YAPI STATİĞİ Prof. Dr. P. Marti

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "YAPI STATİĞİ Prof. Dr. P. Marti"

Transkript

1 İlk yayın, 9 Temmuz 05 YPI STTİĞİ Prof. Dr. P. arti Hiperstatik Sistemler -0- u dosyayı _00_Yapı Statiğine Giriş ve Özet dosyasıyla beraber incelerseniz daha iyi anlarsınız. Çevirenler:. Güven KUTY, uhammet ERDÖ En son durum: 9 Temmuz 05 u dosyalarda yalnız ders notlarının tercümesi verilmiştir. Daha geniş ve detaylı bilgi almanız için Prof. Dr. P. arti nin Statik kitabını öneririm. lmanca-deutsch İngilizce-English Prof. Dr. P. arti Peter arti austatik, Grundlagen- Stabtragwerke-Flächentragwerke Ernst & Sohn, erlin, 0 Peter arti Theory of Structures, Fundamentals, Framed Structures, Plates and Shells Ernst & Sohn, erlin, 0 Prof. Dr. sc. Peter arti 990 ile 0 senelerinde Zürich ETH da İnşaat Statiği ve Konstrüksiyonu Profesörü _0 hiperstatik-sistemler

2 DİKKT: u çalışma iyi niyetle ve bugünün teknik imkanlarına göre yapılmıştır. u çalışmadaki bilgilerin yanlış kullanılmasından doğacak her türlü maddi ve manevi zarar için sorumluluk kullanana aittir. u çalışmadaki bilgileri kullananlara, kullandıkları yerdeki şartları iyi değerlendirip buradaki verilerin yeterli olup olmadığına karar vermeleri ve gerekirse daha detaylı hesap yapmaları önerilir. Eğer herhangi bir düzeltme, tamamlama veya bir arzunuz olursa, hiç çekinmeden bizimle temasa geçebilirsiniz. Statik dosyalarında kullandığımız terimlerin lmancadan Türkçe karşılığını, ne Türk Dil Kurumunda nede normal veya elektronik sözlüklerde bulamadık. Hedefimiz Türkçe bilen ve temel bilgisi az dahi olan kütleye basit olarak bilgileri aktarmak olduğu için, kendi mantığımıza göre okuyucunun anlayacağı, basit Türkçe terimler kullandık. yrıca -00 numaralı dosyada Türkçe-lmanca(-İngilizce-Fransızca) sözlük ile Kaynakları verdik. İsteyen oradan kullanılan Türkçe terimleri bulabilir. ilginiz ola!.. Terimlerin Türkçe karşılığı için büyük yardımı olan sayın uhammet ERDÖ e kendim ve dosyadan faydalanacakların adına çok teşekkür ederim. İ Ç İ N D E K İ E R. Kuvvet etodu..... Hiperstatik sistemlerde problemin Kuvvet etodu ile çözüm yolu..... Kuvvet etodunun örnekle detaylı anlatımı Sistemin hiperstatiklik derecesi "n" nin belirlenmesi Hiperstatik sisteme eşdeğer statik belirli bir sistemin kurulması Uyumluluk şartı uygulanıp bilinmeyen büyüklüklerin hesaplanması ranan değerlerin uyumluluk şartıyla hesaplanması Hakiki Hareket Durumu (HHD) işlemleri Virtüel Yükleme Durumu (VYD) işlemleri Uyumluluk Şartı Sistemin yatak ve kesit büyüklükleri ile dağılımları Sistemde moment dağılımı ve diyagramı Sistemde yatak kuvvetleri Kiriş ortasındaki sehim "w m " Yataklardaki eğim açısı yatağındaki eğim açısı α yatağındaki eğim açısı α..... Hiperstatik hacim sistemde kuvvet metodu Sistemin hiperstatiklik derecesi Sistemin statik belirli bir sisteme dönüştürülmesi, yedek kiriş Yay esnekliği "c f " deformasyon değerinin hesabı deformasyon değerinin hesabı Uyumluluk Şartı Yatak ve kesit büyüklükleri Yatak kuvvetleri oment değeri ve dağılımı Kuvvet metodunun özet olarak izlenecek çözüm yolu Öneriler.... Konu İndeksi... _0 hiperstatik-sistemler 9 Temmuz 05

3 Y a p ı S t a t i ğ i. Kuvvet etodu Kuvvet etodu hiperstatik sistemlerde reaksiyon ve elastik kesit kuvvetlerinin dağılımı inceleyen metotlardan biridir. urada basit bir örnekle Kuvvet etodunu anlatmaya çalışalım... Hiperstatik sistemlerde problemin Kuvvet etodu ile çözüm yolu. Sistemin hiperstatiklik derecesi "n" belirlenir: a) Sistemdeki belirsizlik yaratan büyüklüklerin sayısı. b) zaltma kriterleri ile hiperstatiklik derecesinin belirlenmesi.. Hiperstatik sisteme eşdeğer statik belirli bir sistem kurulur: u statik belirli sisteme "Temel Sistem (TS)" adı verilir. Temel Sistemin ana sistem ile eşdeğer olması için hiperstatiklik derecesi kadar virtüel değerler katılır. unlara "ilinmeyen üyüklükler ()" adı verilir ve X i ile gösterilir (i,,..., n).. Uyumluluk Şartı uygulanıp bilinmeyen büyüklükler hesaplanır: Temel sisteme virtüel değerler kattığımız için, hesapları virtüel iş prensibi ile yapmamız gerekir. unun temel ilkesi "Uyumluluk Şartıdır (UŞ)". ilinmeyen büyüklükler hesaplanır. u çözüm yolunu bir örnekle pekiştirelim... Kuvvet etodunun örnekle detaylı anlatımı z, w / / Şekil, Hiperstatik sistem x ilinenler: ir tarafı sabit, diğer tarafı hareketli yataklanmış, tek yük etkisindeki kiriş. rananlar: ütün kesit değerleri. dayanağındaki moment, Kiriş ortasındaki sehim w w m, Dayanak kuvvetleri V, V, Dayanaklardaki eğim açısı α, α.... Sistemin hiperstatiklik derecesi "n" nin belirlenmesi Sistemin hiperstatiklik derecesi belirlenirken simetri, yüklerin sıralanması v.b. basit düşüncelerle sistemin Hiperstatiklik derecesi azaltılır. Genel olarak n 0 Sistem statik belirlidir. n > 0 Sistem "n" kadar hiperstatiktir. n < 0 Sistem olarak kullanılamaz. u bir mekanizmadır. Yukarıdada belirttiğimiz gibi hiperstatiklik derecesi iki metotla belirlenir: a) Sistemdeki belirsizlik yaratan bağlantıların sayısıyla bulunur. Sistemi statik belirli hale getirene kadar bilinçli olarak değiştirirken eklenen bilinmeyen büyüklükler "X i " nin sayısıyla bulunur. urada hiperstatik derecesini azaltma kriterleri ile bulalım. Örnek: Şekil ile gösterilen kirişin Serbest Cisim Diyagramını (SCD) çizelim ve sabit yatağı hareketsiz yatağa çevirelim ve bunun içinde yatağına bilinmeyen büyüklük X koyup, Şekil ve azaltma kriterleri ile hiperstatiklik derecesini hesaplayalım. h v v Şekil, Sistemin Serbest Cisim Diyagramını (SCD) urada ikinci metoduda görelim. ilinmeyenlerin sayısı:, h, V ve v ilinnen denge denklemlerinin sayısı (ΣF V 0 ; ΣF h 0 ; ΣΜ 0 ) n Sistemimiz. dereceden hiperstatik sistemdir. _0 hiperstatik-sistemler 9 Temmuz 05

