Başlayanlara AKTİF MATEMATİK

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Başlayanlara AKTİF MATEMATİK"

Transkript

1 KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ

2 ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu sözleri söylüyorsanız doğru kitabı buldunuz demektir. Bu kitap sizin için bu süreçte çok iyi bir rehber ve çok iyi bir yol arkadaşı olacaktır. Matematik öğrenilmesinin önündeki en büyük engel bu derse karşı olan ön yargılardır. Matematik eğitiminde yaşanan sorunları üç temel başlıkta sıralayabiliriz: ) Temel işlem yeteneği eksiklikleri ) Soru çözme yöntem ve mantığı ile ilgili eksiklikler ) Soru çözümünde işlem hatası yapma Temel işlem yeteneği matematiğin A, B, C si gibidir. İşlem yeteneği başlığı altında ele alabileceğimiz dört işlem, rasyonel sayılarda işlem, harfli ifadelerle işlem ve denklem çözme, soruları çözebilmenin ön koşuludur. Bu sorunları kitabımızın birinci ünitesini dikkatle çözerek aşabilirsiniz. İkinci temel sorun, soru çözme mantığı geliştirmektir. Bu durum okuduğunu anlama ve matematiksel olarak ifade etmeyi gerektirir. Bu mantığı geliştirebilmek için kavrama bölümündeki çözümlü örneklerden yararlanarak uygulama bölümünde soruları çözebilirsiniz. Bu şekilde öğrendiğiniz bilgileri hemen uygulamaya koymuş olacaksınız. Üçüncü temel sorun ise işlem hatasıdır ki bu da dikkat ve bol soru çözümüyle aşılabilir. Bu üç temel sorunun göz önünde bulundurulmasıyla hazırlanan kitabımızda kişinin ön öğrenmeleri ve tutumları ne olursa olsun herkes matematik öğrenebilir. Görüşü benimsenmiştir. Kitap, üç basamaklı aktif öğrenme modeline göre hazırlanmıştır. Bu modelde öğrenme konularının kavranmasını sağlayan, öğrenilen bilgilerin uygulanmasını sağlayan ve her ünitenin sonunda öğrencilerin konuyu pekiştirmesini sağlayan Konu Testleri bulunmaktadır. Büyük emekler sonucu hazırlanan bu kitaba katkılarını esirgemeyen Kemal SANCAKTAR, Yurdacan KOÇ, Soner AĞCA, Pınar KOÇAK ALKAN, Elif DEMİRBAŞ, Yasemin DEMİRCİ, Sündüz BOSTANCI hocalarımıza teşekkür ederiz. Kitabımız KPSS, YGS, DGS ve ALES e hazırlanan tüm adaylar ve 9. sınıf öğrencilerimizin çalışmalarına uygun olarak hazırlanmıştır. Kitap ile ilgili görüş ve önerilerinizi ve (04) nolu telefona bildirebilirsiniz. Yazar Mehmet KOÇ

3 Basamaklı Aktif Öğrenme Modeli Başarı. Basamak Pekiştirme Bölümü Kavrama ve nde elde edilen kazanımların her ünite sonunda pekiştirilerek kalıcı öğrenmenin amaçlandığı basamaktır. Pekiştirme Bölümü nde tercih edilen sorular kolaydan zora doğru sıralanarak oluşturulmaktadır.. Basamak Bu bölüm kavrama bölümünde öğrenilen bilgilerin tekrarı ile konuların uygulamalı olarak öğrenilmesini sağlar. nde elde edilen kazanımlar burada uygulanarak daha etkili ve kalıcı bir öğrenme gerçekleştirilmektedir.. Basamak Başlangıç Bu bölüm öğrenme içeriğini etkin bir biçimde öğrenmenizi sağlayacak bilgiler, basit yollar ve formüllerden oluşmaktadır. Bu basamak öğrenme uygulamasının temelini oluşturmaktadır.

4 Konu Adı İşlem Yeteneği Bu bölümde konu anlatım kutusu, özellik kutusu ve örnekler bulunmaktadır. Konunun temel bilgilerinin verildiği bu bölümde temel matematik mantığı oluşturma hedeflenmiştir. Bu bölümde sorular bulunmaktadır. KONU ANLATIM KUTUSU Konu mantığının anlatıldığı ve kesinlikle bilinmesi gereken noktaların verildiği bölümdür. Örnek Konuların en temel örnekleri ve belirli soru kalıpları kolaydan zora doğru sıralanmıştır. Konunun anlaşılması için örneklerin çok dikkatli çözülmesi gerekmektedir. Bu bölüm öğrenciye kılavuzluk etmektedir. Soru Yandaki örneğin eşdeğeri olan sorular bu bölümde yer almaktadır. Bu bölüm yandaki örnekten hareketle soruları çözebileceğiniz ve anlayabileceğiniz bir alandır. Örneğin detaylı çözümü burada verilmiştir. ÖZELLİK KUTUSU Konunun önemli özelliklerini açıklayan bölümdür. Konu Adı İşlem Yeteneği KONU TESTİ Ünite içerisinde öğrendiklerimizi pekiştirebileceğimiz bölümdür.

5 İÇİNDEKİLER ÜNİTE İşlem Yeteneği 7 ÜNİTE Temel Kavramlar 6 ÜNİTE Basamak Kavramı 79 ÜNİTE 4 Bölme - Bölünebilme - OBEB/OKEK 87 ÜNİTE Rasyonel Sayılar 09 ÜNİTE 6 Birinci Dereceden Denklemler 9 ÜNİTE 7 Basit Eşitsizlikler 7 ÜNİTE 8 Mutlak Değer 4 ÜNİTE 9 Üslü Sayılar 7 ÜNİTE 0 Köklü Sayılar 8 ÜNİTE Çarpanlara Ayırma 0 ÜNİTE Oran - Orantı ÜNİTE Sayı-Kesir Problemleri 9 ÜNİTE 4 Yaş Problemleri 6 ÜNİTE İşçi - Havuz Problemleri 7 ÜNİTE 6 Yüzde - Kâr - Zarar - Faiz Problemleri 8 ÜNİTE 7 Karışım Problemleri 0 ÜNİTE 8 Hareket Problemleri ÜNİTE 9 Grafik Problemleri CEVAP ANAHTARI 4

6 İşlem Yeteneği Soru 7 a) 4. =? Örnek 7 a) b) =? İşleminde önce çarpma daha sonra toplama yapılmalıdır = + 8 = 9 bulunur. c) 0 : 4 =? d) : 4 =? b) 0 (.4) İşleminde önce parantez içi sonra çıkarma işlemi yapılmalıdır. 0 (.4) = 0 8 = bulunur. Soru 8 a) =? Örnek 8 a).( ) +.( 4) =? b).7 0 : 4 +. =? b) 8 : ( ) + 4 : ( ) =? c) ( 0).( ) + 4 : : =? c) 4 =? d) 7. 0 : ( ) + : =? d) =? 7 e) ? + = e) =? 7 0

