Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin"

Transkript

1 DUYARLILIK ANALİZİ Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin değişmesinin problemin optimal çözümü üzerine etkisini incelemektedir. Oluşturulan modeldeki katsayıların kesin olmadığı ve daha sonra ki dönemlerde değişime uğrayarak optimal çözümü ne derece etkileyeceği incelenir. Bu değişiklik sonucunda optimal çözümde bir farklılık olacağı gözleniyorsa, problemin yeniden çözülmesi gerekmektedir. Duyarlılık analizinde, amaç fonksiyonu ve kısıtlayıcı katsayılarındaki ve kaynak değerlerindeki değer değişiklikleri ile yeni bir değişken ve yeni bir kısıt eklenmesi halinde optimal çözümdeki değişiklik incelenir. Normal olarak düşünüldüğünde, kaynaklarda veya kısıtlardaki her hangi bir değişikliğin etkilerini, doğrusal programlama modelini yeniden çözerek bulmak mümkündür. Ancak, bu şekilde yeniden çözüm genellikle gereksizdir. Çünkü aynı temel değişkenli farklı bir optimal çözüme ulaşmak mümkündür. İşte duyarlılık analizi yeniden çözüme gitmeden bu gibi değişikliğin etkisini optimal çözüm tablosundan belirlemeye çalışır.

2 Kısaca Duyarlılık Analizinde; 1- Modeldeki amaç fonksiyonu ve kısıtlayıcılardaki katsayıların değişmesinin 2- Kaynak değerlerindeki değişimin etki ve sonuçları incelenir. Duyarlılık analizi; model parametrelerindeki yapılacak bu değişikliklerin; a-) etkisini, b-) etkinin yönünü c-) değişim aralığını belirlemede yardımcı olmaktadır.

3 Duyarlılık analizini aşağıdaki gibi 4 grupta toplamak mümkündür. Sabitlerin veya kaynak değerlerinin (STD=bi) duyarlılık analizi Amaç fonksiyonu katsayılarının (Ci) duyarlılık analizi çözüme giren temel değişkenlerin amaç fonksiyonundaki katsayılarının D.A. çözüme girmeyen karar değişkenlerin amaç fonksiyonundaki katsayılarının D.A. Yeni bir değişkenin eklenmesinin D.A.

4 1-) Sabitlerin veya kaynak değerlerinin (STD=bi) duyarlılık analizi Bir doğrusal programlama modelindeki kısıtlayıcı denklemlerin sağ taraf değerlerindeki her hangi bir değişikliğin amaç fonksiyonu ve çözüm kombinasyonuna olan etkisinin belirlenmesi işlemidir. Simpleks yöntem sonucunda elde edilen optimal çözüm tablosundaki her bir değerin bir anlamı bulunmaktadır. Özellikle indeks satırındaki değerler çok önemlidir. Bu değerler; 1. İndirgenmiş maliyet 2. Gölge fiyat

5 Sonuç Simpleks Tablosu: Duyarlılık Analizi: İndirgenmiş maliyet Gölge fiyat=fırsat maliyeti

6 İndirgenmiş maliyet : Yapısal değişkenlerin indeks satırındaki değerleridir. Bu değerler, çözüme girmeyen karar değişkenlerinin çözüme girebilmesi için katsayılarında yapılması gereken minimum değişikliği göstermektedir. Bu konuyu aşağıdaki örnekle açıklamaya çalışalım: Z max= 5X 1 +X 2 +10X 3 X 1 +X X 2 1 X 1, X 2, X 3 0

7 İndirgenmiş Maliyet: Öncelikle sonuç simpleks tablosuna bakalım: İndeks satırında X 1 temel değişkeni altında yer alan -5 değeri indirgenmiş maliyet değerini göstermektedir. Yani, X 1 değişkeninden 1 birimlik üretim yapılması durumunda amaç fonksiyonunda meydana gelecek değişim -5 kadardır. Şöyleki: X 1 =0 X 2 =1 X 3 = 100 bu durumda; Zmax= 0x5+1x1+10x100 = Birim X 1 den üretilmesi yani X 1 in çözüme girmesi durumunda Zmax -5 azalacak. Zmax= = 996 (yeni Zmax değeri). Peki bu değer nasıl hesaplandı: Çözüme girmeyen değişken olan X 1 sütununda X 3 değişkeni karşısında yer alan 1 değeri, X 1 in çözüme girmesi durumunda X 3 değişkeninde meydana gelecek azalmayı göstermektedir. Yani X 3 =100 idi. Yeni X 3 = = 99 Zmax=1x5+1x1+10x99 = 996