4 H i p e r s t a t i k S i s t e m l e r b) zaltma kriterleri ile hiperstatiklik derecesi bulunur. Düzlem kafes konstrüksiyonlarda azaltma kriterleri ile hiperstatiklik derecesinin belirlenmesi F ile gösterilmektedir (Kafes Kiriş dosyasına bakınız.): n r s k g F r Yatak veya dayanak reaksiyonları s Çubuk sayısı k Düğüm sayısı g afsal veya yan şartların sayısı (Şekil ) g g Şekil, afsal veya düğümlerde "g s" q p EI EI EI C Es EI EI EI X C X Es Şekil, Düzlem kafes konstrüksiyon Şekil 5, Sistemde azaltma kriterleri Şekil ile verilmiş olan sistemin azaltma kriterleri ile hiperstatiklik derecesinin belirlenmesi Şekil 5 ile aşağıda bulunmuştur. C yatağı reaksiyonu r Çubuk sayısı s Düğüm sayısı k afsal veya yan şartların sayısı g (bkz: Şekil. g daima çubuk sayısından eksiktir ) u değerleri F formülüne yerleştirirsek derecesini buluruz. Sistemimiz n derecede hiperstatikdir. n n Hacim kafes konstrüksiyonlarda azaltma kriterleri ile hiperstatiklik derecesinin belirlenmesi F ile yapılır: n r s k g F r s k g Yatak veya dayanak reaksiyonları Çubuk sayısı Düğüm sayısı afsal veya yan şartların sayısı C D Şekil, Hacim sistemde azaltma kriterleri Örnek olarak şu değerler kabul edilirse: urada ve D dayanağında koordinat eksenlerine göre üç yönde kuvvet ve üç eksene göre moment olacağından : r, s, k, g 0 dir. n.. 0 sistemimiz n kere hiperstatiktir. _0 hiperstatik-sistemler 9 Temmuz 05

5 Y a p ı S t a t i ğ i 5 İdeal düzlem kafes konstrüksiyonlarda azaltma kriterleri ile hiperstatiklik derecesinin belirlenmesi F ile yapılır: n r s k F r s k Yatak veya dayanak reaksiyonları Çubuk sayısı Düğüm sayısı (yatakdaki düğümler dahil) Şu değerlerle: h V V Şekil 7, İdeal düzlem kafes konstrüksiyon r, s 0, k ( V, h, V ) n 0. sistemimiz n kere hiperstatiktir. h 8 5 V Şekil 8, İdeal düzlem kafes konstrüksiyon V 0 h Şu değerlerle: r, s 8, k ( V, h, V, h ) n 8. 0 sistemimiz statik belirlidir, hiperstatik değildir. İdeal hacim kafes konstrüksiyonlarda azaltma kriterleri ile hiperstatiklik derecesinin belirlenmesi F ile yapılır: n r s k F r s k Yatak veya dayanak reaksiyonları Çubuk sayısı Düğüm sayısı (yatakdaki düğümler dahil) F Şu değerlerle: r, s 8, k 8 n sistemimiz statik belirlidir, hiperstatik değildir. Şekil 9, İdeal hacim kafes konstrüksiyon Dikkat: ir sistemde n 0 olmasına rağmen dengesiz olabilir (Kısmi mekanizma). _0 hiperstatik-sistemler 9 Temmuz 05

6 Örnek: H i p e r s t a t i k S i s t e m l e r Genel bilgimize dayanarak sistemimizin niteliksel (niteliksel) eğilme deformasyonunun ve niteliksel eğilme momentinin dağılımını şematik olarak Şekil 0 ve Şekil ile gösterelim. DN Kapama çizgisi Şekil 0, Sistemde niteliksel eğilme deformasyonu Şekil, Sistemde niteliksel moment dağılımı... Hiperstatik sisteme eşdeğer statik belirli bir sistemin kurulması Sistemimiz "." dereceden hiperstatik sistem olduğundan eşdeğer statik belirli bir sistem, Temel sistemi seçmemiz gerekir. Temel sistemin seçimi için şu kriterlere dikkat edilmelidir: İlk önce sistemin içten veya dıştan hiperstatik olup olmadığına karar verilip dayanak reaksiyonlarının denge denklemleri ile bulunup bulunmayacağına karar verilmelidir. Genelde sistemler hem içten hemde dıştan hiperstatiktirler. Temel sistemin stabil olup olmadığına dikkat edilmelidir. Temel sistemdeki yüklemeler hiperstatik sistemdeki yüklemelerden pek farklı olmamalıdır. Temel sistem bilinmeyen büyüklüklerin sayısı minimum olacak şekilde seçilmelidir. Yani hesapları basitleştirmek için mümkün olduğu kadar az ij olmalıdır. ümkün olduğu kadar basit temel sistem seçilmeli ve simetriler ortadan kaldırılmamalıdır. Dikkat: lıştırma ve örneklerin hepsinde, özel olarak belirtilmedikce şu kabuller geçerlidir: Konstrüksiyonunda kullanılan kesit ve malzemenin konstrüksiyon boyunca aynı kaldığını ve bundan dolayıda E.J sabit olduğu kabul edilir. Yayılı yük q, q,... v.s her aralık için sabit kabul edilir. Yalnız eğilme momenti deformasyonu dikkate alınır, kesme kuvveti dikkate alınmaz. Örnek: TS X Şekil, Statik belirli temel sistemimiz Hakiki Hareket durumu HHD TS de Şekil ile sistemin Serbest Cisim Diyagramını çizdik. u statik belirli sistem Temel Sistemimizdir bunu Şekil ile gösterelim. Şimdi Hakiki Hareket Durumu HHD ile Virtüel Yükleme Durumunu VYD çizebiliriz. Virtüel Yükleme durumu VYD X TS de X 0 () / (X ) w 0() 0 w (X ) Şekil, Sistemimizde Hakiki Hareket ve Virtüel Yükleme durumları _0 hiperstatik-sistemler 9 Temmuz 05

7 Y a p ı S t a t i ğ i... Uyumluluk şartı uygulanıp bilinmeyen büyüklüklerin hesaplanması Temel sisteme virtüel değerler kattığımız için, hesapları virtüel iş prensibi ile yapmamız gerekir. unun temel ilkesi "Uyumluluk Şartıdır (UŞ)". Genel olarak uyumluluk şartının denklemi F 5 ile gösterilmektedir. i0 n i i0 ij j 0 j X F 5 Hakiki hareket durumunun temel sisteminde dış zorlamalardan i noktasında, etki yönünde oluşan ve iş denklemiyle hesaplanan deformasyon ij Virtüel yükleme durumunun temel sisteminde, X j zorlamasından i noktasında, etki yönünde oluşan ve iş denklemiyle hesaplanan, deformasyon X j ilinmeyen büyüklük (j,,..., n) F 5 ile gösterilen uyumluluk şartının denklemini analiz edersek: i0 Hakiki hareket durumunun temel sisteminde dış zorlamalardan i noktasında, etki yönünde oluşan ve iş denklemiyle hesaplanan, deformasyonu şu şekilde formüle edebiliriz: N 0 dx N 0 0 i i dx... E i F i Virtüel yükleme durumunun momenti 0 Hakiki hareket durumunun momenti Eğilme rijitliği N i Virtüel yükleme durumunun normal kuvveti N 0 Hakiki hareket durumunun normal kuvveti E Esneme rijitliği ij Virtüel yükleme durumunun temel sisteminde, X j zorlamasından i noktasında, etki yönünde oluşan ve iş denklemiyle hesaplanan, deformasyon i j N i N j E X j ilinmeyen büyüklük (j,,..., n) Uyumluluk şartının matrisle gösterilmesi: j N j ij i dx Ni dx... F 7 E Virtüel yükleme durumunun momenti VYD de X j zorlamasından i noktasında oluşan momenti Eğilme rijitliği Virtüel yükleme durumunun normal kuvveti Virtüel yükleme durumunun X j den i noktasında oluşan normal kuvveti Esneme rijitliği X i0 j F 8 ij { } { } [ ] { } { 0} i i0 ij X j F 9 7 { X } [ ] { } j { i0 } Her yükleme durumu için yükleme vektörü (nx) { } ij Yumuşaklık matrisi (nxn) { X j } ilinmeyen büyüklük vektörü ij i0 F 0 _0 hiperstatik-sistemler 9 Temmuz 05