7 İşlem Yeteneği Örnek 6. a). = 7 7. = 6 Soru 6 a). =? 8. b). = 4 4. = 8 c)... 7 = = = = d) = = = = Bölme İşlemi b). =? c).? 4 = 9 d). 00 =? 7 0 Bölme işlemi yapılırken ilk terim aynen yazılır, ikinci terim ters çevrilip ilk terimle çarpılır. Örnek 7 a) :. 0 = = b) :. 7 = = 7 Soru 7 a) + : =? 4 6 b). 4 =? 7 c) :. 7 = = 7 c). + =? d). 7 4 = = 7 e). = = = f) = = = 7 d). c? 6 m + = e) =? f) 8 =? g) = Payın bir olduğu bir rasyonel ifadede payda ters çevrilip cevap olarak yazılır. g) =? 4 h) = h) =? 8 9

8 İşlem Yeteneği Değişkenin kat sayısı yok ise kat sayı alınır. x = x gibi düşünülür. Toplama - Çıkarma İşlemi HARFLİ İFADELER Dereceleri aynı olan harfli ifadelerin önlerindeki kat sayılar birbirleriyle toplanıp çıkarılıp tek terim olarak yazılabilir. Yani x li terim başka bir x li terimle işleme konulur x li bir terim x li başka bir terimle işleme konulabilir. Soru 8 Aşağıdaki toplama ve çıkarma işlemlerini yapınız. a) x + x =? Örnek 8 Aşağıdaki toplama ve çıkarma işlemlerini yapalım. a) x + x = ( + )x = x b) 7x x =? b) 7x 4x = (7 4)x = x c) 4x + x x =? c) x + x + x = ( + + )x = 6x d) 0x 8x + x =? d) 8x 4x + x = (8 4 + )x = 9x e) x + x + x =? e) x + x = ( + )x = x Soru 9 Aşağıdaki toplama ve çıkarma işlemlerini yapınız. a) x + x + x x =? Örnek 9 Aşağıdaki toplama ve çıkarma işlemlerini yapalım. a) 4x x + x = (4 + )x = x b) x + 7x =? b) x 4 + x 4 = ( + )x 4 = x 4 c) 4x x =? c) 7x x = (7 )x = x d) 0x 0 7x 0 + x 0 =? d) x 0 x 0 = ( )x 0 = x 0 e) x 7 + 4x 7 x 7 =? e) x x Dereceler eşit olmadığından toplama ve çıkarma işlemleri yapılamaz. f) x + x

9 İşlem Yeteneği c) (x + 4) + ( x + 4) = x 4 4x + 8 = x + 4 c) (x ) (x ) =? d) (a + a) (a ) = a + a a + = a + a + d) (x ) + (x ) =? e) 7(x + x x) = 7x + 7x 7x e) 0(x 4) + 7(x ) =? f) (y y + ) = y + y 6 f) (x 4x + 0) =? g) 0( x + 7x + 4) = 0x 70x 40 h) ( 7x + 6y + z) = x 0y z g) 7(x 4 x + ) =? ı) 0(x 0 y 7 + 6z 4 ) = 0x 0 + 0y 7 60z 4 h) 0(x 4 x + 7x + ) =? Örnek 4 Aşağıdaki çarpma işlemlerini yapalım. a) x.(x ) = x x Soru 4 Aşağıdaki çarpma işlemlerini yapınız. a) x.(x + ) =? b) x(x + 4) = x + 4x b) x.(x + ) =? c) x.(x x) = x x c) x.(x 7) =? d) x 4 (x x + x) = x 7 x 6 + x d) (x 6) =? e) (x + ).(x ) = x x + x = x e) 7x.(4x ) =? f) (x + ).(x ) = x x + x 6 = x + x 6 f) (x 4).(x + ) =?

10 İşlem Yeteneği Değer Verme Örnek 8 a) x = için, x + ün değeri Soru 8 a) x = için, x 4 değeri nedir?. + = 0 + = bulunur. b) x = için, 7x + 4 ün değeri b) x = için, 4x + değeri nedir? 7.( ) + 4 = = bulunur. c) x = 4 için, x 4 ün değeri.( 4) 4 = 0 4 = 6 bulunur. c) x = için, x + 6 değeri nedir? d) x = 4 için x x + nin değeri 4 x x d) x = 8 için, + değeri nedir? = + = bulunur. 4 e) x = için, x + 7 nin değeri x x e) x = için, + değeri nedir? = = 6 bulunur. f) x = için, x + x değeri nedir? f) x = 4 için, x + x in değeri ( 4) +.( 4) = 6 8 = 8 bulunur. g) x = için, x + x x + in değeri ( ) + ( ) ( ) + = = bulunur. g) x = için, x 4 + x + x değeri nedir? 9

11 İşlem Yeteneği x ile çarpım durumunda bir sayı varsa eşitliğin her iki tarafı bu sayıya bölünerek x tek başına bırakılır. x ile bölüm durumunda bir sayı varsa sayı eşitliğin diğer tarafına çarpı olarak geçirilir. Örnek 40 a) x = 8 x 8 = x = 9 Soru 40 a) 7x = b) 7x = 7x = 7 7 x = b) x = 8 c) 4x = 6 4x 6 = 4 4 x = 4 c) x = 0 d) e) f) x = x = x =. x = 0 x = 4 x = 4. x = 0 x = x = ( ).( ) x = d) x = e) x = 7 f) x = 0 4

12 İşlem Yeteneği g) x 7 = 8 g) x = 4 x = 4. x = 0 x 0 = x = 0 4 h) x = 0 h) x = 4 x =.4 x = 48 x 48 = x = 6 Soru 4 a) 4x + = 7 Örnek 4 a) x = 7 x = 7 + x = 8 x 8 = x = 4 b) x + = b) 7x + 4 = 7x = 4 7x = 7x = 7 7 x = c) x + = c) x + = 9 x = 9 x = 8 x 8 = x = 6 46

13 İşlem Yeteneği d) x + 0 = x = 0 x = ise x = bulunur. d) 4x + = Örnek 4 a) x + = 7 Soru 4 a) 4( x) = 6 b) (x 4) = 0 b) (x 6) = 4 c) (x + 4) = 0 c) ( 4x) = Eşitliğin her iki tarafında x li terimler varsa x li terimler eşitliğin bir tarafına, sayılar diğer tarafa atılarak denklem çözülür. Örnek 4 a) x + 4 = x x + 4 = x x x = 4 Soru 4 a) x + = 4x + 0 x = 7 b) 7x + 6 = x + 8 7x + 6 = x + 8 7x x = 8 6 b) 7x + x = 0x + x = x = 6 47