8 Gölge fiyat : Aylak ve yapay değişkenlerin indeks satırındaki değerleri, ekonomik anlamda gölge fiyatları veya fırsat maliyetlerini göstermektedir. Eğer kaynaklarda bir birim değişiklik yapılırsa, bu değişimin amaç fonksiyonu değerine olan birim etkisi gölge fiyatlar kadar olacaktır. Yani, amaç fonksiyonunun değeri gölge fiyat kadar değişecektir. ve = B+1 B-1 B+1 B-1 Zmax Zmin

9 1-) Zmax şeklindeki bir amaç fonksiyonunda; a) veya = olması durumunda - STD 1 birim artarsa, Zmax değeri gölge değer kadar artar. - STD 1 birim azalırsa, Zmax değeri gölge değer kadar azalır. b) olması durumunda - STD 1 birim artarsa, Zmax değeri gölge değer kadar azalır. - STD 1 birim azalırsa, Zmax değeri gölge değer kadar artar. 2-) Zmin şeklindeki bir amaç fonksiyonunda; a) veya = olması durumunda - STD 1 birim artarsa, Zmin değeri gölge değer kadar azalır. - STD 1 birim azalırsa, Zmin değeri gölge değer kadar artar. b) olması durumunda - STD 1 birim artarsa, Zmin değeri gölge değer kadar artar. - STD 1 birim azalırsa, Zmin değeri gölge değer kadar azalır.

10 Örnek: Z max= 5X 1 +X 2 +10X 3 X 1 +X X 2 1 Z max= 5x0+1x1+10x100=1001 X 1 +X şeklindeki kısıtlayıcı koşulu X 1 +X haline dönüştürürsek; Zmax=1001 olan değer, birinci kısıtlayıcı koşula ait yapay değişkenin altında yer alan gölge değer kadar değişir. Burada amaç fonksiyonu Zmax ve işaret olduğundan, amaç fonksiyonu değeri artacaktır. Z max= = 1011 olur. Bunuda X 3 değişkeninin katsayısındaki +1 lik değişme ile sağlamaktadır.

11 Amaç fonksiyonu: Z min = 95x 1 +80x 2 +35x 3 Kısıtlar: 228x x x x x x x x x

12

13

14 2-) Amaç Fonksiyonu katsayılarının duyarlılık analizi a) Çözüme girmeyen karar değişkenlerinin duyarlılık analizi Eğer bir değişken çözüme girmemiş ise, bu değişkenin amaç denklemindeki Katsayısı yeterli büyüklükte değil demektir. Dolayısıyla bu katsayının sonsuza kadar azaltılması sonucu etkilemeyecektir. Peki nereye kadar arttırılabilir? Bu sorunun cevabı da sonuç simpleks tablosundaki indeks satırında çözüme girmeyen değişkenin altındaki değer kadardır. Nasıl Hesaplanır: Örnek tabloda çözüme girmeyen karar değişkeni X 1 dir. Yani X 1 karar değişkeninin amaç fonksiyonundaki katsayısı (Cj) olan 5 değeri bu karar değişkeninin çözüme girebilmesi için yeterli büyüklükte değildir. Yani bu değerin daha da azaltılması durumunda X 1 karar değişkeni yine çözüme girmeyecektir. Dolayısıyla da optimal çözüm değişmeyecektir. Ne kadar arttırılabilir: İndeks satırında X1 karar değişkeni altında yer alan (-5) değeri kadar değişebilir. Bu da: Cj-Zj=-5 5-Zj=-5 Zj=10 olarak hesaplanır. Bunun anlamı; X1 kadar değişkeninin katsayısı en fazla 10 olabilir. Yani katsayı 10 dan küçük olduğu sürece optimal çözüm değişmez. Kısaca en fazla 5 birim arttırılabilir.

15 b) Çözüme giren karar değişkenlerinin duyarlılık analizi Optimal çözümün geçerli olduğu amaç denkleminin katsayılarının maksimum ve minimum sınırlarının bulunmasıdır. Örnekte çözüme giren karar değişkenleri X 2 ve X 3 tür. Yani bu iki karar değişkenin optimal çözümü değiştirmeden değişebileceği maksimum ve minimum sınırların belirlenmesi gerekmektedir.

16 3-) Yeni bir karar değişkeninin eklenmesi Bu gibi durumlarda yeni bir karar değişkeninin eklenmesiyle optimal çözümün etkilenip etkilenmediğinin belirlenmesi gerekir. Bunun için de yeni eklenecek karar değişkeninin katsayısının hesaplanması gerekir. açıklayalım: Bunu bir örnekle Örnek: Bir firma ticari ve bilimsel olmak üzere 2 farklı modelde hesap makinası üretmek istemektedir. Her bir ticari hesap makinası için 4 diyot ve 2 digital ekran, bilimsel hesap makinası için de 2 diyot ve 4 digital ekrana ihtiyç vardır. Toplam diyot miktarı 600 ve digital ekran miktarı ise 480 dir. Ticari hesap makinasının net karı 8 $, bilimsel hesap makinasının net karı ise 6 $ dır. Karı maksimum yapan üretim modelini kurunuz.