8 8 H i p e r s t a t i k S i s t e m l e r... ranan değerlerin uyumluluk şartıyla hesaplanması Temel sistem analizi ile gerçekte aranan ve bilinen kesit değerleri bulunur. u işlemlere Hakiki Hareket Durumu (HHD) işlemleri denir. HHD nun yanı sıra virtüel değerlerin oluşturduğu virtüel kesit konstrüksiyonu yapılır ve HHD nda kabul edilen lerin yerinde ve aynı yönde virtüel kuvvet kabul edilip kesit değerleri hesaplanır. u işlemlere Virtüel Yükleme Durumu (VYD) işlemleri denir. u iki işlemle bulunan değerlerle hesaplar yapılarak bütün aranan değerler bulunur. Süperpozisyon ile hiperstatik sistemdeki değerler hesaplanır.... Hakiki Hareket Durumu (HHD) işlemleri Hakiki Hareket Durumu (HHD) nun temel sisteminde dış zorlamalardan oluşan büyüklükler; Reaksiyonlar, Kesitteki büyüklükleri, Deformasyonlar, örneğin; Sehim, v.b. aşağıda verilmiş olan F, F ve F formülleriyle hesaplanır. R 0, S 0, w 0 R j, S j, w j a) 0 deformasyon değerinin hesabı: n 0 R j X j j R R F n 0 Sj X j j S S F n 0 w j X j j w w F HHD nun temel sisteminde dış zorlamalardan oluşan büyüklükler VYD nun temel sisteminde X j den oluşan büyüklükler 0 değeri Hakiki hareket Durumunun temel sisteminde dış zorlamaların etkisiyle X in yerinde ve yönünde oluşan deformasyondur. x n 0 0 dx F x 0 F formülünün integral kısmını integral tablosundan alalım. İntegral tablolarının en iyilerinden biri Prof. Dr. Peter arti nin internetten indirilebilinen tablosudur ve şu yoldan ulaşabilirsiniz: inkine girip Vorlesungsunterlagen austatik grubunda Integrationstabelle yi tıklayınız. Eğer bu tabloyu bu linkte bulamazsanız (çünkü Prof. Dr. Peter arti emekli oldu) PDF olarak bu dosyada bulabilirsiniz. Hakiki Hareket ve Virtüel Yükleme durumunda diyagramların düzgün yapılması integral hesabının, integral tablosundan alınan değerlerle, çabuk ve doğru yapılmasını sağlar. İntegral tablosundan 0 İntegral katsayısı ; 0 ; ; İntegral boyu dir. u değerler F formülüne yerleştirilip 0 değeri hesaplanır. 0 ( ) 0 urada 0 :. indis "" VYD nda in yeri ve yönünü,. indis "0" HHD nda 0 dan oluşan değeridir. _0 hiperstatik-sistemler 9 Temmuz 05

9 Y a p ı S t a t i ğ i... Virtüel Yükleme Durumu (VYD) işlemleri b) deformasyon değerinin hesabı: değeri Virtüel Yükleme Durumunun temel sisteminde X in zorlamasıyla X in yerinde ve yönünde oluşan deformasyondur. xn dx F 5 x İntegral tablosundan 0 İntegral katsayısı İntegral boyu dir. u değerler F 5 formülüne yerleştirilip değeri hesaplanır. ( ) ( ) 0 9 urada :. indis "" VYD nda in yeri ve yönünü,. indis "" VYD nda den oluşan değerdir.... Uyumluluk Şartı urada sistemde bir tek virtüel büyüklük X sıkışma momenti vardır ve uyumluluk şartı ile şu şekilde hesaplanır. Problemimizde uyumluluk şartı F 5 ile şu şekilde yazılır: 0 X 0 X 0 X öylece yatağına eklediğimiz bilinmeyen büyüklük X olarak bulunmuş olur. Şimdi sistemin kesit dağılımlarını çizebiliriz...5. Sistemin yatak ve kesit büyüklükleri ile dağılımları..5.. Sistemde moment dağılımı ve diyagramı urada önce X diyagrama çizilir. yatağında moment X / olur. yatağında moment sıfır olacağından yatağındaki moment yatağına bir doğru ile birleştirilir. u doğruya kapama çizgisi denir. kuvvetinin etkilediği noktada (Kapama çizgisinin orta noktasında) moment / kadardır. kz Şekil. (): DN Kapama çizgisi 5 Şekil, Sistemde moment dağılımı _0 hiperstatik-sistemler 9 Temmuz 05

10 0 H i p e r s t a t i k S i s t e m l e r Kapama çizgisinin orta noktasından kirişe kadar momentin büyüklüğü, kiriş ortası üst momenti: mü Demek ki alt kısmında, kiriş ortası alt momenti: ma mü 5 ma..5.. Sistemde yatak kuvvetleri Sistemde moment dağılımını yaptıktan sonra yatak kuvvetlerini hesaplamak kolaylaşır. Önce yatağının kuvvetini hesaplayalım. Tutulan yol şöyledir: Sistemimizde noktasındaki momenti: V V uradan yatağının dik kuvveti bulunur. V V Denge denklemi: Σ F V 0 V V 0 uradan yatağının dik kuvveti bulunur. V 5 V öylece sistemin SCD ile V kuvvetinin dağılımı kolaylıkla çizilir, bkz Şekil 5. SKD: 5 / / 5 V(): Şekil 5, Sistemin SCD ı ve çapraz kuvvet dağılımı Sistemin kuvvet ve moment dağılımı bilindiğinde diğer büyüklükler virtüel iş prensibi ile kolayca hesaplanır Kiriş ortasındaki sehim "w m " Kiriş ortasındaki sehim "w m " yi hesaplamak için temel sistemi Hakiki Hareket Durumu olarak ve Virtüel Yükleme Durumunuda "w m " yi hesaplamak istenilen noktada ve yönde virtüel birim kuvveti F ile çizebiliriz, bkz Şekil. _0 hiperstatik-sistemler 9 Temmuz 05

11 TS de : Hakiki Hareket durumu HHD Y a p ı S t a t i ğ i Virtüel Yükleme durumu VYD F TS de F : X wm (): C / / D D (F): E 5 E Şekil, Kiriş ortasındaki sehim "w m " için HHD ve VYD Kiriş ortasındaki sehim "w m " yi hesaplamak için Şekil ile verilen moment alanlarını iki şekilde değerlendirebiliriz.. Versiyon:. Terim CED çift üçgeni ile DE üçgeni. Terim DE üçgeni ile DE üçgeni.. Versiyon:. Terim C üçgeni ile E çift üçgeni. Terim CE çift üçgeni ile DE üçgeni.. Versiyon için kiriş ortasındaki sehim "w m " formülünü yazalım: / / w 0D dx 0D m D D dx 0 0 F.Terim D ( 0D 0DR ) İntegral katsayısı ; D ; 0D ; İntegral boyu / dir. u değerler.terimin formülüne yerleştirilip değeri hesaplanır. 0 DR 5 R 5 8.Terim D 0D İntegral katsayısı ; D ; u değerler.terimin formülüne yerleştirilip değeri hesaplanır. 5 0 D İntegral boyu / dir u değerler F formülüne yerleştirilip w m nin değeri hesaplanır. _0 hiperstatik-sistemler 9 Temmuz 05

12 H i p e r s t a t i k S i s t e m l e r w m w m Versiyon için kiriş ortasındaki sehim "w m " formülünü yazalım: w 0 dx 0 m dx 0 0 F 7.Terim 0 İntegral katsayısı ; ; u değerler.terimin formülüne yerleştirilip değeri hesaplanır. 0 ; İntegral boyu dir. 5.Terim 0 İntegral katsayısı ; ; u değerler.terimin formülüne yerleştirilip değeri hesaplanır. 0 İntegral boyu dir. 8 u değerler F 7 formülüne yerleştirilip w m nin değeri hesaplanır. w m w m 7 78 Sonuçlardan görüldüğü gibi iki yoldan da aynı sonuç alınır Yataklardaki eğim açısı yatağındaki eğim açısı α yatağındaki eğim açısı temel kurallara göre sıfırdır. α yatağındaki eğim açısı α Hakiki Hareket durumu TS ve () olarak aynen alınır ve Virtüel Yükleme durumu TS de eğim açısının arandığı yerde ve yönde birim momenti ile işlenir, bkz Şekil 7. _0 hiperstatik-sistemler 9 Temmuz 05