14 İşlem Yeteneği c) (x 4) + 7 = 0 c) (x ) = x + x 6 = x + x x = + 6 x = d) 4(x 4) + (x ) = 7 + x d) (x 4) + x + 4 = 4(x ) x + x + 4 = 4x 4 x 8 = 4x 4 x 4x = x = 4 e) (x + 4) + (x ) = x + (x ) e) ( x) + 4(x + 4) = (x + 4) + x + 4x + 6 = x 0 6x + 4 = x 0 6x + x = 0 4 x = 4 4 x = f) (x 4) + (x ) (x + 4) = 4( x) + x 7 f) (x ) + ( x) = ( x + 4) + x x + x = +x 4 + x x = x 4 x x = 4 + x = x = x = 48

15 İşlem Yeteneği 7. (x + ) = 0 KONU TESTİ 8 4. x 7 + (x ) = ( x) (x ) + (x ) = 8. x 7 + x ( x) = 4x x + (x ) + x = 7 6. (x ) + 4(x + ) = (x ) + x 0. (x ) + 4(x ) + ( x + ) = (x ) (x ) = x + 4. x = x + 8. (x + ) (x 4) = ( x). (x ) = x (x + 4) ( x + ) = x + 7. (x ) + 6(x + 4) = x + 0. (x + 4) (x ) = (x ) + ( x) 0

16 Bölme - Bölünebilme - OBEB, OKEK Bölünebilme Kuralları ile Bölünebilme : Bir sayının birler basamağındaki rakam çift yani 0,, 4, 6, 8 ise bu sayı ile tam bölünür. Tek ise ile bölümünden kalan dir. Örneğin; 4, 76, 80,, 798 sayıları ile tam bölünür. 4, 7, 87,, 9 sayılarının ile bölümünden kalan dir. ile Bölünebilme : Bir sayının rakamları toplamı ve ün katı ise bu sayı ile tam bölünür. Soru Aşağıdaki sayıların ile bölümünden kalanları bulunuz. a) 49 Örnek Aşağıdaki sayıların ile bölümünden kalanları bulalım. a) = olduğundan ile tam bölünür. b) 4 b) = olduğundan ile tam bölünür. c) 7648 c) = olduğundan ile bölümünden kalan dir. d) 49 d) = olduğundan ile bölümünden kalan dir. e) 87 e) = 7 olduğundan ile bölümünden kalan dir. f) 6 f) = 0 olduğundan bölümünden kalan dir. Soru 7a4 sayısı ile tam bölündüğüne göre a kaç farklı değer alır? Örnek a sayısı ile tam bölündüğüne göre a kaç farklı değer alır? + a + = + a ifadesinin ile tam bölünmesi için a rakamı, 4 ve 7 olacak şekilde farklı değer alır. 9

17 Üslü Sayılar Örnek 7 a) = = Soru 7 Aşağıdaki işlemlerin sonuçlarını bulunuz. a) b) = = 9 b) c) = = c) 7 d) c m = a k = d) 8 e) 4 a k = a k = 6 4 e) c m f) c m = c m = 7 f) a k 4 g) = 4 = 6 4 g) 4 h) = = h) 7 Soru 8 Örnek 8 + işleminin sonucu kaçtır? + = + = + = + = ( ) ( ) + işleminin sonucu kaçtır? 6

18 Üslü Sayılar Soru 9 4 c m + işleminin sonucu kaçtır? Örnek 9 + c m işleminin sonucu kaçtır? c m = + a k = + = + = ( ) ( 9) Soru 0.. c m c m a k işleminin sonucu kaçtır? Örnek 0 + işleminin sonucu kaçtır? + = + = + = = + = ( ) ( ) Soru + işleminin sonucu kaçtır? Örnek 4 c + m a k işleminin sonucu kaçtır? c m + a k = a k + a k = + = = Toplama Çıkarma İşlemi a.x n + b.x n c.x n = (a + b c).x n Soru Aşağıdaki toplama işlemlerini yapınız. a) 7x + x 4x Örnek Aşağıdaki toplama işlemlerini yapalım. a) 4.a +.a.a =? (4 + ).a = 7.a 6

19 SAYI - KESİR PROBLEMLERİ ÜNİTE Verilen bir problemin çözümü için ifadenin matematiksel bir dile çevrilmesi gerekmektedir. Aşağıdaki ifadelerde aranan sayıya x diyelim. Bir sayının fazlası ; x + Bir sayının eksiği ; x Bir sayının katı ;.x Bir sayının yarısı ; x Bir sayının katının fazlası ; x + Bir sayının eksiğinin katı ;.(x ) Bir sayının fazlasının yarısı ; x + Bir sayının ünün fazlası ; x Bir sayının eksiğinin i ; x + Bir sayının eksiğinin ü ;. ( x ) Bir sayının ü ; x Bir sayının i ; x Bir sayının katı ile üç katının toplamı ; x + x Bir sayının katının fazlasının yarısı ; x + Bir sayının eksiğinin x x ü ile yarısının toplamı; + Bilinmeyen sayılardan biri x, diğeri y olsun. İki sayının toplamı ; x + y İki sayının farkı ; x y İki sayının çarpımı ; x.y İki sayının oranı ; x y İki sayının karelerinin toplamı ; x + y İki sayının karelerinin farkı ; x y Örnek fazlası 0 olan sayı kaçtır? Bilinmeyen sayı x olsun. fazlası Soru fazlası 7 olan sayı kaçtır? x + = 0 dan x = bulunur. Örnek 7 eksiği olan sayı kaçtır? Soru 8 eksiği 6 olan sayı kaçtır? x 7 = x = 9

20 Sayı - Kesir Problemleri Soru katı 48 olan sayı kaçtır? Örnek katı olan sayı kaçtır? x =.x = x = 6 bulunur. Soru 4 Yarısı olan sayı kaçtır? Örnek 4 Yarısı 0 olan sayı kaçtır? x = 0 x = 0. x = 60 bulunur. Soru katının 4 fazlası 8 olan sayı kaçtır? Örnek katının eksiği 7 olan sayı kaçtır?.x = 7.x = 8 x 8 = x = 6 bulunur. Soru 6 fazlasının yarısı olan sayı kaçtır? Örnek 6 eksiğinin yarısı 8 olan sayı kaçtır? x = 8 x = 8. x = 6 x = 6 + den x = 8 bulunur. Soru 7 si olan sayı kaçtır? 7 Örnek 7 i 0 olan sayı kaçtır? x = 0 ise, x = 0. x = 00 x 00 = den, x = 0 bulunur. 40

