarak kümenin tarifini yapınız.

1) Aşağıdaki varlıklar içerisinde küme oluşturabilecek bir topluluğu yuvarlak içerisine alarak kümenin tarifini yapınız. 1ÖLÜM KÜMELER KÜMELER TEST 1 1) şağıdaki varlıklar içerisinde küme oluşturabilecek bir topluluğu yuvarlak içerisine alarak kümenin tarifini yapınız..güzelyurt.yeni İskele.Lefkoşa.Gazi Magosa.Girne 2)

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Öğrenci Adı Soyadı Sınıfı Ödev Teslim Tarihi Öğretmen Görüşü Soru 1 Aşağıda sayma pulları ile modellenen matematik işlemlerini bulunuz. Soru 2 Aşağıda

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

İlter TÜRKMEN, Tolga TANIŞ, Simay AYDIN,

İlter TÜRKMEN, Tolga TANIŞ, Simay AYDIN, YAYIN KURULU Hazırlayanlar İlter TÜRKMEN, Tolga TANIŞ, Simay AYDIN, YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK & Ezgi

Detaylı

YGS MATEMATİK SORU BANKASI

YGS MATEMATİK SORU BANKASI YGS MATEMATİK SORU BANKASI Sebahattin ÖLMEZ www.limityayinlari.com Sınavlara Hazırlık Serisi YGS Matematik Soru Bankası ISBN: 978-60-48--9 Copyright Lmt Limit Yayınları Bu kitabın tüm hakları Lmt Limit

Detaylı

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ 015-016 EĞİTİM-ÖĞRETİM YILI 1. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI AY HAFTA SAAT KAZANIMLAR BÖLÜMLER (ALT ÖĞRENME ALANLARI) ÖĞRENME

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2014 KPSS ye Pegem Yayınları ile hazırlanan adayların,

Detaylı

ÇAĞLAR KOLEJİ INGILIZCE KASIM BÜLTEN

ÇAĞLAR KOLEJİ INGILIZCE KASIM BÜLTEN ÇAĞLAR KOLEJİ INGILIZCE KASIM BÜLTEN KISIKLI MAH. HANIMSETİ SK. NO:21, ÇAMLICA - ÜSKÜDAR / İSTANBUL İNFO@CAGLAROKULLARİ.COM 0216 505 38 52 İLKOKUL KASIM AYI KAZANIMLARI 1-A: Sınıf objelerini tanır. En

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

KÜMELER 05/12/2011 0

KÜMELER 05/12/2011 0 KÜMELER 05/12/2011 0 KÜME NEDİR?... 2 KÜMELERİN ÖZELLİKLERİ... 2 KÜMELERİN GÖSTERİLİŞİ... 2 EŞİT KÜME, DENK KÜME... 3 EŞİT OLMAYAN (FARKLI) KÜMELER... 3 BOŞ KÜME... 3 ALT KÜME - ÖZALT KÜME... 4 KÜMELERDE

Detaylı

1 A IV. a. Kümelerin Gösterimleri-Boş Küme-Denk ve Eşit Kümeler A II. A. a VI. A. b C ) c. 1. A kümesini venn şeması ile gösteriniz.

1 A IV. a. Kümelerin Gösterimleri-Boş Küme-Denk ve Eşit Kümeler A II. A. a VI. A. b C ) c. 1. A kümesini venn şeması ile gösteriniz. Kümelerin Gösterimleri-Boş Küme-Denk ve Eşit Kümeler 1. kümesini venn şeması ile gösteriniz. 6. M kümesine denk olan N kümesini ortak özellik yöntemi ile gösteriniz. 2. B kümesini liste yöntemi ile gösteriniz.