13 Y a p ı S t a t i ğ i Hakiki Hareket durumu HHD Virtüel Yükleme durumu VYD TS de : X α 0 α TS de : (): C / / D E 5 D E / F (): Şekil 7, Yataklardaki eğim açısı için HHD ve VYD Görüldüğü gibi yatağındaki eğim açısı α hesaplamak için Şekil 7 ile verilen moment alanlarını iki şekilde değerlendirebiliriz.. Versiyon da :. Terim C üçgeni ile DE üçgeni. Terim DE üçgeni ile DEF yamuğu.. Versiyon da :. Terim C üçgeni ile F çift üçgeni. Terim CE çift üçgeni ile F üçgeni.. Versiyon için yatağındaki eğim açısı α formülünü yazalım: / / α 0D dx 0D D D dx 0 0 F 8.Terim D ( 0D 0DR ) İntegral katsayısı ; D ; 0D ; İntegral boyu / dir. u değerler.terimin formülüne yerleştirilip değeri hesaplanır. 0 DR 5 R 5.Terim 0D ( D DR ) İntegral katsayısı 5 ; 0 D ; D ; DR İntegral boyu / dir. u değerler.terimin formülüne yerleştirilip değeri hesaplanır. 5 9 R 5 9 u değerler F 8 formülüne yerleştirilip w m nin değeri hesaplanır. _0 hiperstatik-sistemler 9 Temmuz 05

14 H i p e r s t a t i k S i s t e m l e r 5 α 9 9 α. Versiyon için yatağındaki eğim açısı α formülünü yazalım: α 0 dx 0 dx 0 0 F 9.Terim 0 İntegral katsayısı ; ; 0 İntegral boyu dir. u değerler.terimin formülüne yerleştirilip değeri hesaplanır..terim 0 5 İntegral katsayısı ; 0 D ; ; İntegral boyu dir. u değerler.terimin formülüne yerleştirilip değeri hesaplanır u değerler F 9 formülüne yerleştirilip w m nin değeri hesaplanır. 5 α 9 α Sonuçlardan görüldüğü gibi buradada iki yoldan da aynı sonuç alınır. _0 hiperstatik-sistemler 9 Temmuz 05

15 Y a p ı S t a t i ğ i 5.. Hiperstatik hacim sistemde kuvvet metodu Şekil 8 ile şekli ve ölçüleri gösterilen sistemde, sabit yayılı yük q nun oluşturduğu moment dağılımını çizimini ve hesabı yapınız. CD çubuğu kendi ekseni etrafında dönebilir. y z x q D C... Sistemin hiperstatiklik derecesi Şekil 8, Hacim sistemi Şekil 8 ile gösterilen kirişin azaltma kriterleri ile hiperstatiklik derecesini F ile belirleyelim. n r s k g Reaksiyonlar: x, y, z, x, y, z, C x, C y, C z ve D z r 0, Çubuk sayısı:, C, D s, Düğüm sayısı:,, C, D k, afsal sayısı: Yok g 0 n 0 0 Sistemimizde simetriden dolayı z x 0 ve C x 0 olduğundan, Reaksiyonlar: y, x, y, z, C y, C z ve D z r 7, Çubuk sayısı:, C, D s, Düğüm sayısı:,, C, D k, afsal sayısı: Yok g 0 n 7 0 sistem n olur. urada yatak veya dayanak reaksiyonları sayısı simetriden dolayı 7 ve denge denklemlerinin sayısı olduğuna göre sistemimizin hiperstatiklik derecesi: n 7 sistem n olur. Genel bilgimize dayanarak sistemimizin niteliksel eğilme deformasyonunun ve niteliksel eğilme momentinin dağılımını şematik olarak Şekil 9 ve Şekil 0 ile gösterelim. kirişi CD kirişine elastik olarak yay esnekliği c f ile bağlıdır. q D C Şekil 9, Sistemde niteliksel eğilme deformasyonu Şekil 0, Sistemde niteliksel moment dağılımı... Sistemin statik belirli bir sisteme dönüştürülmesi, yedek kiriş urada çubuğu dolaylı olarak CD çubuğunun noktasında yay esnekliği "c f " ile elastik yay ile yataklanmış durumdadır. u düşünce bize problemin bir tarafı rijit diğer tarafı yaylı yataklanmış sistem olarak düşünmemiz gerektiğini gösterir, bkz Şekil. _0 hiperstatik-sistemler 9 Temmuz 05

16 H i p e r s t a t i k S i s t e m l e r w (-) X D (c f) c f (-) X X w (C-D) C Şekil, ir tarafı rijit diğer tarafı yaylı kiriş... Yay esnekliği "c f " Yay esnekliği "c f " yi problemimiz için hesaplayalım. Genel mekanikten hatırlayacağımıza göre; elastik yay esnekliği ile elastik yay rijitliği arasında şu bağıntı vardır. R N/m Yay rijitliği c f m/n Yay esnekliği R F 0 c f ir tarafı rijit diğer tarafı yaylı kirişini yedek kiriş olarak ele alalım. q c f? Şekil, ir tarafı rijit diğer tarafı yaylı yedek kiriş Çeşitli durumlarda yay esnekliği Şekil ile görülmektedir. asma veya Çekme yayları Kangal veya spiral yaylar a) c f [m/n] irim kuvvette yaylanma d) c f [rad/nm] irim momentte dönme b) c f 0 e) c f 0 c) c f f) c f Şekil, Yataklamada yayın etkisi _0 hiperstatik-sistemler 9 Temmuz 05

17 Yay esnekliği c f Y a p ı S t a t i ğ i Yay deformasyonu Yay kuvveti f F m N irim kuvveti için yay esnekliği c f f f olur, f birim kuvvetinden oluşan deformasyondur. Yay esnekliği "c f " yi problemimizde hesaplamak için birim kuvveti F etkisindeki CD klasik basit kirişi ele alalım ve hesabımızı yapalım, bkz Şekil. Hakiki Hareket durumunda moment / olarak gösterilmiştir. Hakikatte F/ dir. F kabul edildiğinden moment / yazılmıştır. Hakiki Hareket durumu HHD Virtüel Yükleme durumu VYD 7 TS C F F D C D TS 0 / / Şekil, c f için Hakiki Hareket ve Virtüel Yükleme Durumu Sistemimizde yaylanma (deformasyon) formülü F ile gösterildiği gibidir. İntegral tablosundan 0 İntegral katsayısı ; ; xn f 0 dx F x 0 İntegral boyu dir. Yukarıdaki F formülünde değerler yerleştirilip f değeri hesaplanır. f c f f EI... 0 deformasyon değerinin hesabı 0 değeri Hakiki hareket Durumunun temel sisteminde dış zorlamaların etkisiyle X in yerinde ve yönünde oluşan deformasyondur. Şekil ile bir tarafı rijit diğer tarafı yaylı kirişimizi tekrar ele alalım ve HHD ile VYD yi çizelim: q c f? Şekil, ir tarafı rijit diğer tarafı yaylı kiriş _0 hiperstatik-sistemler 9 Temmuz 05