21 Sayı - Kesir Problemleri Örnek 8 ünün eksiği 0 olan sayı kaçtır? x = 0 x =. x = 0 + x = 4 bulunur. x = Soru 8 ünün fazlası 0 olan sayı kaçtır? 4 Örnek 9 katı ile katının toplamı 7 olan sayı kaçtır? Bilinmeyen sayı x olsun. Soru 9 8 katı ile katının farkı olan sayı kaçtır? x + x = 7 8x = 7 8 x 7 = x = 9 bulunur. 8 8 Örnek 0 Yarısı ile katının toplamı 0 olan sayı kaçtır? Bilinmeyen sayı x olsun. Soru 0 Yarısı ile kendisinin toplamı 4 olan sayı kaçtır? x x + = 0 den x x + = 0 ( ) ( ) x+ 4x = 0 ise, x = 0 x = 60 x = bulunur. Örnek eksiğinin ü ile katının fazlasının toplamı 6 olan sayı kaçtır? Soru fazlasının ü ile katının fazlasının toplamı olan sayı kaçtır? Bilinmeyen sayı x olsun. x + x + = 6 ise, x + 9x+ = 6 x x+ + = 6 ( ) ( ) 0 x 48 4 = 6 ise 0x = 48 x = = bulunur. 0 4

22 KONU TESTİ Sayı - Kesir Problemleri. fazlası olan sayı kaçtır? 0. Bir sayının 4 katı, katının fazlasına eşit ise sayı kaçtır?. eksiği 7 olan sayı kaçtır?. Bir sınıftaki öğrencilerin sayısının 8 eksiği aynı sayının yarısının fazlasına eşit ise bu sınıfta kaç kişi vardır?. katı 69 olan sayı kaçtır? 4. katının fazlası 96 olan sayı kaçtır?. Toplamları olan sayıların farkı ise büyük sayı kaçtır?. eksiğinin katı 8 olan sayı kaçtır? 6. inin fazlası 7 olan sayı kaçtır?. Toplamları 64 olan iki sayıdan biri diğerinin katıdır. Büyük sayı kaçtır? 7. 7 katı ile kendisinin toplamı 6 olan sayı kaçtır? 4. Farkları 0 olan iki sayının biri diğerinin katı ise küçük sayı kaçtır? 8. katı ile katının farkı 4 olan sayı kaçtır? 9. 4 katının eksiği ile katının 4 fazlasının toplamı 48 olan sayı kaçtır?. Farkları 0 olan iki sayıdan büyük sayının katı ile küçük sayının katı birbirine eşit ise küçük sayı kaçtır? 7

23 Yüzde - Kâr/Zarar - Faiz Problemleri Örnek 8 40 TL ye alınan bir mal %7 kârla kaç TL ye satılır? 00 e alınan bir mal %7 kârla 7 e satılır. Soru 8 40 TL ye alınan bir mal %80 zararla kaç TL ye satılır? Alış Satış D.O x 00.x = 40.7 ise x = 40 TL bulunur. Örnek 9 80 TL ye alınan bir mal %0 zararla kaç TL ye satılır? 00 e alınan bir mal %0 zararla 90 a satılır. Soru 9 60 TL ye alınan bir mal %40 zararla kaç TL ye satılır? Alış Satış D.O x 00.x = ise x = 7 TL bulunur. Örnek 0 0 TL ye alınan bir mal %0 zararla kaç TL ye satılır? Soru 0 40 TL ye alınan bir mal %70 zararla kaç TL ye satılır? 00 e alınan bir mal %0 zararla 70 e satılır. Alış Satış D.O x 00.x = 0.70 ise x = 0 TL bulunur. Örnek 60 TL ye alınan bir mal %7 zararla kaç TL ye satılır? Soru 700 TL ye alınan bir mal %0 zararla kaç TL ye satılır? 00 e alınan bir mal %7 zararla e satılır. Alış Satış D.O x 00.x = 60. ise x = 40 TL bulunur. 9

24 Yüzde - Kâr/Zarar - Faiz Problemleri Soru 400 TL ye alınan bir mal % zararla kaç TL ye satılır? Örnek 00 TL ye alınan bir mal %60 zararla kaç TL ye satılır? 00 e alınan bir mal %60 zararla 40 a satılır. Alış Satış D.O x 00.x = x = 00 TL bulunur. Soru %0 karla 0 TL ye satılan malın alış fiyatı nedir? Örnek %0 kârla 60 TL ye satılan bir malın alış fiyatı nedir? 00 e alınan bir mal %0 karla 0 a satılır. Alış Satış D.O 00 x x = x = 00 TL bulunur. Soru 4 %4 kârla 6 TL ye satılan malın alış fiyatı nedir? Örnek 4 % kârla 7 TL ye satılan bir malın alış fiyatı nedir? 00 e alınan bir mal % kârla e satılır. Alış Satış D.O 00 x 7.x = 00.7 x = 00 TL bulunur. Soru %0 kârla 480 TL ye satılan bir malın alış fiyatı nedir? Örnek %8 kârla 64 TL ye satılan bir malın alış fiyatı kaç TL dir? 00 e alınan bir mal %8 kârla 8 e satılır. Alış Satış D.O 00 x x = x = 0 TL bulunur. 9

25 Yüzde - Kâr/Zarar - Faiz Problemleri Örnek 6 %4 kârla 68 TL ye satılan bir malın alış fiyatı kaç TL dir? Soru 6 %7 kârla 68 TL ye satılan bir malın alış fiyatı nedir? 00 e alınan bir mal %4 kârla 4 e satılır. Alış Satış D.O 00 x x = x = 400 TL bulunur. Örnek 7 %0 zararla 48 TL ye satılan bir malın alış fiyatı nedir? 00 e alınan bir mal %0 zararla 80 e satılır. Soru 7 %0 zararla 60 TL ye satılan bir malın alış fiyatı nedir? Alış Satış D.O 00 x x = x = 60 TL bulunur. Örnek 8 % zararla 70 TL ye satılan bir malın alış fiyatı nedir? 00 e alınan bir mal % zararla 8 e satılır. Soru 8 % zararla 00 TL ye satılan bir malın alış fiyatı nedir? Alış Satış D.O 00 x x = x = 00 TL bulunur. Örnek 9 %4 zararla 0 TL ye satılan bir malın alış fiyatı nedir? Soru 9 % zararla 7 TL ye satılan bir malın alış fiyatı nedir? 00 e alınan bir mal %4 zararla e satılır. Alış Satış D.O 00 x 0.x = 00.0 x = 400 TL bulunur. 9