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte

Detaylı

2016 Kpss Lisans Matematik & Geometri E-Kursu

2016 Kpss Lisans Matematik & Geometri E-Kursu 2016 Kpss Lisans Matematik & Geometri E-Kursu Özellikler Müfredat Tarihler Özellikler Konu Anlatımları: 2015-2016 yılında konu anlatımlarımıza artık senkron ( canlı ) dersi ekledik. Kpss 2016 Matematik

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak kıl YGS MTEMTİK ENEME SINVI 040- Ortak kıl dem ÇİL yhan YNĞLIŞ arış EMİR elal İŞİLİR eniz KRĞ Engin POLT Ersin KESEN Eyüp ULUT Fatih SĞLM Fatih TÜRKMEN Hakan KIRI Kadir LTINTŞ Köksal YİĞİT Muhammet

Detaylı

1. BÖLÜM: PERMÜTASYON (SIRALAMA) BÖLÜM: KOMBİNASYON (SEÇME) A. SEÇME (KOMBİNASYON) B. KOMBİNASYON GEOMETRİ İLİŞKİSİ

1. BÖLÜM: PERMÜTASYON (SIRALAMA) BÖLÜM: KOMBİNASYON (SEÇME) A. SEÇME (KOMBİNASYON) B. KOMBİNASYON GEOMETRİ İLİŞKİSİ İçindekiler 1. BÖLÜM: PERMÜTASYON (SIRALAMA)... 10 A. SAYMA KURALLARI... 10 B. FAKTÖRİYEL... 14 C. n ELEMANLI BİR KÜMENİN r Lİ PERMÜTASYONLARI (Dizilişleri)... 17 Ölçme ve Değerlendirme...20 Kazanım Değerlendirme

Detaylı

YAZILI ÇALIŞMA TEKNİKLERİ. w w w. g e o m e t r i g o r m e t e k n i k l e r i. c o m. { } : boþ küme demek deðildir. ÇÖZÜMÜ:

YAZILI ÇALIŞMA TEKNİKLERİ. w w w. g e o m e t r i g o r m e t e k n i k l e r i. c o m. { } : boþ küme demek deðildir. ÇÖZÜMÜ: KONU BİLGİSİ 1.KÜME TNIMI VE GÖSTERÝM ÞEKÝLLERÝ Belli özellikleri saðlayan nesneler topluluðuna küme denir. Kümede tüm elemanlar net olmalýdýr. Kümeler büyük harflerle gösterilir. Bir kümede bir eleman

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

MATEMAT K 1 ÜN TE II KÜMELER

MATEMAT K 1 ÜN TE II KÜMELER ÜN TE II KÜMELER 1. TANIM 2. KÜMELER N GÖSTER M a) Liste yöntemi ile gösterimi b) Venn flemas ile gösterimi c) Ortak özelik yöntemi ile gösterimi 3. KÜMELER N KARfiILAfiTIRILMASI a) Kümenin elaman say

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

6BÖLÜM ONDALIK SAYILAR

6BÖLÜM ONDALIK SAYILAR 6BÖLÜM ONDALIK SAYILAR ONDALIK SAYILAR TEST ) Aşağıdaki kesirleri ondalık sayıya çeviriniz. a) 3 b) 2 c) 9 d) 4 5 25 20 2) Aşağıdaki ondalık sayıların basamaklarındaki rakamların sayı ve basamak değerlerini

Detaylı

KÜMELER. Küme nesneler topluluğudur. Bu bölümde kümelerle kurulan matematiksel yapıyı tanıtacağız.

KÜMELER. Küme nesneler topluluğudur. Bu bölümde kümelerle kurulan matematiksel yapıyı tanıtacağız. KÜMELER Küme nesneler topluluğudur. u bölümde kümelerle kurulan matematiksel yapıyı tanıtacağız. Küme kavramı matematiğe girmeden önce matematik denilince akla sayılar ve şekiller gelirdi. Kümeler kuramının

Detaylı

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03 I 5. SINIF MATEMATİK VE İŞLEMLER 1.1. En çok dokuz basamaklı doğal sayıları okur ve yazar. 1.2. En çok dokuz basamaklı doğal sayıların bölüklerini, basamaklarını ve rakamların basamak değerlerini belirtir.

Detaylı

-ÖRÜNTÜ NEDİR? Bir örnek verebilir misin?