17 Z max= 8X 1 +6X 2 4X 1 +2X X 1 +4X Z max= 8X 1 +6X 2 Z max= 8x120 +6x60 = 1320 Bu durumda firma, 2 diyot ve 3 digital ekran kullanan net karı 6,5$ olan genel amaçlı yeni bir hesap makinası üretmek istemektedir. Firma bu ürünü üretmek için karar verme aşamasındadır. Bu yeni ürünün rasyonel olup olmadığını belirleyelim. Bu durumda gölge fiyatlar (fırsat maliyetleri) dikkate alınacaktır. 1. kısıtlayıcı koşul diyot kısıtı olduğundan : 2x(1,6667)= 3,33 $ 2. Kısıtlayıcı koşul digital ekran kısıtı olduğundan : 3x(0,6667)= 2 $ Toplam yeni maliyet = 5,33 $ Yeni hesap makinasının net karı 6,5 $ idi: 6,5 5,33 = 1,17$ bu değer pozitif olduğundan yeni model hesap makinasının üretimi karlı olacaktır.

18 Örnek: Z max= 6X 1 +7X 2 +10X 3 0.2X X X X X X X OBJECTIVE FUNCTION VALUE 1) VARIABLE VALUE REDUCED COST X X X ROW SLACK OR SURPLUS DUAL PRICES 2) ) ) NO. ITERATIONS= 2 RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X INFINITY X X INFINITY RIGHTHAND SIDE RANGES ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE INFINITY

19 LINDO Çözüm Tablosunun Yorumlanması: OBJECTIVE FUNCTION VALUE 1) Amaç Fonksiyonu Değeri VARIABLE VALUE REDUCED COST X X X ROW SLACK OR SURPLUS DUAL PRICES 2) ) ) NO. ITERATIONS= 2 İndirgenmiş Maliyet Değerleri Karar Değişkenlerinin Çözüm Değerleri Gölge Fiyatı/Fırsat Maliyeti Aylak/Atık Kapasite RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X INFINITY X X INFINITY RIGHTHAND SIDE RANGES ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE INFINITY Karar değişkeni katsayıları için azami azalış miktarı Karar değişkeni katsayıları için azami artış miktarı Kaynak değerleri (STD) için azami azalış miktarı Kaynak değerleri (STD) için azami artış miktarı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

4.1. Gölge Fiyat Kavramı

4.1. Gölge Fiyat Kavramı 4. Gölge Fiyat Kavramı 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler. Şimdi bir örnek üzerinde

Detaylı

Maksimizasyon s.t. İşçilik, saat) (Kil, kg)

Maksimizasyon s.t. İşçilik, saat) (Kil, kg) Simplex ile Çözüm Yöntemi Doç. Dr. Fazıl GÖKGÖZ 1 Doğrusal Programlama Modeli Maksimizasyon s.t. İşçilik, saat) (Kil, kg) 2 Doç. Dr. Fazıl GÖKGÖZ Yrd.Doç. Dr. Fazıl GÖKGÖZ 1 Modelin Standard Hali Maksimizasyon

Detaylı

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri:

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler.

Detaylı

28 C j -Z j /2 0

28 C j -Z j /2 0 3.2.6. Dual Problem ve Ekonomik Yorumu Primal Model Z maks. = 4X 1 + 5X 2 (kar, pb/gün) X 1 + 2X 2 10 6X 1 + 6X 2 36 8X 1 + 4X 2 40 (işgücü, saat/gün) (Hammadde1, kg/gün) (Hammadde2, kg/gün) 4 5 0 0 0

Detaylı

Total Contribution. Reduced Cost. X1 37,82 480 18.153,85 0 basic 320 512. X2 22,82 320 7.302,56 0 basic 300 M. Slack or

Total Contribution. Reduced Cost. X1 37,82 480 18.153,85 0 basic 320 512. X2 22,82 320 7.302,56 0 basic 300 M. Slack or HRS şirketi BRN Endüstrileri ile bir anlaşma yapmış ve her ay BRN ye üretebildiği kadar A ürününden sağlamayı garanti etmiştir. HRS de vasıflı ustalar ve çıraklar çalışmaktadır. Bir usta, bir saatte 3