26 CEVAP ANAHTARI. Ünite : İşlem Yeteneği Sayfa 7 Soru / a) b) c) 0 Soru / a) 7 b) 4 c) 7 d) 9 Sayfa 8 Örnek / a) 6 b) c) d) 0 e) 7 Örnek 4 / a) 49 b) c) 8 d) 6 Soru / a) 8 b) c) 8 d) 7 e) Soru 4 / a) 76 b) 0 c) 9 d) 0 Sayfa 9 Soru / a) 4 b) 0 c) 6 d) 0 e) 0 Soru 6 / a) 4 b) c) d) Sayfa 0 Örnek 8 / a) 4 b) 8 c) 0 d) 0 e) 6 Soru 7 / a) 6 b) c) d) Soru 8 / a) b) 4 c) d) 69 e) 9 Sayfa Örnek 9 / a) 7 b) c) d) e) 4 f) g) f) 7 ı) 8 Soru 9 / a) 4 b) 6 c) 9 d) e) 6 f) g) h) 0 ı) 4 Sayfa (Konu Testi ) Sayfa (Konu Testi ) Sayfa 4 (Konu Testi ) Sayfa (Konu Testi ) Sayfa 6 Soru 0 / a) Soru / a) 7 Sayfa 7 Soru / a) d) Soru / a) 0 Sayfa 8 Örnek 4 / a) d) 0 88 Örnek / a) b) b) c) d) 6 b) 4 7 b) e) b) 8 c) 0 e) b) 8 8 d) e) 4 Soru 4 / a) b) 0 c) 7 c) 6 f) 7 c) d) 6 69 c) d) 6 7 Soru / a) b) c) d) e) Sayfa 9 Soru 6 / a) 0 Soru 7 / a) b) 9 b) 7 e) 9 f) 40 6 c) d) 4 9 c) 6 g) 8 Sayfa 0 (Konu Testi - ) Sayfa (Konu Testi - ) d) h) c) 8 d) 7 4. a) Sayfa (Konu Testi - ) Sayfa 8 Soru 9 / a) Sayfa d) g) b) e) 0 h) b) c) f) 00 Soru 0 / a) 0, b) 0,4 c) 0,7 d) 0, e) 0,84 Soru / a) 0,4 b) 0, c) 0,67 Sayfa d) 0,6 e) 0,04 Soru / a) 0,9 b) 0,88 c), d),4 e) 0,44 f) 0,64 Soru / a) 0,4 b),4 Sayfa 6 Soru / c) 0,6784 d) 0,9 Soru 4 / a) 0 b) 0 c) Soru / a) 4 b) 9 c) 4 Sayfa 7 Soru / d) e) Soru 6 / a) 8, b) 4, c) 00 d) 480 e),4 f) 8760 Soru 7 / a),4 b) 0,007 c) 0,048 d) 0,04 e) 0,678 f) 0,

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2014 KPSS ye Pegem Yayınları ile hazırlanan adayların,

Detaylı

ÜSLÜ SAYILAR. AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama

ÜSLÜ SAYILAR. AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama KURAL: Bir sayının belli bir sayıda yan yana çarpımının kolay yoldan gösterimine üslü sayılar denir. Örneğin 5 sayısının

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

YGS MATEMATİK SORU BANKASI

YGS MATEMATİK SORU BANKASI YGS MATEMATİK SORU BANKASI Sebahattin ÖLMEZ www.limityayinlari.com Sınavlara Hazırlık Serisi YGS Matematik Soru Bankası ISBN: 978-60-48--9 Copyright Lmt Limit Yayınları Bu kitabın tüm hakları Lmt Limit

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

2016 Kpss Lisans Matematik & Geometri E-Kursu

2016 Kpss Lisans Matematik & Geometri E-Kursu 2016 Kpss Lisans Matematik & Geometri E-Kursu Özellikler Müfredat Tarihler Özellikler Konu Anlatımları: 2015-2016 yılında konu anlatımlarımıza artık senkron ( canlı ) dersi ekledik. Kpss 2016 Matematik

Detaylı

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker kpss soru bankası tamamı çözümlü sözel adaylar için matematik geometri kenan osmanoğlu / kerem köker ÖN SÖZ Değerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

BÖLME - BÖLÜNEBİLME Test -1

BÖLME - BÖLÜNEBİLME Test -1 BÖLME - BÖLÜNEBİLME Test -1 1. A saısının 6 ile bölümünden elde edilen bölüm 9 kalan olduğuna göre, A saısı A) 3 B) C) 7 D) 8 E) 9. x, N olmak üzere, x 6 ukarıdaki bölme işlemine göre x in alabileceği

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır.

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır. Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I YGS Temel Matematik. 8 + 4. + 8 : 4 işleminin sonucu A) 8 B) 9 C) D) 5 E) 8 5. a ve b birer pozitif tam sayıdır.

Detaylı

KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI

KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI KPSS - 011 TÜM ADAYLAR İÇİN KAMU PERSONELİ SEÇME SINAVI KONU ANLATIMLI MODÜLER SET YAZAR Recep AKSOY EDİTÖR Murat CANLI YAYIN KOORDİNATÖRÜ

Detaylı

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

SAYILARIN ASAL ÇARPANLARINA AYRILMASI ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I Üniversite Hazırlık / YGS Kolay Temel Matematik 0 KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I. 8 ( 3 + ) A) 7 B) 8 C) 9 D) 0 E) 6. 3! 3 ( 3 3)": ( 3) A) B) 0 C) D) E) 3. 7 3. + 5 A) 6 B) 7 C) 8 D) 0

Detaylı

ÜNİVERSİTEYE HAZIRLIK

ÜNİVERSİTEYE HAZIRLIK ÜNİVERSİTEYE HAZIRLIK YGS MATEMATİK KONU ANLATIMLI SORU BANKASI CEVAP ANAHTARI RASYONEL SAYILAR ONDALIK SAYILAR ÖRNEKLER (Sayfa -) 6 ) ) ) 6) ; ; ) 0) ) ; 8 ) ) ) 0 ) 6 0 0 8) 0 ) 0) 6 ) 8 ) 8 8) ) ; 6

Detaylı

M G - M A T E M A T İ K D E R S N O T L A R I Sayfa 1

M G - M A T E M A T İ K D E R S N O T L A R I Sayfa 1 NKLM KURM PROLMLRİ YGS MTMTİK. SYI PROLMLRİ ÇÖZM STRTJİSİ ir problemi çözmek için verilen zamanın yarısından fazlasını soruyu anlamaya, kalan zamanı da soruyu çözmeye ayırmalısınız. una göre, soruları

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 22 Nisan 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 22 Nisan 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal I / 22 Nisan 2007 Matematik Soruları ve Çözümleri 3 1 1. x pozitif sayısı için, 2 1 x 12 = 0 olduğuna göre, x kaçtır? A) 2