-ÖRÜNTÜ NEDİR? Bir örnek verebilir misin? ÖRÜNTÜLERİ TAMIYALIM Fred bu örüntünün ne olduğunu anlayamadım bir türlü. Bana birde sen anlatır mısın? -ÖRÜNTÜ NEDİR? Örüntü, bir nesne veya olay kümesindeki elemanların ardışık olarak düzenli bir biçimde

Detaylı

kpss ezberbozan serisi MATEMATİK GEOMETRİ SORU BANKASI Eğitimde

kpss ezberbozan serisi MATEMATİK GEOMETRİ SORU BANKASI Eğitimde kpss ezberbozan serisi 2016 MATEMATİK GEOMETRİ SORU BANKASI Eğitimde 29. yıl KOMİSYON KPSS EZBERBOZAN MATEMATİK - GEOMETRİ SORU BANKASI ISBN 978-605-318-360-0 Kitapta yer alan bölümlerin tüm sorumluluğu

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

9) A B ve B A ise A=B dir. Birbirinin alt kümesi olan iki küme eşit kümedir.

9) A B ve B A ise A=B dir. Birbirinin alt kümesi olan iki küme eşit kümedir. CEVAPLAR .BÖLÜM - TEST ) {K.K.T.C nin g harfi ile başlayan ilçeleri} ) İlkbahar, yaz, sonbahar, kış mevsimlerinin bazıları ile oluşturulacak kümeler farklı olacağından, bir küme oluşturmazlar. ) Okulumuzdaki

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker kpss soru bankası tamamı çözümlü sözel adaylar için matematik geometri kenan osmanoğlu / kerem köker ÖN SÖZ Değerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

4. SINIF MATEMATİK 1. KİTAP

4. SINIF MATEMATİK 1. KİTAP 4. SINIF MTEMTİK 1. KİTP u kitabın bütün hakları Hacer KÜÇÜKYDIN a aittir. Yazarın yazılı izni olmaksızın kısmen veya tamamen alıntı yapılamaz ve çoğaltılamaz. Copyright 2015 YZR hmet KÜÇÜKYDIN KPK TSRIMI

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ

LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ 1 ÖNERMELER Kesin olarak doğru ya da yanlış hüküm bildiren ifadelere önerme denir. Önermeler p ve q gibi harflerle ifade edilirler.bir önerme doğru ise, doğruluk değeri

Detaylı

.. ORTAOKULU ÜNİTİLENDİRİLMİŞ YILLIK BİREYSEL DERS PLANI (BEP)

.. ORTAOKULU ÜNİTİLENDİRİLMİŞ YILLIK BİREYSEL DERS PLANI (BEP) .. ORTAOKULU 2013 2014 ÜNİTİLENDİRİLMİŞ YILLIK BİREYSEL DERS PLANI (BEP) AY SÜRE SINIF:8 DERS: MATEMATİK HAFTA DERS SAATİ UZUN DÖNEMLİ AMAÇ KISA DÖNEMLİ AMAÇ ÖĞRETİMSEL AMAÇLAR 1. Gösterilen dört basamaklı

Detaylı

A SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00

A SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 12. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2007 Birinci Bölüm Soru kitapçığı türü A SINAV TARİHİ

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları HEDEFLER İÇİNDEKİLER TÜREV VE TÜREV ALMA KURALLARI Türev Türev Alma Kuralları MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu üniteyi çalıştıktan sonra Burada türevin tanımı verilecek, Geometride bir eğrinin bir noktadaki

Detaylı

ÖN SÖZ. Değerli Adaylar,

ÖN SÖZ. Değerli Adaylar, ÖN SÖZ eğerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme Sınavı(KPSS) na hazırlanmaktasınız ve buradaki başarınız gelecekteki iş yaşamınızı ciddi şekilde etkileyecek.