Detaylı

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ LINDO (Linear Interactive and Discrete Optimizer) YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ 2010-2011 Güz-Bahar Yarıyılı YRD.DOÇ.DR.MEHMET TEKTAŞ ÖRNEK 6X 1 + 3X 2 96 X 1 + X 2 18 2X 1 + 6X 2 72 X 1, X

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

Simpleks Yöntemde Duyarlılık Analizleri

Simpleks Yöntemde Duyarlılık Analizleri 3.2.4. Simpleks Yöntemde Duyarlılık Analizleri Duyarlılık analizinde doğrusal programlama modelinin parametrelerindeki değişikliklerinin optimal çözüm üzerindeki etkileri araştırılmaktadır. Herhangi bir

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

Başlangıç Temel Programının Bilinmemesi Durumu

Başlangıç Temel Programının Bilinmemesi Durumu aşlangıç Temel Programının ilinmemesi Durumu İlgili kısıtlarda şartlar ( ) ise bunlara gevşek (slack) değişkenler eklenerek eşitliklere dönüştürülmektedir. Ancak sınırlayıcı şartlar ( ) veya ( = ) olduğu

Detaylı

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir.

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir. ISLE 403 YÖNEYLEM ARAŞTIRMASI I DERS IV NOTLAR Bağlayıcı Kısıtlar ve Bağlayıcı Olmayan Kısıtlar: Bağlayıcı Kısıtlar, denklemleri optimum çözüm noktasında kesişen kısıtlardır. Bağlayıcı-Olmayan Kısıtlar,

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

END331 YÖNEYLEM ARAŞTIRMASI I GEÇMİŞ SINAV SORULARI

END331 YÖNEYLEM ARAŞTIRMASI I GEÇMİŞ SINAV SORULARI END331 YÖNEYLEM ARAŞTIRMASI I GEÇMİŞ SINAV SORULARI 1. Aşağıda verilen modeli bir DP modeli olarak formüle ediniz. min x 4 + 2y 7 öyle ki 3x + 5y 25 2x + 10y 20 x, y 0 2. Bir banka çek işlemleri için iki

Detaylı

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006 ĐST 49 Doğrusal Programlama ARA SINAV I 15 Kasım 006 Adı Soyadı:KEY No: 1. Aşağıdaki problemi grafik yöntemle çözünüz. Đkinci kısıt için marjinal değeri belirleyiniz. Maximize Z X 1 + 4 X subject to: X

Detaylı

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/ Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/25.12.2016 1. Bir deri firması standart tasarımda el yapımı çanta ve bavul üretmektedir. Firma üretmekte olduğu her çanta başına 400TL, her

Detaylı

KONU 13: GENEL UYGULAMA

KONU 13: GENEL UYGULAMA KONU : GENEL UYGULAMA Kahve üretimi apan bir şirket anı zamanda cezve ve fincan üretmektedir. Üretilen cezveler ve fincanlar boama kısmında işlem görmekte ve arıca fincanlar kaplanmaktadır. Bir cezve apımı

Detaylı

DOGRUSALPROG~~A BIR MAMUL KARISIM VAK'ASI: BARIS PETROL -47- Dr. Mehpare TIMoR

DOGRUSALPROG~~A BIR MAMUL KARISIM VAK'ASI: BARIS PETROL -47- Dr. Mehpare TIMoR Yönetim, Yil 5, Sayi 19, Ekim 1994, s. 47-51 "" DOGRUSALPROG~~A BIR MAMUL KARISIM VAK'ASI BARIS PETROL Faruk Sezer Baris Petrol'ün Aliaga'daki rafinerisinde yönetici olarak çalismaktadir. Baris Petrol

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

EM302 YÖNEYLEM ARAŞTIRMASI 2. YARIYILİÇİ SINAVI Y.Doç.Dr. Özgür Kabak SORULAR VE CEVAPLAR

EM302 YÖNEYLEM ARAŞTIRMASI 2. YARIYILİÇİ SINAVI Y.Doç.Dr. Özgür Kabak SORULAR VE CEVAPLAR EM302 YÖNEYLEM ARAŞTIRMASI 2. YARIYILİÇİ SINAVI Y.Doç.Dr. Özgür Kabak 28.12.2012 SORULAR VE LAR 1. Ayşe kırmızı başlığı ile şirin ve yardımsever bir kızdır. Her gün annesinin pişirdiği yemekleri babaannesine

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım.