Detaylı

1. BÖLÜM: PERMÜTASYON (SIRALAMA) BÖLÜM: KOMBİNASYON (SEÇME) A. SEÇME (KOMBİNASYON) B. KOMBİNASYON GEOMETRİ İLİŞKİSİ

1. BÖLÜM: PERMÜTASYON (SIRALAMA) BÖLÜM: KOMBİNASYON (SEÇME) A. SEÇME (KOMBİNASYON) B. KOMBİNASYON GEOMETRİ İLİŞKİSİ İçindekiler 1. BÖLÜM: PERMÜTASYON (SIRALAMA)... 10 A. SAYMA KURALLARI... 10 B. FAKTÖRİYEL... 14 C. n ELEMANLI BİR KÜMENİN r Lİ PERMÜTASYONLARI (Dizilişleri)... 17 Ölçme ve Değerlendirme...20 Kazanım Değerlendirme

Detaylı

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

www.derssunumlari.com

www.derssunumlari.com . BÖLÜM: KESİRLER HER YERDE Kesirleri Karşılaştıralım, Toplayalım ve Çıkaralım 7 7 7 ile kesirlerini karşılaştırınız ve bu 8 8 kesirleri sayı doğrusunda gösteriniz. 8 Pay üï Payda : Bir bütünün kaç parçaya

Detaylı

DOĞAL SAYILARDA TOPLAMA VE ÇARPMA

DOĞAL SAYILARDA TOPLAMA VE ÇARPMA YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS DOĞAL SAYILARDA TOPLAMA VE ÇARPMA Örnek( 1 ) - - - - (I) yandaki işleme x 1 (II) göre (I) çarpan - - - - kaçtır? 40 + - - - - - - - - - - (ÖSS-8) 40

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

EĞİTİM BİLİMLERİ MERKEZİ

EĞİTİM BİLİMLERİ MERKEZİ EĞİTİM BİLİMLERİ MERKEZİ 0 EBİM KPSS Kurslarının öğretmen adaylara armağanıdır. SAYILAR Z{,-,-,-,0,,,, } Z - {,-,-,-} negatif tam sayılar kümesi {0} (elemanı 0 olan bir küme) Z + {,,,,n,n+, } pozitif

Detaylı

ÇAĞLAR KOLEJİ INGILIZCE KASIM BÜLTEN

ÇAĞLAR KOLEJİ INGILIZCE KASIM BÜLTEN ÇAĞLAR KOLEJİ INGILIZCE KASIM BÜLTEN KISIKLI MAH. HANIMSETİ SK. NO:21, ÇAMLICA - ÜSKÜDAR / İSTANBUL İNFO@CAGLAROKULLARİ.COM 0216 505 38 52 İLKOKUL KASIM AYI KAZANIMLARI 1-A: Sınıf objelerini tanır. En

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

ÖN SÖZ. Değerli Adaylar,

ÖN SÖZ. Değerli Adaylar, ÖN SÖZ eğerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme Sınavı(KPSS) na hazırlanmaktasınız ve buradaki başarınız gelecekteki iş yaşamınızı ciddi şekilde etkileyecek.

Detaylı

9) A B ve B A ise A=B dir. Birbirinin alt kümesi olan iki küme eşit kümedir.

9) A B ve B A ise A=B dir. Birbirinin alt kümesi olan iki küme eşit kümedir. CEVAPLAR .BÖLÜM - TEST ) {K.K.T.C nin g harfi ile başlayan ilçeleri} ) İlkbahar, yaz, sonbahar, kış mevsimlerinin bazıları ile oluşturulacak kümeler farklı olacağından, bir küme oluşturmazlar. ) Okulumuzdaki

Detaylı

Mehmet ŞAHİN. www.mehmetsahinkitaplari.org

Mehmet ŞAHİN. www.mehmetsahinkitaplari.org 0. Sınıf M AT E M AT İ K Mehmet ŞAHİN www.mehmetsahinkitaplari.org M.E.B Talim ve Terbiye Kurulu Başkanlığı nın 0..009 tarih ve 4 sayılı kararı ve 00-0 öğretim yılından itibaren uygulanacak programa göre

Detaylı

KARTEZYEN ÇARPIM VE BAĞINTI

KARTEZYEN ÇARPIM VE BAĞINTI KRTEZYEN ÇRPIM VE BĞINTI 3. Bölüm TEST -2 1. β={(x,y):2x+y=8,x,y N} şeklinde tanımlı β bağıntısı kaç elemanlıdır? ) 4 B) 5 C) 6 D) 7 E) 8 6. R'de bağıntısı yansıyan ise a.b kaçtır? ) 18 B) 9 C) 2 D) 18

Detaylı

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme kpss 04 akıcı ayrıntılı güncel konu anlatımları örnekler yorumlar uyarılar pratik bilgiler ösym tarzında özgün sorular ve açıklamaları matematik sayısal akıl yürütme mantıksal akıl yürütme 0 kpss de 85

Detaylı

Dikey geçiş nasıl yapılır?

Dikey geçiş nasıl yapılır? On5yirmi5.com Dikey geçiş nasıl yapılır? Meslek yüksekokulları ile açık öğretim ön lisans programlarından mezun olan öğrencilerin örgün öğretim lisans programlarına geçiş yapmaları için ÖSYM tarafından

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

DEĞERLENDİRME AŞAMALARI SAYISAL VE SÖZEL STANDART PUANLARIN HESAPLANMASI ÖN LİSANS BAŞARI PUANI DGS PUANININ HESAPLANMASI

DEĞERLENDİRME AŞAMALARI SAYISAL VE SÖZEL STANDART PUANLARIN HESAPLANMASI ÖN LİSANS BAŞARI PUANI DGS PUANININ HESAPLANMASI R E H B E R L İ K S E R V İ S İ S I N A V Sınavda adaylara sayısal ve sözel bölümden oluşan bir yetenek testi uygulanacaktır. Sınavda uygulanacak test, lisans öğrenimindeki başarıda etkili olan sayısal

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

3- ARİTMETİK İFADELERİN YAZILMASI. M.İLKUÇAR - imuammer@yahoo.com

3- ARİTMETİK İFADELERİN YAZILMASI. M.İLKUÇAR - imuammer@yahoo.com 3- ARİTMETİK İFADELERİN YAZILMASI 3.1- Aritmetiksel operatörler Operatör Anlamı + Toplama - Çıkarma * Çarpma / Bölme % Kalanlı Bölme ^ Üs alma ( ) Parantez = Atama Aritmetik operatörlerde işlem öncelik

Detaylı

Temel Matematik Testi - 8

Temel Matematik Testi - 8 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D008. u testte 40 soru vardır.. Tavsiye edilen süre 40 dakikadır. Temel Matematik Testi

Detaylı

kpss ezberbozan serisi MATEMATİK GEOMETRİ SORU BANKASI Eğitimde

kpss ezberbozan serisi MATEMATİK GEOMETRİ SORU BANKASI Eğitimde kpss ezberbozan serisi 2016 MATEMATİK GEOMETRİ SORU BANKASI Eğitimde 29. yıl KOMİSYON KPSS EZBERBOZAN MATEMATİK - GEOMETRİ SORU BANKASI ISBN 978-605-318-360-0 Kitapta yer alan bölümlerin tüm sorumluluğu

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır? Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994 Matematik Soruları ve Çözümleri 4.10 +.10 1. 4 10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 = 4 4 (40+

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nasıl Kullanılır? Takdim Sevgili Öğrenciler ve Değerli Öğretmenler, Eğitimin temeli okullarda atılır. İyi bir okul eğitiminden geçmemiş birinin hayatta başarılı olması beklenemez.