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

6.SINIF MATEMATİK DERSİ PROJE GÖREVİ

6.SINIF MATEMATİK DERSİ PROJE GÖREVİ 6.SINIF MATEMATİK DERSİ PROJE GÖREVİ PROJE KONUSU:SINIF İSTATİSTİKLERİ/Okulumuz 6-7-8.sınıf öğrencilerinin öncelikle kız-erkek sayılarının daha sonra tuttuğu takım,en sevdiği ders ve hangi mesleği seçmek

Detaylı

ÜNİVERSİTEYE HAZIRLIK

ÜNİVERSİTEYE HAZIRLIK ÜNİVERSİTEYE HAZIRLIK YGS MATEMATİK KONU ANLATIMLI SORU BANKASI CEVAP ANAHTARI RASYONEL SAYILAR ONDALIK SAYILAR ÖRNEKLER (Sayfa -) 6 ) ) ) 6) ; ; ) 0) ) ; 8 ) ) ) 0 ) 6 0 0 8) 0 ) 0) 6 ) 8 ) 8 8) ) ; 6

Detaylı

θ x Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 3 Alıştırmalar KARMAŞIK SAYININ KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ 1) z = 1 + i 2) z = 1 i

θ x Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 3 Alıştırmalar KARMAŞIK SAYININ KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ 1) z = 1 + i 2) z = 1 i KARMAŞIK SAYININ KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ z = a + bi y karmaşık sayısının kartezyen bi koordinatları z=(a, b) dir. Ya da görüntüsü A noktasıdır. A Alıştırmalar Karmaş ık sa yıs ın ın kutupsal

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI =f() fonksio - nunun ekseninin kestiği noktaların m apsisleri b, c, e dir. u noktalar a b f()= denkleminin kökleridir n =f() in p eksenini kestiği nokta

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. 2) Aşağıdaki ifadeleri matematiksel ifade olarak yazınız.

1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. 2) Aşağıdaki ifadeleri matematiksel ifade olarak yazınız. 9BÖLÜM DENKLEMLER DENKLEMLER TEST 1 1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. Sözel İfade Matematiksel İfade Orhan ın yaşının dört eksiği Bir sayının sekiz fazlası Cebimdeki

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR SELİM HADAR DANIŞMAN ÖĞRETMEN SANDRA GÜNER ULUS ÖZEL MUSEVİ

Detaylı

SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00 OKULU / SINIFI :

SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00 OKULU / SINIFI : TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 12. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2007 Birinci Bölüm Soru kitapçığı türü B SINAV TARİHİ

Detaylı

LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 15 HAZİRAN 2014 PAZAR

LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 15 HAZİRAN 2014 PAZAR T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 15 HAZİRAN 2014 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

ÜNİTELENDİRME ŞEMASI

ÜNİTELENDİRME ŞEMASI LENDİRME ŞEMASI ÜNİTE DOĞRULAR VE AÇILAR. Aynı düzlemde olan üç doğrunun birbirine göre durumlarını belirler ve inşa eder.. Paralel iki doğrunun bir kesenle yaptığı açıların eş olanlarını ve bütünler olanlarını

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

ÖZEL SAMANYOLU LİSELERİ

ÖZEL SAMANYOLU LİSELERİ ÖZEL SAMANYOLU LİSELERİ 8. İLKÖĞRETİM MATEMATİK YARIŞMASI 31 MART 2012 A KİTAPÇIĞI Bu sınav çoktan seçmeli 40 Test sorusundan oluşmaktadır. Süresi 150 dakikadır. Sınavla İlgili Uyarılar Cevap kağıdınıza,

Detaylı

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4 KÜMELER Test -1 1. A a,b,c,d kümesi için aşağıdakilerden hangisi yanlıştır? A) A B) a A C) d A D) {a, c} A E) {a} A 5. A a,b,c, 1,2, 5 kümesi için aşağıdakilerden hangisi doğrudur? A) s(a) = 6 B) b A C)