18 8 H i p e r s t a t i k S i s t e m l e r urada dikkat edilecek husus düşünce ve durum diyagramlarında yayın dikkate alınmasıdır. Hiçbir zaman diyagram ve hesaplar yaysız yapılamaz. urada unutmamak için tekrarlayalım 0 : Hakiki Hareket durumu HHD. indis "" VYD nda in yeri ve yönünü,. indis "0" HHD nda 0 dan oluşan değeridir. Virtüel Yükleme durumu VYD TS q TS 0 (q) q X (X ) w w (q) (X ) 0 0 Şekil 5, Hakiki Hareket ve Virtüel Yükleme Durumu Şekil 5 ile görülen 0, HHD nda TS de X in yerinde () ve yönünde yayılı yük q dan oluşan kayma değeridir ve şu şekilde hesaplanır.. Terim İntegral tablosundan 0 İntegral katsayısı 0 0 dx F F0 cf 0 ; ; F q İntegral boyu dir. 0.Terim formülünde değerler yerleştirilip. Terimin değeri hesaplanır. q.terim q 8.Terimde Şekil 5 ile görüldüğü gibi F 0 değeri sıfırdır ve böylece.terimin değeri sıfır olur. öylece 0 nun değeri: q 0.Terim.Terim deformasyon değerinin hesabı 0 q 8 değeri Virtüel Yükleme Durumunun temel sisteminde X in zorlamasıyla X in yerinde ve yönünde oluşan deformasyondur. _0 hiperstatik-sistemler 9 Temmuz 05

19 Y a p ı S t a t i ğ i 9 Şekil 5 ile görülen, VYD ndaki TS de X in () yerinde ve yönünde X den oluşan kayma değeridir ve F ile hesaplanır. dx F F cf 0. Terim İntegral tablosundan İntegral katsayısı ; ; İntegral boyu dir..terim formülünde değerler yerleştirilip. Terimin değeri hesaplanır..terim.terimde Şekil 5 ile görüldüğü gibi F dir ve. Terimin değeri:.terim Yukarıdaki F formülüne değerler yerleştirilip değeri hesaplanır. F urada unutmamak için tekrarlayalım :. indis "" VYD nda in yeri ve yönünü,. indis "" VYD nda den oluşan değerdir.... Uyumluluk Şartı urada sistemde bir tek virtüel büyüklük X vardır ve uyumluluk şartı ile X değeri, noktasındaki kuvvettir, şu şekilde hesaplanır: 0 X 0 X 0 q EI X 8EI q X F X q..7. Yatak ve kesit büyüklükleri F kuvveti bilindiğinde yatak ve kesit büyüklükleri kolayca hesaplanır. q q F F Şekil, kirişi Şekil 7, Yedek kirişi _0 hiperstatik-sistemler 9 Temmuz 05

20 0 H i p e r s t a t i k S i s t e m l e r..7.. Yatak kuvvetleri F z 0 q F F oment değeri ve dağılımı q F q F q oment değeri süperpoziyonla veya klasik hesapla bulunur. Süperpoziyonla hesaplama: Süperpoziyonla hesaplama demek uyumluluk şartının aranan büyüklüğe uygulanmasıdır. q q 0 X Klasik yöntemle hesaplama: q F q q q q F q q q q 0 q q 8 Şekil 8, kirişinde moment dağılımı Tüm sistemde moment dağılımı: D q F ise FC FD q (C D) FC 8 (C D) q 8 q 8 q q 8 C q 8 (C-D) değeri aynı zamanda (C D) X kadardır. Şekil 9, Tüm sistemde moment Hesapları C-D kirişi sonsuz rijit olarak kabul edildiğinde (yedek kiriş için rijit yadak olsaydı) hesaplamalar sonucu: olarak bulunacaktı. q q X > 8 Virtüel olarak kabul edilen yay yumuşak yataklamayı gösterir. _0 hiperstatik-sistemler 9 Temmuz 05

21 Y a p ı S t a t i ğ i.. Kuvvet metodunun özet olarak izlenecek çözüm yolu Kuvvet metodunu kullanacağımız n kere Hiperstatik sistemde izlenecek çözüm yolunu bir örnekle şöyle özetleyebiliriz:. Hiperstatik sistem, statik belirli bir temel sistem olana kadar, yeterince mafsal ve bilinmeyen büyüklükler ilave edilir. X i (i,,...,n) q l q C X 0 (q) q /8 l q /8 X (X ). Uyum şartı uygulanır.. Deformasyonları hesaplanır. Şekil 0, Sistem ve X 0 X dx 0 0 dx 0 0 q q ( ) ( ) X 0 dx 0 ( ) ( ).5. Öneriler a) Sistemin içten veya dıştan hiperstatik olduğu belirlenmelidir. Duruma göre, yatak reaksiyonlarının veya iç kuvvetlerin denge formülleriyle belirlenebilirliği kontrol edilmelidir. Genelde sistemler hem içten hemde dıştan belirsizdirler. b) Dikkat edilecek en önemli husus, temel sistemlerin dengeli olmalarıdır. c) Temel sistemleri seçerken ij deformasyonlarının mümkün olduğu kadar az olmasına dikkat edilmelidir. d) Denge şartı matrisinin kurulması; urada { } [ ] { X } 0 { X } [ ] { } i0 ij { i0 } Zorlama vektörü (n ), her zorlama hali için bir zorlama vektörü, [ ij] Fleksibilite (bükülgenlik) matrisi ( n x n ) simetrik, { } j X üzumsuz büyüklüğün vektörü (n ). e) i0 ve ij deformasyonlarının iş denklemleriyle hesaplanması. j j ij i0 _0 hiperstatik-sistemler 9 Temmuz 05

22 H i p e r s t a t i k S i s t e m l e r. Konu İndeksi ilinmeyen üyüklükler... H Hakiki Hareket Durumu HHD... Hiperstatiklik derecesi..., K Kapama çizgisi... 9 Kuvvet etodu... mekanizma... S Süperpoziyon...0 T Temel Sistem TS...9 U Uyumluluk Şartı UŞ... V Virtüel Yükleme Durumu VYD...9 _0 hiperstatik-sistemler 9 Temmuz 05

YAPI STATİĞİ. Hiperstatik Sistemler Alıştırma sonuçları M. Güven KUTAY, Muhammet ERDÖL. İlk yayın, 10 Kasım 2014

YAPI STATİĞİ. Hiperstatik Sistemler Alıştırma sonuçları M. Güven KUTAY, Muhammet ERDÖL. İlk yayın, 10 Kasım 2014 İlk yayın, 0 Kasım 0.guven-kutay.ch YPI STTİĞİ Hiperstatik Sistemler lıştırma sonuçları -06- u dosyayı _00_Yapı Statiğine Giriş ve Özet dosyasıyla beraber incelerseniz daha iyi anlarsınız.. Güven KUTY,

Detaylı

YAPI STATİĞİ. Hiperstatik Sistemler Alıştırma Soruları M. Güven KUTAY, Muhammet ERDÖL. İlk yayın, 19 Temmuz 2015

YAPI STATİĞİ. Hiperstatik Sistemler Alıştırma Soruları M. Güven KUTAY, Muhammet ERDÖL. İlk yayın, 19 Temmuz 2015 İlk yayın, 9 Temmuz 205 www.guven-kutay.ch YPI STTİĞİ Hiperstatik Sistemler lıştırma Soruları 44-06-2 u dosyayı 44_00_Yapı Statiğine Giriş ve Özet dosyasıyla beraber incelerseniz daha iyi anlarsınız. M.

Detaylı

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN Yapı Sistemleri: İzostatik (Statikçe Belirli) Sistemler : Bir sistemin tüm kesit tesirlerini (iç kuvvetlerini) ve mesnet reaksiyonlarını

Detaylı

İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ

İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ Yapı Statiği nde incelenen sistemler çerçeve sistemlerdir. Buna ek olarak incelenen kafes ve karma sistemler de aslında çerçeve sistemlerin

Detaylı

YAPI STATİĞİ. Reaksiyonlar ve kesit büyüklükleri için Alıştırma soruları 44-01-2. 13 Haziran 2014. www.guven-kutay.ch. M. Güven KUTAY, Muhammet ERDÖL

YAPI STATİĞİ. Reaksiyonlar ve kesit büyüklükleri için Alıştırma soruları 44-01-2. 13 Haziran 2014. www.guven-kutay.ch. M. Güven KUTAY, Muhammet ERDÖL 13 Hairan 2014 YPI STTİĞİ Reaksiyonlar ve kesit büyüklükleri için lıştırma soruları 44-01-2 M. üven KUTY, Muhammet ERÖ En son durum: 1 Eylül 2014 u dosyada yalnı alıştırmaların soruları verilmiştir. Konuyu

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 7 İç Kuvvetler Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 7. İç Kuvvetler Bu bölümde, bir

Detaylı

MUKAVEMET Öğr. Gör. Fatih KURTULUŞ

MUKAVEMET Öğr. Gör. Fatih KURTULUŞ www.sakarya.edu.tr MUKAVEMET Öğr. Gör. Fatih KURTULUŞ www.sakarya.edu.tr 1. DÜŞEY YÜKLÜ KİRİŞLER Cisimlerin mukavemeti konusunun esas problemi, herhangi bir yapıya uygulanan bir kuvvetin oluşturacağı gerilme

Detaylı

Hiperstatik sistemlerin çözümünde, yer değiştirmelerin küçük olduğu ve gerilme - şekil değiştirme bağıntılarının lineer olduğu kabul edilmektedir.