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım. 3. Simpleks Yöntem Doğrusal programlama modelleri grafik yöntem dışında simpleks yöntem adı altında özel bir yöntemle çözülebilir. Bu yöntem Simple Matrix kelimlerinin kısaltmasıdır ve bir çeşit matris

Detaylı

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 C.1.2. Piyasa Talep Fonksiyonu Bireysel talep fonksiyonlarının toplanması ile bir mala ait

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

Matematiksel modellerin elemanları

Matematiksel modellerin elemanları Matematiksel modellerin elemanları Op#mizasyon ve Doğrusal Programlama Maksimizasyon ve Minimizasyon örnekleri, Doğrusal programlama modeli kurma uygulamaları 6. DERS 1. Karar değişkenleri: Bir karar verme

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

MONTAJ TİPİ SÜREÇLERDE ÜRETİMİN ENÇOKLANMASINA İLİŞKİN BİR TAMSAYILI DOĞRUSAL PROGRAMLAMA UYGULAMASI

MONTAJ TİPİ SÜREÇLERDE ÜRETİMİN ENÇOKLANMASINA İLİŞKİN BİR TAMSAYILI DOĞRUSAL PROGRAMLAMA UYGULAMASI Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Cilt XXV, Sayı 2, 2006, s. 1-25 MONTAJ TİPİ SÜREÇLERDE ÜRETİMİN ENÇOKLANMASINA İLİŞKİN BİR TAMSAYILI DOĞRUSAL PROGRAMLAMA UYGULAMASI Hayrettin

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 12 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

ATAMA (TAHSİS) MODELİ

ATAMA (TAHSİS) MODELİ ATAMA (TAHSİS) MODELİ ATAMA (TAHSİS) MODELİ Doğrusal programlamada kullanılan bir başka hesaplama yöntemidir. Atama problemleri, doğrusal programlama (simpleks yöntem) veya transport probleminin çözüm

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ TRANSPORTASYON (TAŞIMA, ULAŞTIRMA) TRANSİT TAŞIMA (TRANSSHIPMENT) ATAMA (TAHSİS) TRANSPORTASYON (TAŞIMA) (ULAŞTIRMA) TRANSPORTASYON Malların birden fazla üretim (kaynak,

Detaylı

Ders 10. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay. Simpleks Yöntemine Giriş Alıştırmalar 10

Ders 10. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay. Simpleks Yöntemine Giriş Alıştırmalar 10 Bölüm 10 Ders 10 Simpleks Yöntemine Giriş 10.1 Alıştırmalar 10 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 197 198 BÖLÜM 10. DERS 10 1. Soru 1 1. Aşağıda verilen simpleks tablolarında temel, temel olmayan,

Detaylı

Çözümlemeleri" adlı yüksek lisans tezini başarıyla tamamlayarak 2001'de mezun oldu.

Çözümlemeleri adlı yüksek lisans tezini başarıyla tamamlayarak 2001'de mezun oldu. Dersi Veren Öğretim Üyesi: Doç. Dr. Mehmet KORKMAZ Özgeçmişi Mehmet KORKMAZ, 1975 yılında Malatya da doğdu. İlkokul, ortaokul ve liseyi memleketi olan Isparta da tamamladı. 1996 yılında İ.Ü. Orman Fakültesi,

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Fen Bilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Hazırlayan: Doç. Dr. Nil ARAS, 6 AÇIKLAMA Bu sununun

Detaylı

LİNDO KULLANMA KLAVUZU

LİNDO KULLANMA KLAVUZU LİNDO KULLANMA KLAVUZU Önsöz: Doğrusal (linear) problemleri çözmeye yarayan bu programın kullanma kılavuzu, Yöneylem Araştırması konularında eğitim almış, İngilizce bilen kullanıcılara yol göstermek için

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

Ders 11. Kısıtlamalı Minimizasyon Problemleri Alıştırmalar 11. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay

Ders 11. Kısıtlamalı Minimizasyon Problemleri Alıştırmalar 11. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay Bölüm 11 Ders 11 Kısıtlamalı Minimizasyon Problemleri 11.1 Alıştırmalar 11 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1. Soru 1 Aşağıdaki problemlerde, dual problemi yazınız; dual problemi simpleks yöntemi

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

4. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

4. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 4. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 B.3.2. Taban Fiyat Uygulaması Devletin bir malın piyasasında oluşan denge fiyatına müdahalesi,

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ

BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ Yöneylem Araştırması III Prof.Dr. Bilal TOKLU btoklu@gazi.edu.tr Yöneylem Araştırması III BÖLÜM I: Hedef Programlama HEDEF PROGRAMLAMAYA GİRİŞ ÖNCELİKSİZ HEDEF PROGRAMLAMA ÖNCELİKLİ HEDEF PROGRAMLAMA HEDEF

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

SİMPLEKS ALGORİTMASI! ESASLARI!

SİMPLEKS ALGORİTMASI! ESASLARI! Fen ilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI ESASLARI Hazırlayan: Doç. Dr. Nil ARAS AÇIKLAMA n n u sununun hazırlanmasında,

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE)

YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE) YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE) Yakıt sarfiyatı Ekonomik uçuş Yakıt maliyeti ile zamana bağlı direkt işletme giderleri arasında denge sağlanmalıdır. Özgül Yakıt Sarfiyatı (Specific

Detaylı

END801 YÖNEYLEM ARAŞTIRMASININ TEMELLERİ DERS NOTLARI

END801 YÖNEYLEM ARAŞTIRMASININ TEMELLERİ DERS NOTLARI END801 YÖNEYLEM ARAŞTIRMASININ TEMELLERİ DERS NOTLARI Dr. Y. İlker Topcu Teşekkür: Prof. W.L. Winston'ın "Operations Research: Applications and Algorithms" kitabı ile Prof. J.E. Beasley's YA ders notlarının

Detaylı

END331 YÖNEYLEM ARAŞTIRMASI I DERS NOTLARI

END331 YÖNEYLEM ARAŞTIRMASI I DERS NOTLARI END33 YÖNEYLEM ARAŞTIRMASI I DERS NOTLARI (-) Dr. Y. İlker Topcu Teşekkür: Prof. W.L. Winston'ın "Operations Research: Applications and Algorithms" kitabı ile Prof. J.E. Beasley's YA ders notlarının bu

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması İNŞAAT PROJELERİNİN PROGRAMLAMA, TASARIM VE YAPIM SÜRECİNDE OPTİMİZASYON Doğrusal Optimizasyon Optimizasyon Kuramı (Eniyileme Süreci) Doğrusal Olmayan Optimizasyon Optimizasyon en iyi çözümü bulma sürecidir.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

OPSİYON HAKKINDA GENEL BİLGİLER. www.yf.com.tr

OPSİYON HAKKINDA GENEL BİLGİLER. www.yf.com.tr OPSİYON HAKKINDA GENEL BİLGİLER www.yf.com.tr 1 Opsiyon Nedir? Opsiyon, satın alan tarafa herhangi bir ürünü bugünden belirlenen bir fiyat (kullanım fiyatı) üzerinden ileride bir vadede satın alma ya da

Detaylı

END331 YÖNEYLEM ARAŞTIRMASI I DERS NOTLARI

END331 YÖNEYLEM ARAŞTIRMASI I DERS NOTLARI END33 YÖNEYLEM ARAŞTIRMASI I DERS NOTLARI İKİNCİ BÖLÜM (206-207) Dr. Y. İlker Topcu & Dr. Özgür Kabak Teşekkür: Prof. W.L. Winston'ın "Operations Research: Applications and Algorithms" kitabı ile Prof.

Detaylı

SORU SETİ 7 IS-LM MODELİ

SORU SETİ 7 IS-LM MODELİ SORU SETİ 7 IS-LM MODELİ Problem 1 (KMS-2001) Marjinal tüketim eğiliminin düşük olması aşağıdakilerden hangisini gösterir? A) LM eğrisinin göreli olarak yatık olduğunu B) LM eğrisinin göreli olarak dik

Detaylı

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ 25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ a-) Routh Hurwitz Kararlılık Ölçütü b-) Kök Yer Eğrileri Yöntemi c-) Nyquist Yöntemi d-) Bode Yöntemi 1 2 3 4 a) Routh Hurwitz Kararlılık

Detaylı

Doğrusal Programlama ve Excel Çözücü Uygulamasıyla Optimum Rasyon Çözümü

Doğrusal Programlama ve Excel Çözücü Uygulamasıyla Optimum Rasyon Çözümü Doğrusal Programlama ve Excel Çözücü Uygulamasıyla Optimum Rasyon Çözümü MIN maliyet= $1X 1 + $2X 2 Subject to: 1X 1 + 1X 2 >=10 (Kalsiyum) 3X 1 +1X 2 >=15 (Protein) 1X 1 +6X 2 >=15 (Enerji) ve X 1 >=0,

Detaylı

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 İÇİNDEKİLER Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 1.1. Yöneticilik / Komutanlık İşlevi ve Gerektirdiği Nitelikler... 2 1.1.1. Yöneticilik / Komutanlık

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

A. Regresyon Katsayılarında Yapısal Kırılma Testleri

A. Regresyon Katsayılarında Yapısal Kırılma Testleri A. Regresyon Katsayılarında Yapısal Kırılma Testleri Durum I: Kırılma Tarihinin Bilinmesi Durumu Kırılmanın bilinen bir tarihte örneğin tarihinde olduğunu önceden bilinmesi durumunda uygulanır. Örneğin,

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AC AKIM, GERİLİM VE GÜÇ DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ : TESLİM

Detaylı

2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir:

2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir: 2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir: a) Bu malın arz ve talep denklemlerinin grafiklerini çiziniz (5 puan) (DÖÇ.1-).