Detaylı

ALAN BİLGİSİ YAYINLARI. TÜRK DİLİ VE EDEBİYATI ÖĞRETMENLİĞİ / ALAN BİLGİSİ Editör: Doç. Dr. Abdullah ŞAHİN

ALAN BİLGİSİ YAYINLARI. TÜRK DİLİ VE EDEBİYATI ÖĞRETMENLİĞİ / ALAN BİLGİSİ Editör: Doç. Dr. Abdullah ŞAHİN ALAN BİLGİSİ YAYINLARI ALAN BİLGİSİ YAYIN NO. : 05 ISBN : 978-605-860-465-0 Güncellenmiş 3. Basım, Ocak 2014 TÜRK DİLİ VE EDEBİYATI ÖĞRETMENLİĞİ / ALAN BİLGİSİ Editör: Doç. Dr. Abdullah ŞAHİN Yazarlar:

Detaylı

Temel Matematik Testi - 3

Temel Matematik Testi - 3 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: 003. u testte 0 soru vardır. 2. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi

Detaylı

AÖĞRENCİLERİN DİKKATİNE!

AÖĞRENCİLERİN DİKKATİNE! A KİTAPÇIK TÜRÜ T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF MATEMATİK 205 8. SINIF. DÖNEM MATEMATİK DERSİ MERKEZİ ORTAK SINAVI 25 KASIM 205 Saat: 0.0 Adı

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Saymanın Temelleri 1. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Ayşe nin Doğum Günü Partisi Saymanın Temelleri Ayşe

Detaylı

ÖZEL SERVERGAZİ LİSELERİ

ÖZEL SERVERGAZİ LİSELERİ S E R İ M Y A ÖZEL SERVERGAZİ LİSELERİ VII. İ L K Ö Ğ R E T İ M O K U L L A R I A R A S I M A T E M A T İ K Y A R I Ş M A S I AÇIKLAMALAR Bu sınav çoktan seçmeli 35 ve 3 klasik sorudan oluşmaktadır. Sınav

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları...

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları... ÜNİTE Safa No............................................................ 79 98 Fonksionlar Konu Özeti...................................................... 79 Konu Testleri ( 8)...........................................................

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10 LİSNS YRLŞTİRM SINVI- MTMTİK-GOMTRİ SINVI MTMTİK TSTİ SORU KİTPÇIĞI 0 U SORU KİTPÇIĞI LYS- MTMTİK TSTİ SORULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

Sayılar ve Altın Oranı. Mahmut Kuzucuoğlu. 16 Ağustos 2015

Sayılar ve Altın Oranı. Mahmut Kuzucuoğlu. 16 Ağustos 2015 Sayılar ve Altın Oranı Mahmut Kuzucuoğlu Orta Doğu Teknik Üniversitesi Matematik Bölümü matmah@metu.edu.tr İlkyar-2015 16 Ağustos 2015 Ben kimim? Denizli nin Çal ilçesinin Ortaköy kasabasında 1958 yılında

Detaylı

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır?

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır? MATE 106 SOSYAL BİLİMLER İÇİN TEMEL ANALİZ Ad-Soyad No Uygun cevabı bulunuz. 1)A = πr2 formülü r yarıçaplı çemberin A alanını vermektedir. Bir masa örtüsü A alanına sahipse, yarıçapını A'nın bir fonksiyonu

Detaylı

ÝÇÝNDEKÝLER. 1. ÜNÝTE Kümeler. 2. ÜNÝTE Bölünebilme Kurallarý ve Kesirler

ÝÇÝNDEKÝLER. 1. ÜNÝTE Kümeler. 2. ÜNÝTE Bölünebilme Kurallarý ve Kesirler ÝÇÝNDEKÝLER 1. ÜNÝTE Kümeler KÜMELER... 13 Ölçme ve Deðerlendirme... 19 Kazaným Deðerlendirme Testi - 1... 21 Kazaným Deðerlendirme Testi - 2 (Video lü)... 23 KÜMELERLE ÝÞLEMLER... 25 Ölçme ve Deðerlendirme...

Detaylı

MATEMATİK ÖĞRETMENLİĞİ

MATEMATİK ÖĞRETMENLİĞİ T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 108 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600 MATEMATİK ÖĞRETMENLİĞİ Analiz Yazar: Prof.Dr. Vakıf CAFEROV Editör: Öğr.Gör.Dr. Mehmet ÜREYEN Bu kitabın basım, yayım

Detaylı