Hiperstatik sistemlerin çözümünde, yer değiştirmelerin küçük olduğu ve gerilme - şekil değiştirme bağıntılarının lineer olduğu kabul edilmektedir. 1. HİPERSTATİK SİSTEMLER 1.1. Giriş Bir sistemin hesabının amacı, dış etkilerden meydana gelen kesit tesirlerini, şekil değiştirmelerini ve yer değiştirmelerini belirlemektir. İzostatik sistemlerde, yalnız

Detaylı

Yapı Sistemlerinde Elverişsiz Yüklemeler:

Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapılara etkiyen yükler ile ilgili çeşitli sınıflama tipleri vardır. Bu sınıflamalarda biri de yapı yükleri ve ilave yükler olarak yapılan sınıflamadır. Bu sınıflama;

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 5 Eğilmede Kirişlerin Analizi ve Tasarımı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

AÇI YÖNTEMİ Slope-deflection Method

AÇI YÖNTEMİ Slope-deflection Method SAKARYA ÜNİVERSİTESİ İNŞAAT ÜHENDİSLİĞİ BÖLÜÜ Department of Civil Engineering İN 303 YAPI STATIĞI II AÇI YÖNTEİ Slope-deflection ethod Y.DOÇ.DR. USTAA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir. A-36 malzemeden çelik çubuk, şekil a gösterildiği iki kademeli olarak üretilmiştir. AB ve BC kesitleri sırasıyla A = 600 mm ve A = 1200 mm dir. A serbest ucunun ve B nin C ye göre yer değiştirmesini belirleyiniz.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 6 Yapısal Analiz Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 6. Yapısal Analiz Şekilde görüldüğü

Detaylı

TEMEL MEKANİK 10. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 10. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 10 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

Açı Yöntemi. 1 ql 8. Açı yöntemi olarak adlandırılan denklemlerin oluşturulmasında aşağıda gösterilen işaret kabulü yapılmaktadır.

Açı Yöntemi. 1 ql 8. Açı yöntemi olarak adlandırılan denklemlerin oluşturulmasında aşağıda gösterilen işaret kabulü yapılmaktadır. çı Yöntemi Kuvvet ve -oment yöntemlerinde, ilave denklemleri zorlamaların sistem üzerinde oluşturduğu deformasyonların sistemde oluşturulan suni serbestliklerden dolayı oluşan deformasyonlardan ne kadar

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8-

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8- 1 STATİK Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8- Giriş 2 Denge denklemlerini, mafsala bağlı elemanlarda oluşan yapıları analiz etmek için kullanacağız. Bu analiz, dengede olan bir yapının

Detaylı

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 212 YAPI STATİĞİ I STABİLİTE STATİKÇE BELİRSİZLİK KİNEMATİK BELİRSİZLİK Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr

Detaylı

YAPI STATİĞİ MESNETLER

YAPI STATİĞİ MESNETLER YAPI STATİĞİ MESNETLER Öğr.Gör. Gültekin BÜYÜKŞENGÜR STATİK Kirişler Yük Ve Mesnet Çeşitleri Mesnetler Ve Mesnet Reaksiyonları 1. Kayıcı Mesnetler 2. Sabit Mesnetler 3. Ankastre (Konsol) Mesnetler 4. Üç

Detaylı

Kirişlerde Kesme (Transverse Shear)

Kirişlerde Kesme (Transverse Shear) Kirişlerde Kesme (Transverse Shear) Bu bölümde, doğrusal, prizmatik, homojen ve lineer elastik davranan bir elemanın eksenine dik doğrultuda yüklerin etkimesi durumunda en kesitinde oluşan kesme gerilmeleri

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta) KAFES SİSTEMLER STATİK (4. Hafta) Düz eksenden oluşan çubukların birbiriyle birleştirilmesiyle elde edilen sistemlere kafes sistemler denir. Çubukların birleştiği noktalara düğüm noktaları adı verilir.

Detaylı

STATİK KUVVET ANALİZİ (2.HAFTA)

STATİK KUVVET ANALİZİ (2.HAFTA) STATİK KUVVET ANALİZİ (2.HAFTA) Mekanik sistemler üzerindeki kuvvetler denge halindeyse sistem hareket etmeyecektir. Sistemin denge hali için gerekli kuvvetlerin hesaplanması statik hesaplamalarla yapılır.

Detaylı

Dairesel Temellerde Taban Gerilmelerinin ve Kesit Zorlarının Hesabı

Dairesel Temellerde Taban Gerilmelerinin ve Kesit Zorlarının Hesabı Prof. Dr. Günay Özmen İTÜ İnşaat Fakültesi (Emekli), İstanbul gunozmen@yahoo.com Dairesel Temellerde Taban Gerilmelerinin ve Kesit Zorlarının Hesabı 1. Giriş Zemin taşıma gücü yeter derecede yüksek ya

Detaylı

Kesit Tesirleri Tekil Kuvvetler

Kesit Tesirleri Tekil Kuvvetler Statik ve Mukavemet Kesit Tesirleri Tekil Kuvvetler B ÖĞR.GÖR.GÜLTEKİN BÜYÜKŞENGÜR Çevre Mühendisliği Mukavemet Şekil Değiştirebilen Cisimler Mekaniği Kesit Tesiri ve İşaret Kabulleri Kesit Tesiri Diyagramları

Detaylı

Elemanlardaki İç Kuvvetler

Elemanlardaki İç Kuvvetler Elemanlardaki İç Kuvvetler Bölüm Öğrenme Çıktıları Yapı elemanlarında oluşan iç kuvvetler. Eksenel kuvvet, Kesme kuvvet ve Eğilme Momenti Denklemleri ve Diyagramları. Bölüm Öğrenme Çıktıları Elemanlarda

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

İNM 208 DERS TANITIM

İNM 208 DERS TANITIM SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 208 YAPI STATIĞI II İNM 208 DERS TANITIM Y.Doç.Dr. Mustafa KUTANİS DR.MUSTAFA KUTANİS SLIDE 1 ADRES INM 208 YAPI STATİĞİ

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

23. Sistem denge denklemlerinin direkt kurulması

23. Sistem denge denklemlerinin direkt kurulması . Sistem denge denklemlerinin direkt kurulması. Sistem denge denklemlerinin direkt kurulması Sonlu elemanlar metodu el hesapları için değil, bilgisayarda yazılımlar ile kullanılması için geliştirilmiştir.

Detaylı

MOMENT DAĞITMA HARDY CROSS YÖNTEMİ

MOMENT DAĞITMA HARDY CROSS YÖNTEMİ SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSİĞİ BÖÜMÜ Department of Civil Engineering İNM 208 YAPI STATIĞI II MOMENT DAĞITMA HARDY CROSS YÖNTEMİ Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş Mukavemet-II Yrd.Doç.Dr. Akın Ataş Bölüm 9 Kirişlerin Yer Değiştirmesi Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9.1 Giriş

Detaylı

Doç. Dr. Bilge DORAN

Doç. Dr. Bilge DORAN Doç. Dr. Bilge DORAN Bilgisayar teknolojisinin ilerlemesi doğal olarak Yapı Mühendisliğinin bir bölümü olarak tanımlanabilecek sistem analizi (hesabı) kısmına yansımıştır. Mühendislik biliminde bilindiği

Detaylı

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları

Detaylı

İki-Kuvvet Elemanları Basit (2 Boyutlu) Kafesler Düğüm Noktaları Metodu ile Analiz Sıfır-Kuvvet Elemanları Kesme Metodu ile Analiz

İki-Kuvvet Elemanları Basit (2 Boyutlu) Kafesler Düğüm Noktaları Metodu ile Analiz Sıfır-Kuvvet Elemanları Kesme Metodu ile Analiz Yapıların Analizi Konu Çıktıları İki-Kuvvet Elemanları Basit (2 Boyutlu) Kafesler Düğüm Noktaları Metodu ile Analiz Sıfır-Kuvvet Elemanları Kesme Metodu ile Analiz Kafesleri oluşturan elemenlara etki eden

Detaylı

V. KAFES SİSTEMLER: Düzlemde en az üç adet çubuğun birbirlerine mafsala birleştirilmesiyle elde edilmiş taşıyıcı sistemdir.

V. KAFES SİSTEMLER: Düzlemde en az üç adet çubuğun birbirlerine mafsala birleştirilmesiyle elde edilmiş taşıyıcı sistemdir. 78 V. KES SİSTEMLER: Düzlemde en az üç adet çubuğun birbirlerine mafsala birleştirilmesiyle elde edilmiş taşıyıcı sistemdir. Uzayda ise en az 6 çubuk gereklidir. 79 İhtiyaçlara göre yeni çubukların ilavesiyle

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

GERİLME Cismin kesilmiş alanı üzerinde O

GERİLME Cismin kesilmiş alanı üzerinde O GERİLME Cismin kesilmiş alanı üzerinde O ile tanımlı noktasına etki eden kuvvet ve momentin kesit alana etki eden gerçek yayılı yüklerin bileşke etkisini temsil ettiği ifade edilmişti. Cisimlerin mukavemeti

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta) TAŞIYICI SİSTEMLER VE MESNET TEPKİLERİ STATİK (3. Hafta) Taşıyıcı Sistemler Bir yapıya etki eden çeşitli kuvvetleri güvenlik sınırları içinde taşıyan ve bu kuvvetleri zemine aktaran sistemlere taşıyıcı

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

Kafes Sistemler. Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir.

Kafes Sistemler. Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Kafes Sistemler Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Kafes Sistemler Birçok uygulama alanları vardır. Çatı sistemlerinde, Köprülerde, Kulelerde, Ve benzeri

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh E 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. of Rigid Bodies Lecture Notes: J. Walt Oler Texas Tech University Seventh E CHAPTER VECTOR

Detaylı

Burulma (Torsion) Amaçlar

Burulma (Torsion) Amaçlar (Torsion) Amaçlar Bu bölümde şaftlara etkiyen burulma kuvvetlerinin etkisi incelenecek. Analiz dairesel kesitli şaftlar için yapılacak. Eleman en kesitinde oluşan gerilme dağılımı ve elemanda oluşan burulma

Detaylı

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Mühendislikte en önemli yapı ve makine elemanları mil ve kirişlerdir. Bu bölümde, mil ve kirişlerde

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVETLER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

Noktasal Cismin Dengesi

Noktasal Cismin Dengesi Noktasal Cismin Dengesi Bu bölümde; Kuvvetleri bieşenlerine ayırma ve kartezyen vektör şeklinde ifade etme yöntemleri noktasal cismin dengesini içeren problemleri çözmede kullanılacaktır. Bölüm 3 DOÇ.DR.

Detaylı

KONU 3. STATİK DENGE

KONU 3. STATİK DENGE KONU 3. STATİK DENGE 3.1 Giriş Bir cisme etki eden dış kuvvet ve momentlerin toplamı 0 ise cisim statik dengededir denir. Kuvvet ve moment toplamlarının 0 olması sırasıyla; ötelenme ve dönme denge şartlarıdır.

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bu bölümde, bir noktaya etkiyen ve bir koordinat ekseni ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi ile ilişkili gerilme bileşenlerine dönüştürmek

Detaylı

BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor

BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor 3 BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması 1.1.018 MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor 1 3. Burulma Genel Bilgiler Burulma (Torsion): Dairesel Kesitli Millerde Gerilme

Detaylı

MEKANİZMA TEKNİĞİ (3. HAFTA)

MEKANİZMA TEKNİĞİ (3. HAFTA) MEKANİZMA TEKNİĞİ (3. HAFTA) STATİĞİN TEMEL İLKELERİ VE VEKTÖR MATEMATİĞİ Mekanik sistemler üzerindeki kuvvetler denge halindeyse sistem hareket etmeyecektir. Sistemin denge hali için gerekli kuvvetlerin

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVELER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

Proje Genel Bilgileri

Proje Genel Bilgileri Proje Genel Bilgileri Çatı Kaplaması : Betonarme Döşeme Deprem Bölgesi : 1 Yerel Zemin Sınıfı : Z2 Çerçeve Aralığı : 5,0 m Çerçeve Sayısı : 7 aks Malzeme : BS25, BÇIII Temel Taban Kotu : 1,0 m Zemin Emniyet

Detaylı

İNŞ 320- Betonarme 2 Ders Notları / Prof Dr. Cengiz DÜNDAR Arş. Gör. Duygu BAŞLI

İNŞ 320- Betonarme 2 Ders Notları / Prof Dr. Cengiz DÜNDAR Arş. Gör. Duygu BAŞLI a) Denge Burulması: Yapı sistemi veya elemanında dengeyi sağlayabilmek için burulma momentine gereksinme varsa, burulma denge burulmasıdır. Sözü edilen gereksinme, elastik aşamada değil taşıma gücü aşamasındaki

Detaylı

MÜHENDİSLİK MEKANİĞİ (STATİK)

MÜHENDİSLİK MEKANİĞİ (STATİK) MÜHENDİSLİK MEKANİĞİ (STATİK) Prof. Dr. Metin OLGUN Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, temel kavramlar, statiğin temel ilkeleri 2-3 Düzlem kuvvetler

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

Hedefler. Kafeslerde oluşan kuvvetlerin hesaplanması: düğüm noktaları metodu kesme metodu

Hedefler. Kafeslerde oluşan kuvvetlerin hesaplanması: düğüm noktaları metodu kesme metodu Yapıların Analizi Hedefler Kafeslerde oluşan kuvvetlerin hesaplanması: düğüm noktaları metodu kesme metodu Konu Çıktıları İki-Kuvvet Elemanları Basit (2 Boyutlu) Kafesler Düğüm Noktaları Metodu ile Analiz

Detaylı

5. 5. 5.3 5.4 5.5 5.6 5.7 5.8 Rijit Cisimde Denge Düzlem Kuvvetlerde Denge Hali Düzlemde Serbestlik Derecesi Bağ Çeşitleri Pandül Ayak Düzlem Taşıyıcı Sistemler Düzlem Taşıyıcı Sistemlerde Yükleme Durumları

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi 1 Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 4 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

Kafes Sistemler. Doğru eksenli çubukların birbirlerine mafsallı olarak birleşmesinden meydana gelen taşıyıcı sistemlere Kafes Sistemler denir.

Kafes Sistemler. Doğru eksenli çubukların birbirlerine mafsallı olarak birleşmesinden meydana gelen taşıyıcı sistemlere Kafes Sistemler denir. KAFES SİSTEMLER Doğru eksenli çubukların birbirlerine mafsallı olarak birleşmesinden meydana gelen taşıyıcı sistemlere Kafes Sistemler denir. Özellikle büyük açıklıklı dolu gövdeli sistemler öz ağırlıklarının

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi

5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi 5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi u bölümde RITZ metodu eleman bazında uygulanacak, elemanın yer değiştirme fonksiyonu, şekil değiştirme, gerilme bağıntıları, toplam potansiyeli,

Detaylı

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ Malzemelerde Elastisite ve Kayma Elastisite Modüllerinin Eğme ve Burulma Testleri ile Belirlenmesi 1/5 DENEY 4 MAZEMEERDE EASTĐSĐTE VE KAYMA EASTĐSĐTE MODÜERĐNĐN EĞME VE BURUMA TESTERĐ ĐE BEĐRENMESĐ 1.

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

28. Sürekli kiriş örnek çözümleri

28. Sürekli kiriş örnek çözümleri 28. Sürekli kiriş örnek çözümleri SEM2015 programında sürekli kiriş için tanımlanmış özel bir eleman yoktur. Düzlem çerçeve eleman kullanılarak sürekli kirişler çözülebilir. Ancak kiriş mutlaka X-Y düzleminde

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

MUKAVEMET FATİH ALİBEYOĞLU

MUKAVEMET FATİH ALİBEYOĞLU MUKAVEMET FATİH ALİBEYOĞLU Rijit Cisimler Mekaniği Statik Dinamik Şekil Değiştiren Cisimler Mekaniği (MUKAVEMET) Akışkanlar Mekaniği STATİK: Dış kuvvetlere maruz kalmasına rağmen durağan halde, yani dengede

Detaylı

TEMEL MEKANİK 9. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 9. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 9 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

MÜHENDİSLİK MEKANİĞİ (STATİK)

MÜHENDİSLİK MEKANİĞİ (STATİK) MÜHENDİSLİK MEKANİĞİ (STATİK) Prof. Dr. Metin OLGUN Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, temel kavramlar, statiğin temel ilkeleri 2-3 Düzlem kuvvetler

Detaylı

SONLU FARKLAR GENEL DENKLEMLER

SONLU FARKLAR GENEL DENKLEMLER SONLU FARKLAR GENEL DENKLEMLER Bir elastik ortamın gerilme probleminin Airy gerilme fonksiyonu ile formüle edilebilen halini göz önüne alalım. Problem matematiksel olarak bölgede biharmonik denklemi sağlayan

Detaylı

Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N

Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N Ödev 1 Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N 1 600 N 600 N 600 N u sin120 600 N sin 30 u 1039N v sin 30 600 N sin 30 v 600N 2 Ödev 2 Ödev2: 2 kuvvetinin şiddetini, yönünü

Detaylı

KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI

KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI IM 566 LİMİT ANALİZ DÖNEM PROJESİ KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI HAZIRLAYAN Bahadır Alyavuz DERS SORUMLUSU Prof. Dr. Sinan Altın GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3-

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- 1 STATİK Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- Moment KUVVET SİSTEMLERİ 2 Moment, bir kuvvetin bir nokta veya bir eksen etrafında oluşturduğu döndürme etkisinin ölçüsüdür. Momentin büyüklüğü

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 4 Skaler: Fiziki büyüklükler SKALER BÜYÜKLÜK SEMBOLÜ BİRİMİ Kütle m Kilogram Hacim V m 3 Zaman t Saniye Sıcaklık T Kelvin Sadece sayısal değer ve birim verilerek ifade edilen

Detaylı

İZOSTATİK (STATİKÇE BELİRLİ) SİSTEMLER

İZOSTATİK (STATİKÇE BELİRLİ) SİSTEMLER İZOSTATİK (STATİKÇE BELİRLİ) SİSTEMLER Yapı Elemanları İnşaat Mühendisliği ile ilgili yapı sistemleri üç ayrı tipteki yapı elemanlarının birleşiminden oluşur. 1)Çubuk Elemanlar: İki boyutu üçüncü boyutuna

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ GİRİŞ Mekanik tasarım yaparken öncelikli olarak tasarımda kullanılması düşünülen malzemelerin

Detaylı

7. Kafes sistem sayısal örnekleri

7. Kafes sistem sayısal örnekleri 7. Kafes sistem sayısal örnekleri 7. Düzlem kafes sistem sayısal örneği Şekil 7. deki kafes sistem elastisite modülü.. 5 N/mm olan çelik borulardan imal edilmiştir. a noktasındaki kuvvetlerinden oluşan:

Detaylı

SEM2015 programı kullanımı

SEM2015 programı kullanımı SEM2015 programı kullanımı Basit Kuvvet metodu kullanılarak yazılmış, öğretim amaçlı, basit bir sonlu elemanlar statik analiz programdır. Çözebileceği sistemler: Düzlem/uzay kafes: Evet Düzlem/uzay çerçeve:

Detaylı

MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin

MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin MAK 308 MAKİNA DİNAMİĞİ 2017-2018 Bahar Dr. Nurdan Bilgin MAKİNALARDA KUVVET ANALİZİ Mekanizmalar, sadece kinematik özellikleri karşılamak üzere tasarlandıklarında, bir makinenin parçası olarak kullanıldığında

Detaylı

TEMEL İNŞAATI ŞERİT TEMELLER

TEMEL İNŞAATI ŞERİT TEMELLER TEMEL İNŞAATI ŞERİT TEMELLER Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 2 Duvar Altı (veya Perde Altı) Şerit Temeller (Duvar Temelleri) 3 Taş Duvar Altı Şerit Temeller Basit tek

Detaylı

KirişlerdeİçKuvvetler Normal Kuvvet, KesmeKuvveti vemoment Diyagramları

KirişlerdeİçKuvvetler Normal Kuvvet, KesmeKuvveti vemoment Diyagramları KirişlerdeİçKuvvetler Normal Kuvvet, KesmeKuvveti vemoment Diyagramları Kesme ve Moment Diyagramlarının Oluşturulması için Grafiksel Yöntem (Alan Yöntemi) Kiriş için işaret kabulleri (hatırlatma): Pozitif

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler Endüstiryel uygulamalarda en çok rastlanan yükleme tiplerinden birisi dairsel kesitli millere gelen burulma momentleridir. Burulma

Detaylı

KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü (1. ve 2.Öğretim / B Şubesi) MMK208 Mukavemet II Dersi - 1. Çalışma Soruları 23 Şubat 2019

KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü (1. ve 2.Öğretim / B Şubesi) MMK208 Mukavemet II Dersi - 1. Çalışma Soruları 23 Şubat 2019 SORU-1) Aynı anda hem basit eğilme hem de burulma etkisi altında bulunan yarıçapı R veya çapı D = 2R olan dairesel kesitli millerde, oluşan (meydana gelen) en büyük normal gerilmenin ( ), eğilme momenti

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

R d N 1 N 2 N 3 N 4 /2 /2

R d N 1 N 2 N 3 N 4 /2 /2 . SÜREKLİ TEELLER. Giriş Kolon yüklerinin büyük ve iki kolonun birbirine yakın olmasından dolayı yapılacak tekil temellerin çakışması halinde veya arsa sınırındaki kolon için eksantrik yüklü tekil temel

Detaylı

6.12 Örnekler PROBLEMLER

6.12 Örnekler PROBLEMLER 6.1 6. 6.3 6.4 6.5 6.6 6.7 Çok Parçalı Taşıyıcı Sistemler Kafes Sistemler Kafes Köprüler Kafes Çatılar Tam, Eksik ve Fazla Bağlı Kafes Sistemler Kafes Sistemler İçin Çözüm Yöntemleri Kafes Sistemlerde

Detaylı

9 m 3 m. 10 kn/m. 5 m m. 3 m P=50 kn. 10 kn/m. P=50 kn. 20 kn/m. 10 kn/m. 1 8 m 2 m 3 m 3 m. 10 kn/m. 5 m. (Şekil-1b) (Şekil-1a) 20 kn /m

9 m 3 m. 10 kn/m. 5 m m. 3 m P=50 kn. 10 kn/m. P=50 kn. 20 kn/m. 10 kn/m. 1 8 m 2 m 3 m 3 m. 10 kn/m. 5 m. (Şekil-1b) (Şekil-1a) 20 kn /m NOT: u çalışma öyü, dersin uygulama kısmında sürenin yetersiz kalabileceği düşünülerek konuları daha iyi kavrayabilmeniz amacıyla hazırlanmıştır. Konu anlatımlarından sonra ilgili soruları ele alarak değerlendirmeniz

Detaylı