Detaylı

SONLU FARKLAR GENEL DENKLEMLER

SONLU FARKLAR GENEL DENKLEMLER SONLU FARKLAR GENEL DENKLEMLER Bir elastik ortamın gerilme probleminin Airy gerilme fonksiyonu ile formüle edilebilen halini göz önüne alalım. Problem matematiksel olarak bölgede biharmonik denklemi sağlayan

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

Selçuk Üniversitesi 26 Aralık, 2013 Beyşehir Turizm Fakültesi-Konaklama İşletmeciliği Genel Ekonomi Dr. Alper Sönmez. Soru Seti 3

Selçuk Üniversitesi 26 Aralık, 2013 Beyşehir Turizm Fakültesi-Konaklama İşletmeciliği Genel Ekonomi Dr. Alper Sönmez. Soru Seti 3 Soru Seti 3 1) Q D = 100 2P talep denklemi ve Q S = P 20 arz denklemi verilmiştir. Üretici ve tüketici rantlarını hesaplayınız. Cevap: Öncelikle arz ve talep denklemlerini eşitleyerek denge fiyat ve miktarı

Detaylı

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz.

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz. Siyasal Bilgiler Fakültesi İktisat Bölümü Matematiksel İktisat Ders Notu Prof. Dr. Hasan Şahin Faz Diyagramı Çizimi Açıklamarı = 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz

Detaylı

Ders 12. Karma Kısıtlamalı Doğrusal programlama problemleri Alıştırmalar 12. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1...

Ders 12. Karma Kısıtlamalı Doğrusal programlama problemleri Alıştırmalar 12. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1... 114 Bölüm 12 Ders 12 Karma Kısıtlamalı Doğrusal programlama problemleri 12.1 Alıştırmalar 12 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1.... 1. Aşağıdaki problemlerde; (i) Aylak, artık ve yapay değişkenleri

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2015 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

ÜRETİM PLANLAMA PROBLEMLERİNDE DOĞRUSAL PROGRAMLAMA TEKNİĞİNİN KULLANIMI: BİR KONFEKSİYON İŞLETMESİNDE UYGULAMA

ÜRETİM PLANLAMA PROBLEMLERİNDE DOĞRUSAL PROGRAMLAMA TEKNİĞİNİN KULLANIMI: BİR KONFEKSİYON İŞLETMESİNDE UYGULAMA ÜRETİM PLANLAMA PROBLEMLERİNDE DOĞRUSAL PROGRAMLAMA TEKNİĞİNİN KULLANIMI: BİR KONFEKSİYON İŞLETMESİNDE UYGULAMA Aysel ÇETİNDERE * Şerafettin SEVİM ** Cengiz DURAN *** ÖZ Bu çalışmada, üretim planlamasının

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 06 IS/LM EĞRİLERİ VE BAZI ESNEKLİKLER PARA VE MALİYE POLİTİKALARININ ETKİNLİKLERİ TOPLAM TALEP (AD) Bugünki dersin içeriği: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 2. LM EĞRİSİ VE PARA TALEBİNİN

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

BAĞIMLI KUKLA DEĞİŞKENLİ MODELLER A- KADININ İŞGÜCÜNE KATILIM MODELİ NİN DOM İLE E-VIEWS DA ÇÖZÜMÜ

BAĞIMLI KUKLA DEĞİŞKENLİ MODELLER A- KADININ İŞGÜCÜNE KATILIM MODELİ NİN DOM İLE E-VIEWS DA ÇÖZÜMÜ BAĞIMLI KUKLA DEĞİŞKENLİ MODELLER A- KADININ İŞGÜCÜNE KATILIM MODELİ NİN DOM İLE E-VIEWS DA ÇÖZÜMÜ Modeldeki değişken tanımları aşağıdaki gibidir: IS= 1 i.kadının bir işi varsa (ya da iş arıyorsa) 0 Diğer

Detaylı

Ders içeriği (5. Hafta)

Ders içeriği (5. Hafta) 5. Elastikiyet 5.1 Elastikiyet kavramı 5.1.1. Talebin Fiyat elastikiyeti 5.1.2. Arz elastikiyeti 5.2. Arz ve taleple ilgili bazı analizler 5.2.1. Tüketici ve üretici rantı 5.2.2. Örümcek ağı kuramı 5.2.3.

Detaylı

EM302 Yöneylem Araştırması 2 Proje Yönetimi. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Proje Yönetimi. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Proje Yönetimi Dr. Özgür Kabak Proje yönetimi Organizasyonlar işlerini işlemler veya projeler olarak gerçekleştirirler. İşlemler ve projelerin ortak özellikleri: İnsanlar tarafından

Detaylı

7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.7. MALİYET TEORİSİ: YENİDEN Sabit Maliyetler (FC): Üretim miktarından bağımsız olan maliyetleri

Detaylı

İktisadi Analiz Ders Notu: Doğrusal Üretim Modelleri ve Sraffa Sistemi

İktisadi Analiz Ders Notu: Doğrusal Üretim Modelleri ve Sraffa Sistemi N. K. Ekinci Ekim 2015 İktisadi Analiz Ders Notu: Doğrusal Üretim Modelleri ve Sraffa Sistemi 1. Tek Sektörlü Ekonomide Gelir Dağılımı Tek mal (buğday) üreten bir ekonomi ele alalım. 1 birim buğday üretimi

Detaylı

Yöneylem Araştırması

Yöneylem Araştırması Yöneylem Araştırması Çok sayıda teknik ve bilimsel yaklaşımı içeren Yöneylem Araştırması, genellikle kıt kaynakların paylaşımının söz konusu olduğu sistemlerin en iyi şekilde tasarlanması ve işletilmesine

Detaylı

UZMANLAR İÇİN MODELLEME. Doç.Dr.Aydın ULUCAN

UZMANLAR İÇİN MODELLEME. Doç.Dr.Aydın ULUCAN UZMANLAR İÇİN MODELLEME Doç.Dr.Aydın ULUCAN Karar Modellerinin Temel Bileşenleri Karar Değişkenleri: Amaca ulaşmak için kontrol edilen faktörler. Amaç Fonksiyonu: Ulaşılmak istenen hedefin karar değişkenlerinin

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır.

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır. DENKLEM SİSTEMLERİ 1) BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER: a,bϵ R ve olmak üzere; şeklindeki denklemlere birinci dereceden bir bilinmeyenli denklem denir. Bu tür denklemlerde sadece bir bilinmeyen

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJE ADI: TÜRKİYE DEKİ GELECEKTEKİ DOKTOR İHTİYACINI YÖNEYLEM ARASTIRMASI İLE BELİRLEMEK MEV KOLEJİ BASINKÖY OKULLARI

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

KUKLA DEĞİŞKENLİ MODELLER. Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller)

KUKLA DEĞİŞKENLİ MODELLER. Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

Her bir polis devriyesi ancak bir çağrıyı cevaplayabilir. Bir çağrıya en fazla bir devriye atanabilir.

Her bir polis devriyesi ancak bir çağrıyı cevaplayabilir. Bir çağrıya en fazla bir devriye atanabilir. 7. Atama Modelleri: Atama modelleri belli işlerin veya görevlerin belli kişi veya kurumlara atanması ile alakalıdır. Doğrusal programlama modellerinin bir türüdür ve yapı itibariyle ulaştırma modellerine

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

FONKSİYONLARIN TABLO ŞEKLİNDE HESAPLANMASI

FONKSİYONLARIN TABLO ŞEKLİNDE HESAPLANMASI FONKSİYONLARIN TABLO ŞEKLİNDE HESAPLANMASI Bu kısımda bir fonksiyon değerlerinin tablo şeklinde hesaplanması incelenecektir. İncelenecek fonksiyon y=f(x) şeklinde bir değişenli veya z=f(x,y) şeklinde iki

Detaylı

BAHAR DÖNEMİ MAKRO İKTİSAT 2 DERSİ KISA SINAV SORU VE CEVAPLARI

BAHAR DÖNEMİ MAKRO İKTİSAT 2 DERSİ KISA SINAV SORU VE CEVAPLARI 2015-2016 BAHAR DÖNEMİ MAKRO İKTİSAT 2 DERSİ KISA SINAV SORU VE CEVAPLARI 1. Toplam Talep (AD) doğrusunun eğimi hangi faktörler tarafından ve nasıl belirlenmektedir? Açıklayınız. (07.03.2016; 09.00) 2.

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

İTKİLİ MOTORLU UÇAĞIN YATAY UÇUŞ HIZI

İTKİLİ MOTORLU UÇAĞIN YATAY UÇUŞ HIZI İTKİLİ MOTORLU UÇAĞIN YATAY UÇUŞ HIZI Mustafa Cavcar Anadolu Üniversitesi Havacılık ve Uzay Bilimleri Fakültesi 26470 Eskişehir Yatay uçuş sabit uçuş irtifaında yeryüzüne paralel olarak yapılan uçuştur.

Detaylı