Detaylı

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2 PROGRAMLAMA Bir problemin çözümü için belirli kurallar ve adımlar çerçevesinde bilgisayar ortamında hazırlanan komutlar dizisine programlama denir. Programlama Dili: Bir programın yazılabilmesi için kendine

Detaylı

( ) FAKTÖRĐYEL YILLAR /LYS. Örnek( 4.)

( ) FAKTÖRĐYEL YILLAR /LYS. Örnek( 4.) YILLAR 00 003 004 005 006 007 008 009 00 0 ÖSS-YGS - - - - 0/ - / /LYS FAKTÖRĐYEL Örnek( 4) 3)!! ) )! 4 )!? den n e kadar olan sayıların çarpımına n! denir n! 34(n-)n 0!!! 3! 3 6 4! 34 4 5!3450 Örnek(

Detaylı

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 19 Aralık Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 19 Aralık Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 9 Aralık 00 Matematik Soruları ve Çözümleri. + 4 işleminin sonucu kaçtır? A) B) C) D) 4 E) 6 Çözüm + 4 + 4 4 + 4 4.. işleminin

Detaylı

Temel Matematik Testi - 3

Temel Matematik Testi - 3 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: 003. u testte 0 soru vardır. 2. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 18. ULUSL NTLY MTEMTİK OLİMPİYTLRI BİRİNCİ ŞM SORULRI SINV TRİHİ VESTİ:30 MRT 2013 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav süresi 150 dakikadır. SINVL İLGİLİ

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

Temel Matematik Testi - 5

Temel Matematik Testi - 5 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: 005. u testte 40 soru vardır.. Tavsiye edilen süre 40 dakikadır. Temel Matematik Testi

Detaylı

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir. -- Bu ders materyali 06.09.05 :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-00 Cevap: x- -x- x- =0 denklemini sağlayan x değeri kaçtır? UYGULAMA-00 Cevap: x x x 5 + = + denklemini

Detaylı

1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. 2) Aşağıdaki ifadeleri matematiksel ifade olarak yazınız.

1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. 2) Aşağıdaki ifadeleri matematiksel ifade olarak yazınız. 9BÖLÜM DENKLEMLER DENKLEMLER TEST 1 1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. Sözel İfade Matematiksel İfade Orhan ın yaşının dört eksiği Bir sayının sekiz fazlası Cebimdeki

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI 1. a ve b birer pozitif tamsayıdır. 12. a = b³ olduğuna göre, a + b toplamının alabileceği en küçük değer kaçtır? A) 21 B) 23 C) 24 D) 25 3. Beş kişinin yaşlarının aritmetik ortalaması 24 tür. Aşağıda

Detaylı

MATEMATİĞİN DOĞASI, YAPISI VE İŞLEVİ

MATEMATİĞİN DOĞASI, YAPISI VE İŞLEVİ İÇİNDEKİLER Önsöz.III Bölüm I: MATEMATİĞİN DOĞASI, YAPISI VE İŞLEVİ 11 1.1. Matematiğin Tanımına Çeşitli Yaklaşımlar 12 1.2.Matematik Öğrenmenin Amaçları 13 1.3.Matematik ile Diğer Öğrenme Alanlarının

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

DÜNYADA MATHANDCHESS

DÜNYADA MATHANDCHESS DÜNYADA MATHANDCHESS AMERİKA BİRLEŞİK DEVLETLERİ BREZİLYA ÇİN - EKVATOR FİLİPİNLER GÜNEY AFRİKA - HİNDİSTAN - İSPANYA - KANADA - MALEZYA - NİJERYA PERU - SİNGAPUR - TAYLAND - TAYVAN TÜRKİYE - ÜRDÜN - VİETNAM

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

12. SINIF / ÜNİVERSİTE HAZIRLIK YGS DENEME SINAVLARI DAĞILIMI / TÜRKÇE TESTİ

12. SINIF / ÜNİVERSİTE HAZIRLIK YGS DENEME SINAVLARI DAĞILIMI / TÜRKÇE TESTİ YGS DENEME SINAVLARI DAĞILIMI / TÜRKÇE TESTİ 01 Sözcükte ve Söz Öbeklerinde Anlam 02 Cümlede Anlam İlişkileri / Kavramlar 03 Cümle Yorumu 04 Anlatım ve Özellikleri 05 Anlatım Türleri 06 Sözlü Anlatım 07

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Abdullah MADEN İÇİNDEKİLER HEDEFLER DENKLEMLER VE EŞİTSİZLİK UYGULAMALARI

ÜNİTE. MATEMATİK-1 Prof.Dr.Abdullah MADEN İÇİNDEKİLER HEDEFLER DENKLEMLER VE EŞİTSİZLİK UYGULAMALARI HEDEFLER İÇİNDEKİLER DENKLEMLER VE EŞİTSİZLİK UYGULAMALARI Denklem Uygulamaları Sayı Problemleri Kar-Zarar ve Yüzde Hesapları Eşitsizlik Uygulamaları Mutlak Değerli Eşitsizlikler MATEMATİK-1 Prof.Dr.Abdullah

Detaylı

Sıfırdan farklı a, b, c tam sayıları için aşağıdaki özellikler sağlanır.

Sıfırdan farklı a, b, c tam sayıları için aşağıdaki özellikler sağlanır. SAYILAR TEORİSİ 1 Bölünebilme Bölme Algoritması: Her a ve b 0 tam sayıları için a = qb + r ve 0 r < b olacak şekilde q ve r tam sayıları tek türlü belirlenebilir. r sayısı a nın b ile bölümünden elde edilen

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

ÖDÜLLÜ & ÜCRETSİZ 3-4 - 5 OCAK 2014. Yazım Kuralları, Noktalama Işaretleri, Deyim, Atasözü, Sözcükte Anlam, Cümlede Anlam,

ÖDÜLLÜ & ÜCRETSİZ 3-4 - 5 OCAK 2014. Yazım Kuralları, Noktalama Işaretleri, Deyim, Atasözü, Sözcükte Anlam, Cümlede Anlam, STS ye k m 5. - 6. - 7 n tü ıt la a Hediye! 5. Toplam 60 soru / 75 dakika Yazım Kuralları, Noktalama Işaretleri, Deyim, Atasözü, Sözcükte Anlam, Cümlede Anlam, Doğal Sayılar, Örüntüler, Doğal Sayılarda

Detaylı

Temel Matematik Testi - 4

Temel Matematik Testi - 4 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D00. Bu testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -.

Detaylı

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor.

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor. Bölüm: Doğal Sayılar ve Tamsayılar Test: Temel Kavramlar. abc ve cba üç basamaklı doğal sayılardır. abc cba = 97 olduğuna göre, abc biçiminde yazılabilecek en küçük doğal sayının rakamları toplamı A) B)

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 7. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 7. SINIF TEST SORULARI . 3007 (30 305) (3006 300) işleminin sonucu kaçtır? A) 304 B) 305 C) 306 D) 307 3. 8 kesri tanımsızdır. a b 5a 2b = 8 ise, a kaçtır? A) 3 B) 4 C) 5 D) 6 4. a değeri değiştikçe b değerinin de a ya bağlı

Detaylı

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Öğrenci Adı Soyadı Sınıfı Ödev Teslim Tarihi Öğretmen Görüşü Soru 1 Aşağıda sayma pulları ile modellenen matematik işlemlerini bulunuz. Soru 2 Aşağıda

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak kıl YGS MTEMTİK ENEME SINVI 040- Ortak kıl dem ÇİL yhan YNĞLIŞ arış EMİR elal İŞİLİR eniz KRĞ Engin POLT Ersin KESEN Eyüp ULUT Fatih SĞLM Fatih TÜRKMEN Hakan KIRI Kadir LTINTŞ Köksal YİĞİT Muhammet

Detaylı

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI 4 II MATEMATİK YARIŞMASI I AŞAMA SORULARI 4? 4 4 A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? 5 A) B) C) - D) E) - 8 4 x x

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

ORAN-ORANTI TEST 1. 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c)

ORAN-ORANTI TEST 1. 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c) 7BÖLÜM ORAN - ORANTI ORAN-ORANTI TEST 1 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c) ) Aşağıda okunuşları verilen oranları yazınız. a) 16 nın 14 e oranı b) 6 nın

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 200 20 ÖSS-YGS - - - 2 2 / - 2/ 2/ / LYS OBEB OKEK OBEB: iki veya daha fazla sayıyı birlikte bölebilen en büyük tamsayıya bu sayıların OBEB i denir Sayılar

Detaylı

T.C. İSTANBUL AYDIN ÜNİVERSİTESİ. 2010 DGS Puan Türleri ve Kontenjanlar

T.C. İSTANBUL AYDIN ÜNİVERSİTESİ. 2010 DGS Puan Türleri ve Kontenjanlar T.C. İSTANBUL AYDIN ÜNİVERSİTESİ 2010 DGS Puan Türleri ve Kontenjanlar ÖĞR. SÜRESİ PUAN TÜRÜ KONT 2009-DGS EN KÜÇÜK PUANI PROGRAM ADI KOŞULLAR Fen-Edebiyat Fakültesi İngiliz Dili ve Edebiyatı 4 SÖZ 5 15

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır?

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır? Ö.S.S. 1994 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ 4.10 1. 4 10 +.10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 4 4 (40+ ).10 10 4 4 4 (98² 98²) 00.9.

Detaylı

ALES / İLKBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ

ALES / İLKBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL- TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal Ağırlıklı ALES Puanınızın (ALES-SAY)

Detaylı

file:///c:/users/meb/desktop/ales ÇÖZÜMLER/2011 Ales Sonbahar Sayısal 1 Soru-Çözümleri.htm

file:///c:/users/meb/desktop/ales ÇÖZÜMLER/2011 Ales Sonbahar Sayısal 1 Soru-Çözümleri.htm YGS Deneme Çöz LYS Deneme Çöz İletişim Login ANA MENÜ SINAV ÇÖZÜMLERİ KONU ANLATIMI GEOMETRİ MATEMATİK YAZILILAR TABAN PUANLAR FORMÜLLER YGS-LYS KONULARI Buradasınız : Ana Sayfa >> SINAV ÇÖZÜMLERİ >> ALES

Detaylı

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır?

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır? MATE 106 SOSYAL BİLİMLER İÇİN TEMEL ANALİZ Ad-Soyad No Uygun cevabı bulunuz. 1)A = πr2 formülü r yarıçaplı çemberin A alanını vermektedir. Bir masa örtüsü A alanına sahipse, yarıçapını A'nın bir fonksiyonu

Detaylı

barisayhanyayinlari.com

barisayhanyayinlari.com YGS MATEMATİK KONU ANLATIM FASİKÜLLERİ SERİSİ 1 ISBN 978-605-84147-0-9 Baskı Tarihi Ağustos 015 Baskı Yeri: İstanbul YAYINLARI İletişim tel: (538) 90 50 19 barisayhanyayinlari.com Benim için her şey bir

Detaylı

ÖABT Sayılar Teorisi KONU TESTİ Tam Sayılarda Bölünebilme

ÖABT Sayılar Teorisi KONU TESTİ Tam Sayılarda Bölünebilme ÖABT Sayılar Teorisi KONU TESTİ Tam Sayılarda Bölünebilme ÇÖZÜMLER. a b ve b a a b, a, b a b a b ve b c a c olduğundan a b ve c d ise a c b d olmayabilir. ve 5., ve olduğundan sonsuz çözüm vardır...9.9

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS YILLAR 6 7 8 ÖSS-YGS - - / /LYS ONDALIK SAYILAR Paydası ve un pozitif kuvveti şeklinde olan veya u şekle dönüştürüleilen kesirlere ondalık kesir(ondalık sayı) denir 7,,,,,7 6 (,6)gii 8 8 NOT: ondalık sayıların

Detaylı

2013 TÜRKÇE: Soruların Konulara Göre Dağılımı Konular 2010 2011 2012 Konular 2013 Sözcük Anlamı 3 3 2 Sözcük Anlamı ve Söz Yorumu 3 Soru

2013 TÜRKÇE: Soruların Konulara Göre Dağılımı Konular 2010 2011 2012 Konular 2013 Sözcük Anlamı 3 3 2 Sözcük Anlamı ve Söz Yorumu 3 Soru 2013 TÜRKÇE SORULARI DEĞERLENDĠRMESĠ: 2013 YGS soruları geçmiş yıllardaki sınav müfredatına uygun olarak gelmiştir. 2012 YGS sorularına göre daha kısa sorulardan oluşmaktadır. 2012 YGS de sorulmayan Anlatım

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı