ŞEKİL DEĞİŞTİRME HALİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ŞEKİL DEĞİŞTİRME HALİ"

Transkript

1 ŞEKİL DEĞİŞTİRME HALİ GİRİŞ Önceki bölümde cisme etkiyen kuvvetlerin dengesi incelenerek gerilme kavramı geliştirildi. Bu bölümde ise şekil değiştiren cisim mekaniğinin en önemli kavramlarından biri olan şekil değiştirme incelenecektir. Bu kavram sayesinde, riit cisim mekaniği ile çözülemeyen problemler çözülür hale gelmektedir. Bir cismin şekil değiştirmesi, üzerine etkiyen dış kuvvetler nedeniyle olduğu gibi başka nedenlerle de olabilir; örneğin sıcaklık değişimi, kimyasal etkiler gibi. Bu etkiler cismin boyutlarını ve/veya biçimini değişir. Bir cismin şekil 4.1 de görülen yer değiştirmesini inceleyelim. İnceleme için cisim üzerinde alınan A, B ve C noktalarını göz önüne alalım. Cismin yer değiştirmesinden sonra bu noktalar A 1, B 1 ve C 1 konumlarına gelsinler. AA 1, BB 1 ve CC 1 vektörleri sıra ile A, B ve C noktalarının yer değiştirmelerini gösterir. Bu nedenle bu vektörlere yer değiştirme vektörleri adı verilir. Bir cismin yer değiştirmesi iki tip yer değiştirmenin toplamıdır: Birinci tip yer değiştirme cismin bir bütün olarak ötelenmesi ve/veya dönmesidir. Bu tip yer değiştirmede cismin noktalarının birbirlerine göre konumları değişmez; dolayısıyla cismin boyutları ve şekli değişmez, sadece cisim olduğu gibi yer değiştirir. Bu nedenle, bu tip yer değiştirmelere riit cisim yer değiştirmeleri veya riit cisim hareketi adı verilir. Şekil 4.2 (a) da bir ötelenme tipi yer değiştirme, şekil 4.2 (b) de bir dönme tipi riit yer

2 2 Elastisite değiştirme görülmektedir. Şekil 4.2 (c) de ise riit ötelenme ve dönmenin toplamından oluşan bir riit yer değiştirme görülmektedir. Ötelenme tipi yer değiştirmede bütün noktalardaki yer değiştirme vektörleri eşittir. Dönme tipi yer değiştirmede cismin bütün noktaları bir eksen etrafında daireler çizerek ayni θ açısı çizerek dönerler. Sonlu dönmeler vektör ile gösterilemez. İkinci tip yer değiştirmede ise cismin noktalarının birbirlerine göre konumları değişir. Bu tip yer değiştirmeler cisimde şekil değiştirmeye yol açar bu nedenle bu tip yer değiştirmelere şekil değiştirme adı verilir. Şekil 4.1 de görülen A, B ve C noktaları arasındaki AB, BC, CA uzaklıklarını ve BAC açısını düşünelim. A, B ve C noktaları A 1, B 1 ve C 1 konumlarına geldiklerinde AB uzunluğu A 1 B 1 uzunluğundan farklı ise A noktasının konumu B ye göre değişmiştir ve burada bir şekil değiştirme vardır. Bazı hallerde AB nin uzunluğu A 1 B 1 ye göre değişmemekle birlikte ABC açısı değişebilir. Bu durumda bir şekil değiştirmedir. Birinci durumdaki şekil değiştirmeye uzama şekil değiştirmesi veya uzunluk şekil değişmesi veya boy değişimi, ikinci durumdaki şekil değiştirmeye ise açısal şekil değişimi veya kayma şekil değiştirmesi adı verilir. Şekil 4.3 (a)-(b) de sadece şekil değiştirmeler vardır; riit yer değiştirmeler bulunmamaktadır.

3 Şekil Değiştirme Hali 3 Riit cisim yer değiştirmeleri cismin konumunu, şekil değiştirmeler ise cismin geometrisini değiştirir. Riit cisim yer değiştirmeleri küçük veya büyük olabilir buna karşın şekil değiştirmeler küçüktür. Riit cisim yer değiştirmelerinin incelenmesi dinamik için şekil değiştirmelerin incelenmesi ise mukavemet için önemlidir. ŞEKİL DEĞİŞTİRMENİN ELEMANTER OLARAK İNCELENMESİ Yukarıda belirtildiği gibi, bir cismin şekil değiştirmesi, boyutlarının veya biçiminin değişmesi şeklinde iki tipte olmaktadır. Dolayısıyla şekil değiştirmenin farklı iki elemanı bulunmaktadır. Bu elemanların ölçümleri de farklı olacaktır. Cismin boyutlarının değişmesi, uzunlukların değişmeleri ile ölçülür. Biçiminin değişmesi ise açılarının değişmeleri ile ölçülür. Şekil 4.4 de görüldüğü gibi x ekseni üzerinde A ve B noktalarını alalım. Şekil değiştirmeden sonra bu noktalar A 1 ve B 1 konumlarına gelsinler.

4 4 Elastisite AB AB AB 1 1 = (4.1) Yukarıda verilen eşitlik ile tarif edilen boyutsuz büyüklüğe birim uzama veya uzama oranı adı verilir. Bu değer A ve B noktaları arasında ortalama birim uzamadır. Bu büyüklüğün değeri küçüktür (mühendislikte kullanılan bir çok malzeme için). B noktasını A ya yaklaştırıp limite geçildiğinde AB AB lim AB 1 1 x = (4.2) B A olarak elde edilen büyüklük A noktasında x doğrultusunda birim uzamayı gösterir. değeri artı olduğunda boy uzamasını, eksi olduğunda ise boy kısalmasını gösterir. Açısal şekil değişiminin ölçülmesi için şekil 4.5 de görüldüğü gibi bir dik açı alınır. A noktasında açı değişimi diklikten sapmanın ölçüsü olarak aşağıdaki şekilde tarif edilir. π γ xy = lim( CAB 1 1 1) (4.3) B A 2 C A Yukarıda görüldüğü gibi açı değişimi, iki indis ile gösterilmektedir. Göz önüne alınan doğrultular eksenler ile aynı doğrultuda ve açı azalıyor ise γ xy >0 dir. γ xy değerine kayma açısı adı da verilir.

5 Şekil Değiştirme Hali 5 Şekil değiştirme hali: Cismin içinde bir A noktasında boy değişiminden veya açı değişiminden bahsedilemez. Bunlardan bahsedebilmek için A noktasından geçen bir doğrultunun veya yönlendirilmiş bir açının verilmesi gerekir. A noktasından geçen üç doğrultudaki boy değişimi ve üç açının değişimini bilinirse herhangi bir doğrultudaki boy değişimi ve herhangi bir açının değişimi bulunur. A noktasında şekil değiştirmeyi analiz etmek için şekilde görülen boyutları çok küçük dikdörtgen bir prizma alalım. Bu prizmanın kenarlarındaki birim uzamalar x, y, z ve açı değişimleri γ xy, γ xz, γ yz değerleri ile verilsin. Verilen herhangi bir doğrultudaki uzunluk değişimi ve açı değişimi, geometrik esastan hareket edilerek, verilen bu altı değerden bulunabilir. Bu altı değer, gerilme halinde olduğu gibi, aşağıda verilen bir tabloda toplanabilir. 1 1 x 2γ xy 2γ xz 1 1 2γ yx y 2γ yz (4.4) 1 1 2γ zx 2γ zy z Bu değerlere şekil değiştirme halinin bileşenleri adı verilir. Detaya inmeden, şekli değiştirme halinin simetrik bir tansörel büyüklük olduğunu belirtelim; ispatı ileride yapılacaktır. Bir noktada, bir doğrultu ile ona dik bütün doğrultular arasındaki açı değişimi sıfır ise bu doğrultuya asal doğrultu ve bu doğrultudaki uzamaya asal uzama adı verilir. Bir noktadan geçen bir eksen takımında açı değimlerinden üçü birden sıfır ise böyle takıma asal takım, doğrultularada asal uzama doğrultuları adı verilir. Kenarları asal uzama doğrultularına paralel olan elemanların açıları bozulmaz sadece kenar boyları değişir.

6 6 Elastisite Açı değimlerinin ve simetrinin açıklanması: Prizmanın xy düzlemindeki tabanının açı değişimi şekil 4.7 (a) da görüldüğü gibi γ xy =α+β dır. Prizmayı z ekseni etrafında kenarları x ve y eksenleri ile eşit açılar yapacak şekilde döndürelim; yani (α-β)/2 açısı kadar; şekil 4.7 (b). Dönme riit olduğundan bu döndürmenin şekil değiştirmeye etkisi yoktur. Bu durumda yeni açılar α*=β*=γ xy /2 dir. α* açı değişimi, x koordinatları y doğrultusunda hareket ettirdikleri için, xy olarak tanımlanır. Aynı şekilde; β* açı değişimi ise y koordinatları x doğrultusunda hareket ettirdikleri için yx olarak tanımlanır. Şekil 4.7 (b) de görüldüğü gibi xy = yx =γ xy /2 dir. Şekil 4.8 de zy, yz, zx ve xz açı değişimleri görülmektedir. Kayma açılarının artı yönleri kayma gerilmelerinin artı yönleri ile uyum sağlamalıdır. Yukarıda görüldüğü gibi altı değer şekil değiştirme halinin bileşenleridir. Şekil değiştirme halinin tansörel bir büyüklük olduğu ilerde ispat edilecektir yalnız burada bu tansörün simetrik olduğunu söyleyebiliriz.

7 Şekil Değiştirme Hali 7 Bir noktada altı büyüklük x, y, z, xy = yx, yz = zy, xz = zx bilindiğinde verilen herhangi bir doğrultudaki uzunluk değişimi ve açı değişimi, geometrik esastan hareket ederek bulunur. Altı büyüklük toplama gösterilimine uyum sağlaması için 11, 22, 33, 12 = 21, 13 = 31, 23 = 32 şeklinde de gösterilir. Altı değere, şekil değiştirme halinin bileşenleri adı verilir ve gerilme halinde olduğu gibi, aşağıda verilen bir tabloda toplanabilir. γ γ E = = = (4.5) 1 1 xx 2 xy 2 xz xx xy xz γ yx yy 2γ yz yx yy yz γ zx 2γ zy zz zx zy zz Yukarıda görülen altı değer simetrik bir tansörün bileşenleridir. Bu tansöre şekil değiştirme tansörü adı verilir. Mühendislik hesaplarında, karışık bileşen olarak kayma açısı γ i (i, i=1,3;=1,3) kullanılır; tansör hesaplarında ise kayma şekil değiştirmesi i (i, i=1,3;=1,3) kullanılır.

8 8 Elastisite ŞEKİL DEĞİŞTİRMENİN GENEL OLARAK İNCELENMESİ Kapalı bir R bölgesi ile belirlenen bir cismi göz önüne alalım. Bu cisim şekil değiştirdikten sonra bölge R* bölgesinde bulunsun. Cisim üzerinde alınan P noktası P* gelsin. P noktasının komşuluğundan bulunan noktalar P* noktasının komşuluğunda da olsun. Kısaca bu şekil değiştirme esnasında noktaların komşuluğu değişmesin. Örneğin P ve Q noktaların komşuluğu aynı kalsın. R bölgesinin ve şekil değiştirdikten sonra bulunduğu R* bölgesinde tanımı genel olarak iki farklı koordinat sistemleri ile yapılmaktadır. R bölgesi (x 1, x 2, x 3 ) veya (x,y,z) koordinatları ile, R* bölgesini ise (ξ 1, ξ 2, ξ 3 ) veya (ξ, η, ζ ) koordinatlar ile tanımlayalım. Burada bu koordinatların bağlı olduğu A,B gibi iki farklı referans çerçevesi bulunmaktadır. R bölgesindeki bir P (x 1, x 2, x 3 ) noktası, koordinat dönüşümleri yardımı ile R* bölgesindeki P* (ξ 1, ξ 2, ξ 3 ) dönüşmektedir.

9 Şekil Değiştirme Hali 9 Bu iki koordinat takımı arasında x = x ( ξ, ξ, ξ, t) i = 1,2,3 i i ξ = ξ ( x, x, x, t) i = 1,2,3 i i bağıntı vardır. Bu bağıntılar kullanılırken zamana göre değişimler ihmal edileceğinden zaman parametresi kullanılmayacak. Ayrıca dönüşümün tek değerli olması için aşağıda verilen bağıntı sağlanmalıdır. J ξ1 ξ1 ξ 1 x1 x2 x 3 ξ ξ ξ ξ x x1 x2 x 3 ξ3 ξ3 ξ 3 x1 x2 x3 i 2 = = 0 İki koordinat takımı arasında bire bir dönüşüm vardır. (ξ 1, ξ 2, ξ 3 ) fonksiyonları (x 1, x 2, x 3 ) değişkenlerine göre sürekli ve türeve haiz olmaları gerekir. Aksi halde ortamda bir yırtılma bulunacaktır. Bağımsız değişken olarak x i veya ξ i değişkenleri seçilebilir. Akışkanlar mekaniğinde x i değerleri seçilirse bunun anlamı belirli parçacığın hareketinin takibidir. Bu koordinatlara maddesel veya Lagrange koordinatları adı verilir. ξ i değişkenleri bağımsız değişken olarak (ξ 1, ξ 2, ξ 3 ) noktasını veya belirli bölgeyi sabitlemiş olmaktayız. Dolayısıyla belirlenen (ξ 1, ξ 2, ξ 3 ) noktasından geçen parçacıklara ait değerler incelenir. Bu koordinatlara Euler koordinatları veya uzaysal koordinatlar adı verilir. Bir büyüklük S(x 1, x 2, x 3 ) şeklinde maddesel koordinatlar ile veya S (ξ 1, ξ 2, ξ 3 ) şeklinde uzay koordinatları ile incelenir. Akışkanlar mekaniğinde, genelde, uzaysal koordinatlar hız, ivme gibi büyüklüklerin belirlenmesinde kullanılır. Katı cisim mekaniğinde de büyük yer değiştirmelerde de uzay koordinatlar kullanılır. Bazı kolaylıklar sağlamasına karşın sınırların önceden bilinmemesi problem çıkartır.

10 10 Elastisite Şekil değiştirme, yukarıda tanımlanan iki farklı A ve B çerçevelerinde iki eğrisel koordinat kullanılarak genel olarak incelenebilir. Bazı problemlerde şekil değiştirmeler, iki eksen takımı almayı gerektirmez iki çerçeveyi üst üste alıp dik kartezyen koordinatları kullanarak incelenebilir. Birinci sistemdeki yay elemanı ds ikinci sistemdeki yay elemanı ds* olsun. Bu büyükler aşağıda verilen şekilde yazılır. x x x dx = dξ + dξ + dξ = x dξ dx = x dξ , i i, ξ1 ξ2 ξ3 ξ ξ ξ dξ = dx + dx + dx = ξ dξ dξ = ξ dx , i i, x1 x2 x3 ds = dx + dx + dx = dx dx = δ dx dx ds = dxkdxk dxk = xk, id i = xk, d ξ ξ 2 ds = xki, xk, d id i i i i ξ ξ ( ds*) = dξ + dξ + dξ = dξdξ = δ dξdξ ( *) ds = dξkdξk dξk = ξk, idxi = ξk, dx ( ds*) 2 = ξ ξ dx dx ki, k, i i i i i ( ds*) ds = ξk, iξk, dxidx δidxidx = ( ξk, iξk, δi) dxidx ( ds*) ds = 2 Eidxidx Ei = ( ξk, iξk, δi )/2 Yukarıda verilen E i tansörüne Green birim şekil değiştirme tansörü adı verilir. Yukarıda verilen bağıntılar uzaysal koordinatlar ile yazıldığında ( ds*) ds = δidξidξ xk, xk, idξidξ = ( δi xk, xk, i) dξidξ ( ds*) ds = 2 idξidξ i = ( δi xk, xk, i )/2

11 Şekil Değiştirme Hali 11 Elde edilen i tansörüne Cauchy birim şekil değiştirme tansörü adı verilir. Cisim riit hareket yapıyorsa yukarıda belirtilen iki tansör sıfırdır. Green ve Cauchy tansörlerinin yer değiştirmeler cinsinden ifadesi: Şekilde görüldüğü gibi aynı koordinat takımı alındığında yer değiştirme ifadesi u = ξ x i i i şeklinde yazılır. Bu bağıntı kullanılarak aşağıda verilen bağıntılar elde edilir. xi ui xi = ξi ui = δi xi, = δi ui, ξ ξ ξi ui ξi = ui + xi = + δi ξi, = ui, + δi x x yukarıda verilen bağıntılar Green ve Cauchy tansörlerinde yerlerine konulduğunda u ui uk uk Ei = [( uk, i + δik )( uk, + δk ) δi ] = ( u, i + ui, + uk, iuk, ) = ( + + ) 2 x x x x i i u ui uk uk i = [ δi ( δk uk, )( δki uk, i )] = ( u, i + ui, uk, iuk, ) = ( + + ) 2 ξ ξ ξ ξ i i elde edilir. Küçük yer değiştirmeler için yani

12 12 Elastisite u i x u 1 1 ξ i için ikinci mertebeden çarpımlar ihmal edilir ve ui ui xm ui ui um ui = ( ) = [ ( ξm um)] = ( δm ) ξ x ξ x ξ x ξ x m m m bağıntısı kullanır ise aşağıda verilen sonuçlar elde edilir. 1 u u 1 E = = ( + ) = ( u + u ) i i i, i i, 2 xi x 2 Yukarıda bulunan sonucun x,y ve z koordinat takımında açılmış hali aşağıda verilmiştir. u 1 1 u v xx = xy = γ xy = ( + ) x y x v 1 1 v w yy = yz = γ yz = ( + ) y z y w 1 1 u w zz = zx = γ zx = ( + ) z z x i= E i tansörünün elemanlarına anlam vermeye çalışalım. x ekseni doğrultusunda bir doğru alalım. dy=dz=0 ve ds=dx olacaktır. Bu durumda aşağıda verilen bağıntılar yazılır. ( *) ( ) = 2 xx ( * )( * + ) = 2xx ds ds dxdx ds ds ds ds dsds ( ds * ds)( ds * + ds) ( ds * ds)2ds = 2xx 2 dsds dsds ds * ds xx ds xx

13 Şekil Değiştirme Hali 13 Görüldüğü gibi xx daha önce tanımlanan x ekseni doğrultusunda birim şekil değiştirmeyi göstermektedir. Karışık bileşenler aşağıda belirtilen şekil değiştirmeler ile yer değiştirmeler arasındaki bağıntının geometrik analizden bulunur. Şekil değiştirme bileşenleri ile yer değiştirmeler arasındaki bağıntıların geometrik olarak elde edilmesi: Şekil değiştirme bileşenleri ile yer değiştirme bileşenleri arasındaki bağıntıyı düzlemsel halde bulmak için kenarları x, y olan ABCD elemanını göz önüne alalım; şekil Bu elemanın A, B, C ve D noktaları şekil değiştirmeden sonra sıra ile A 1, B 1, C 1, D 1, konumlarına gelsinler. AA 1 vektörü A noktasının yer değiştirme vektörüdür. Yer değiştirme vektörünün x, y doğrultularındaki bileşenleri sıra ile u ve v olsun. A noktasından x kadar uzakta olan B noktasının yer değiştirmesinin bileşenleri sıra ile u+( u/ x) x ve v+( v/ x) x olacaktır. Aynı şekilde D noktasının yer değiştirme bileşenleri u+( u/ y) y ve v+( v/ y) y dir. Şekil 4.27 de görülen α 1 ve α 2 açıları küçük olduğundan

14 14 Elastisite [ x + u+ ( u/ x) x u] x u x = = x x [ y+ v + ( v/ y) y v] y v y = = x y bulunur. Açı değişimi aşağıda verilen şekilde bulunur. v + ( v/ x) x v u+ ( u/ y) y u γ xy = α1+ α2 = + x y v u γ xy = + x y Bu bağıntılar yer değiştirme şekil değiştirme bağıntılarıdır. (4.31) (4.32) Sonsuz küçük dönmeler: u i, tansörü 1 1 ui, = ( ui, + u, i) + ( ui, u, i) Şeklinde yazılır. Yukarıda verilen birinci terim i birim şekil değiştirme tansörünü vermektedir. İkinci terim ise ω i ile gösterilen sonsuz küçük dönme tansörünü vermektedir. Bu tansör antisimetriktir. u i, tansörü birim şekil değiştirme ve dönme tansörü ile aşağıda verilen şekilde yazılır. u = + ω i, i i Uygunluk şartları:(4.31) eşitliği ile (4.32) arasında türev alınarak yer değiştirmeler yok edildiğinde aşağıda verilen bağıntı elde edilir. 2 x y γ xy + = y x x y (4.33) Bu bağıntıya uygunluk şartı adı verilir. Yukarıda (4.31), (4.32) ve (4.33) eşitlikleri ile verilen şekil değiştirme yer değiştirme bağıntıları ile uygunluk şartı kolaylıkla üç boyutlu hale genişletilebilir. Üç boyutlu halde yer değiştirme vektörünün x, y ve z doğrultularındaki bileşenleri sıra ile u,v ve w olduğuna göre; üç boyutlu hal için aşağıda verilen bağıntılar elde edilir.

15 Şekil Değiştirme Hali 15 u v w x = y = z = x y z u v v w u w γ xy = + γ yz = + γ zx = + y x z y z x (4.34) y γ x xy xy + = = 2 y x xy xy γ y z yz yz + = = 2 z y y z y z z x γ zx zx + = = 2 x z z x z x 2 x γ yz γ γ zx xy 2 = ( + + ) y z x x y z 2 y γ γ zx xy γ yz 2 = ( + + ) zx y y z x 2 z γ xy γ yz γ zx 2 = ( + + ) x y z z x y (4.35) Yukarıda verilen denklemleri toplu şekilde yazmak için şekil 4.35 de görüldüğü gibi x 1, x 2 ve x 3 eksen takımı alalım. u yer değiştirme vektörü, bileşenleri ise u 1, u 2 ve u 3 olsun; yani u 1 =u, u 2 =v, u 3 =w olsun. Bu durumda şekil değiştirme tansörünün bileşenleri olan 11, 22, 33, 12, 13, 23, 21, 31, 32 aşağıda verilen şekilde yazılır.

16 16 Elastisite 1 u u 1 = ( + ) ( i, = 1,3) veya = ( u + u ) i i i i,, i 2 x xi 2 + = + (4.36) i, kl kl, i ik, l l, ik Yukarıda verilen ikinci bağıntıdan 3 4 =81 adet denklem elde edilir. Bunlardan bazıları özdeş olarak sağlanır, bazıları birbirlerinin tekrarıdır. Geriye 6 bağımsız denklem kalır. Yukarıda verilen bağıntılar (4.34) ve (4.36) bağıntılarının toplu olarak yazılmasıdır. Örneğin: 1 u u u u ( ) = + = = = 2 x1 x1 x1 x 1 u u 1 u v 1 12 = + = + = γ xy ( ) ( ) x2 x1 y x x EKSENLERİN DÖNDÜRÜLMESİ HALİNDE ŞEKİL DEĞİŞTİRME BİLEŞENLERİNİN DEĞİŞMESİ: Şekil 4.35 de görülen s, t ve d eksen takımını göz önüne alalım. Şekil değiştirme tansörünün bu eksen takımında bileşenleri * * * 1 u ( t us ts = + ) 2 s t (4.32) şeklinde yazılır. Burada u t ve u s değerleri, yer değiştirme vektörünün t ve s doğrultularında bileşenleridir. Bu bileşenler x 1, x 2 ve x 3 doğrultularındaki u 1, u 2 ve u 3 cinsinden, bir vektörün dönüşümlerinin gösteren (3.59) bağıntısından 3 3 * * u = u n = u n u = u n = u n (4.33) t t t s s s = 1 = 1 şeklinde elde edilir. Burada n t ve n s değerleri sıra ile t ve s eksenlerinin x 1, x 2 ve x 3 doğrultuları ile yaptıkları açının kosinüsleridir. Bu açıların tanımı daha önce yapılmıştı. Yukarıda (4.33) ile verilen değerler (4.32) de yerlerine konulduğunda

17 Şekil Değiştirme Hali 17 * 1 u ( u ts = nt + ns ) 2 s t (4.34) elde edilir. Bu bağıntıda bulunan kısmi türevleri zincir kuralına göre u u x u u u u k x k =. = nsk =. = s x s x t x t x k k k k n tk (4.35) yazılabilir. Yukarıda bağıntılarda bulunan xk / s= nsk ve xk / t = ntk bağıntılarını ters dönüşüm alınarak elde edilir. (4.35) de elde edilen bağıntılar (4.34) de yerlerine konulduğunda * 1 u ( u ts = nn t sk + nn s tk ) 2 x x k k (4.36) elde edilir. Bu eşitliğin sağ tarafındaki ikinci terimde sessiz indislerden yerine k ve k yerine konursa aşağıda verilen bağıntı bulunur. * 1 u u 1 u k uk = ( n n + n n ) = ( + ) n n = n n 2 x x 2 x x ts t sk sk t sk t k sk t k k (4.37) Yukarıda bulunan dönüşüm bağıntısı daha önce belirtilen bir tansörel dönüşümdür. Dolayısıyla k büyüklüğü tansörel bir büyüklüktür. Bu tansörel büyüklüğün karışık bileşenleri γ i olmayıp γ i /2 dir. Yukarıda (4.37) de verilen bağıntıda n i değerlerini bulunduran N matrisi (3.54) ile verilmiş olup N matrisi ortagonal bir matrisdir. Matrisin bu özellikleri olduğu göz önüne alınarak (4.37) bağıntısı matrisler kullanılarak aşağıda verilen şekilde yazılır. * =.. =.. T 1 N N N N (4.38) Üç eksenli şekil değiştirme halinde, asal şekil değiştirmeler ve doğrultuların bulunuşu ile şekil değiştirme halinin değişmezleri, üç eksenli gerilme halinde izlenen yolların aynısı izlenerek bulunur. Tek değişiklik gerilme tansörü yerine şekil değiştirme tansörü kullanılmasıdır.

18 18 Elastisite x 1, x 2 ve x 3 doğrultuları olarak asal şekil değiştirme doğrultuları alındığında şekil değiştirme tansörünün bileşenlerinin bulunduğu matris köşegendir. Köşegen elemanları ise asal şekil değiştirmeler 1, 2, 3 dir. İkinci eksen takımı olarak birbirlerine dik a, b ve c eksenlerini alalım. Bu eksenlerin x 1, x 2 ve x 3 eksenlerine göre doğrultman kosinüsleri sıra ile λ a, µ a,ν a ; λ b, µ b,ν b; λ c, µ c,ν c olsun. Verilen bilgiler (4.38) bağıntısına uygulandığında daha önce bulunan (4.22) ve (4.23) bağıntıları elde edilir. Hacim değişmesi: Şekil değişimi sonunda bir cisimde hacim değişikliği meydana gelebilir. v hacmindeki bir elemanın şekil değiştirmeden sonra hacmi v* olsun. Hacim değiştirme oranı θ; v* v θ = v (4.24) şeklinde tarif edilir. θ, hacim değiştirme oranını şekil değiştirmeler cinsinden hesaplamak için şekilde görülen kenarları x, y ve z olan bir dikdörtgenler prizmasını göz önüne alalım. Açı değişimlerinin hacim değişimine etkisi ikinci mertebeden olacağı için hacim değişiminde sadece birim uzamalar x, y ve z göz önüne alınacaktır. Şekil değiştirmeden sonra, prizmanın kenarları (1+ x ) x, (1+ y ) y ve (1+ z ) z olacağından, hacim değiştirme oranı θ=(1+ x ).(1+ y ).(1+ z )-1 θ=1+ x y + y z + z x + x y z -1 şeklinde yazılır. Bu ifadede yüksek mertebeden terimler ( ların çarpımları) ihmal edildiğinde birim hacim değişimi aşağıda verilen şekilde elde edilir. θ= x + y + z (4.25)

19 Şekil Değiştirme Hali 19 Bir şekil değiştirmede θ= x + y + z =0 ve γ xy, γ yz, ve γ zx açı değişimlerinden bazıları sıfır değilse bu şekil değiştirmede sadece biçim değişikliği olur; γ xy =γ yz =γ zx =0 ve θ 0 ise bu şekil değiştirmede sadece hacım değişikliği olur, biçim değişikliği olmaz.

JFM 301 SİSMOLOJİ ELASTİSİTE TEORİSİ Elastisite teorisi yer içinde dalga yayılımını incelerken çok yararlı olmuştur.

JFM 301 SİSMOLOJİ ELASTİSİTE TEORİSİ Elastisite teorisi yer içinde dalga yayılımını incelerken çok yararlı olmuştur. JFM 301 SİSMOLOJİ ELASTİSİTE TEORİSİ Elastisite teorisi yer içinde dalga yayılımını incelerken çok yararlı olmuştur. Prof. Dr. Gündüz Horasan Deprem dalgalarını incelerken, yeryuvarının esnek, homojen

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 2 Laminanın Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 2 Laminanın Makromekanik

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

MADDESEL NOKTANIN EĞRİSEL HAREKETİ

MADDESEL NOKTANIN EĞRİSEL HAREKETİ Silindirik Koordinatlar: Bazı mühendislik problemlerinde, parçacığın hareketinin yörüngesi silindirik koordinatlarda r, θ ve z tanımlanması uygun olacaktır. Eğer parçacığın hareketi iki eksende oluşmaktaysa

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 2 Laminanın Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 2 Laminanın Makromekanik

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

Hiperstatik sistemlerin çözümünde, yer değiştirmelerin küçük olduğu ve gerilme - şekil değiştirme bağıntılarının lineer olduğu kabul edilmektedir.

Hiperstatik sistemlerin çözümünde, yer değiştirmelerin küçük olduğu ve gerilme - şekil değiştirme bağıntılarının lineer olduğu kabul edilmektedir. 1. HİPERSTATİK SİSTEMLER 1.1. Giriş Bir sistemin hesabının amacı, dış etkilerden meydana gelen kesit tesirlerini, şekil değiştirmelerini ve yer değiştirmelerini belirlemektir. İzostatik sistemlerde, yalnız

Detaylı

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Gerilme ve Şekil değiştirme bileşenlerinin lineer ilişkileri Hooke Yasası olarak bilinir. Elastisite Modülü (Young Modülü) Tek boyutlu Hooke

Detaylı

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET Yrd. Doç. Dr. Emine AYDIN Yrd. Doç. Dr. Elif BORU 1 GENEL YÜKLEME DURUMUNDA GERİLME ANALİZİ Daha önce incelenen gerilme örnekleri eksenel yüklü yapı elemanları

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 16 Rijit Cismin Düzlemsel Kinematiği Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 16 Rijit

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

DİNAMİK. Ders_9. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

DİNAMİK. Ders_9. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ DİNAMİK Ders_9 Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2018-2019 GÜZ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ: ÖTELENME&DÖNME Bugünün

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

KUVVET, MOMENT ve DENGE

KUVVET, MOMENT ve DENGE 2.1. Kuvvet 2.1.1. Kuvvet ve cisimlere etkileri Kuvvetler vektörel büyüklüklerdir. Kuvvet vektörünün; uygulama noktası, kuvvetin cisme etkidiği nokta; doğrultu ve yönü, kuvvetin doğrultu ve yönü; modülüyse

Detaylı

SONLU FARKLAR GENEL DENKLEMLER

SONLU FARKLAR GENEL DENKLEMLER SONLU FARKLAR GENEL DENKLEMLER Bir elastik ortamın gerilme probleminin Airy gerilme fonksiyonu ile formüle edilebilen halini göz önüne alalım. Problem matematiksel olarak bölgede biharmonik denklemi sağlayan

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ

FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ (del) operatörü, Bir f skaler alanına etkirse: f GRADİYENT Bir A vektör alanı ile skaler çarpılırsa:

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Yrd. Doç. Dr. Beytullah EREN Çevre Mühendisliği Bölümü BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Atatürk Barajı (Şanlıurfa) BATMIŞ YÜZEYLERE ETKİYEN KUVVETLER

Detaylı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir. Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak

Detaylı

Gerilme Dönüşümü. Bölüm Hedefleri

Gerilme Dönüşümü. Bölüm Hedefleri Gerilme Dönüşümü Bölüm Hedefleri Bu bölümde, belirli bir koordinat sisteminde tanımlı gerilme bileşenlerinin, farklı eğimlere sahip koordinat sistemlerine nasıl dönüştürüleceği üzerinde durulacaktır. Gerekli

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

Fizik Dr. Murat Aydemir

Fizik Dr. Murat Aydemir Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

ÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER

ÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER ÖTELEME: Bir şeklin duruşunun, biçiminin, boyutlarının bozulmadan yer değiştirmesine o şekli öteleme denir. Ötelemede biçim, boyut, yön değişmez. Yer değişir. Bir şekil ötelendiği zaman şekil üzerindeki

Detaylı

İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ

İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ Yapı Statiği nde incelenen sistemler çerçeve sistemlerdir. Buna ek olarak incelenen kafes ve karma sistemler de aslında çerçeve sistemlerin

Detaylı

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz.

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz. ANALİZ 1.) a) sgn. sgn( 1) = 1 denkleminin çözüm kümesini b) f ( ) 3 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

Elastisite Teorisi Polinomlar ile Çözüm Örnek 2

Elastisite Teorisi Polinomlar ile Çözüm Örnek 2 Elastisite Teorisi Polinomlar ile Çözüm Örnek 2 Böylece aşağıdaki gerilme ifadelerine ulaşılır: Bu problem için yer değiştirme denklemleri aşağıdaki şekilde türetilir: Elastisite Teorisi Polinomlar ile

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

GERİLME HALİ P A. lim A

GERİLME HALİ P A. lim A GERİLME HALİ Şekilde görüldüğü gibi kuvvetler etkisi altında bulunan bir cismi göz önüne alalım ve bu cismi şekildeki gibi bir yüzey ile iki parçaya ayıralım. Ayırma yüzeyleri üzerinde, alana yayılı iç

Detaylı

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Lineer Cebir Doç. Dr. Niyazi ŞAHİN TOBB İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Bölüm 1 - Lineer Eşitlikler 1.1. Lineer Eşitliklerin Tanımı x 1, x 2,..., x

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

Uzayda Simetri. A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır.

Uzayda Simetri. A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır. Uzayda Simetri Hazırlayan Halit Çelik Matematik Öğretmeni Noktaya Göre Simetri: A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır. Buna göre şeklinde

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

Mekanik. Mühendislik Matematik

Mekanik. Mühendislik Matematik Mekanik Kuvvetlerin etkisi altında cisimlerin denge ve hareket şartlarını anlatan ve inceleyen bir bilim dalıdır. Amacı fiziksel olayları açıklamak, önceden tahmin etmek ve böylece mühendislik uygulamalarına

Detaylı

1. Hafta Uygulama Soruları

1. Hafta Uygulama Soruları . Hafta Uygulama Soruları ) x ekseni, x = doğrusu, y = x ve y = x + eğrileri arasında kalan alan nedir? ) y = x 3 ve y = 4 x 3 parabolleri arasında kalan alan nedir? 3) y = x, x y = 4 eğrileri arasında

Detaylı

Noktasal Cismin Dengesi

Noktasal Cismin Dengesi Noktasal Cismin Dengesi Bu bölümde; Kuvvetleri bieşenlerine ayırma ve kartezyen vektör şeklinde ifade etme yöntemleri noktasal cismin dengesini içeren problemleri çözmede kullanılacaktır. Bölüm 3 DOÇ.DR.

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bu bölümde, bir noktaya etkiyen ve bir koordinat ekseni ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi ile ilişkili gerilme bileşenlerine dönüştürmek

Detaylı

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir.

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir. .. Diferensiyel Denklemler y f (x) de F ( x, y, y, y,...) 0 veya y f ( x, y, y,...) x ve y değişkenlerinin kendileri ve türevlerini içinde bulunduran denklemlerdir. (Türevler; "Bağımlı değişkenin değişiminin

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ,

A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ, Vektör Analizi(Özet) Bir vektörün büyüklüğü(boyu) Birim vektör A A = A 2 + A 2 y + A 2 z (1) A â A (2) İki vektörün skaler(nokta) çarpımı Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s Bölüm 4: İki-Boyutta Hareket(Özet) Bir-boyutta harekeçin geliştirilen tüm kavramlar iki-boyutta harekeçin genelleştirilebilir. Bunun için hareketli cismin(parçacığın) yer değiştirme vektörü xy-düzleminde

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

STATİĞİN TEMEL PRENSİPLERİ

STATİĞİN TEMEL PRENSİPLERİ 1.1. Temel Kavramlar ve Tanımlar Mühendislik mekaniği: Kuvvet etkisi altındaki cisimlerin denge veya hareket koşullarını inceleyen bilim dalı Genel olarak mühendislik mekaniği Sert (rijit) katı cisimlerin

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER MUKAEMET I ÇÖZÜMÜ ÖRNEKER ders notu Yard. Doç. Dr. Erdem DAMCI Şubat 15 Mukavemet I - Çözümlü Örnekler / 7 Örnek 1. Üzerinde yalnızca yayılı yük bulunan ve açıklığı olan bir basit kirişe ait eğilme momenti

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

TEMEL MEKANİK 5. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 5. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 5 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi ENİNE DEMET DİNAMİĞİ Prof. Dr. Abbas Kenan Çiftçi Ankara Üniversitesi 1 Dairesel Hızlandırıcılar Yönlendirme: mağnetik alan Odaklama: mağnetik alan Alan indisi zayıf odaklama: 0

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

EĞRİSEL HAREKET : Silindirik Bileşenler

EĞRİSEL HAREKET : Silindirik Bileşenler EĞRİSEL HAREKET : Silindirik Bileşenler SİLİNDİRİK KOORDİNATLARDA (POLAR) HAREKET DENKLEMLERİ Bugünkü Konular: Silindirik koordinat takımı kullanılarak hareket denklemlerinin yazılması; hız ve ivme değerlerinin

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine etkiyenf r kuvvetini göstermektedir. Parçacık A noktasından r r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve d r A dan A ne

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

UZAY KAVRAMI VE UZAYDA DOĞRULAR

UZAY KAVRAMI VE UZAYDA DOĞRULAR UZAY KAVRAMI VE UZAYDA DOĞRULAR Cisimlerin kapladığı yer ve içinde bulundukları mekan uzaydır. Doğruda sadece uzunluk, düzlemde uzunluk ve genişlik söz konusudur. Uzayda ise uzunluk ve genişliğin yanında

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İçerik Tanımlar

Detaylı

Malzemelerin Mekanik Özellikleri

Malzemelerin Mekanik Özellikleri Malzemelerin Mekanik Özellikleri Bölüm Hedefleri Deneysel olarak gerilme ve birim şekil değiştirmenin belirlenmesi Malzeme davranışı ile gerilme-birim şekil değiştirme diyagramının ilişkilendirilmesi ÇEKME

Detaylı

Bir cismin iki konumu arasındaki vektörel uzaklıktır. Başka bir ifadeyle son konum (x 2 ) ile ilk konum

Bir cismin iki konumu arasındaki vektörel uzaklıktır. Başka bir ifadeyle son konum (x 2 ) ile ilk konum DOĞRUSAL ve BAĞIL HAREKET Hareket Maddelerin zamanla yer değiştirmesine hareket denir. Fakat cisimlerin nereye göre yer değiştirdiği ve nereye göre hareket ettiği belirtilmelidir. Örneğin at üstünde giden

Detaylı

Gök Mekaniği: Eğrisel Hareket in Kinematiği

Gök Mekaniği: Eğrisel Hareket in Kinematiği Gök Mekaniği: Eğrisel Hareket in Kinematiği Bundan bir önceki giriş yazımızda Kepler yasaları ve Newton ın hareket kanunlarını vermiş, bunlardan yola çıkarak gök mekaniklerini elde edeceğimizi söylemiştik.

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 3 Laminanın Mikromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 3 Laminanın Mikromekanik

Detaylı

BÖLÜM 9 ÇÖZÜLMESİ ÖNERİLEN ÖRNEK VE PROBLEMLER

BÖLÜM 9 ÇÖZÜLMESİ ÖNERİLEN ÖRNEK VE PROBLEMLER BÖLÜM 9 ÇÖZÜLMESİ ÖNERİLEN ÖRNEK VE PROBLEMLER b) İkinci süreç eğik atış hareketine karşılık geliyor. Orada örendiğin problem çözüm adımlarını kullanarak topun sopadan ayrıldığı andaki hızını bağıntı olarak

Detaylı

MEKANİZMA TEKNİĞİ (3. Hafta)

MEKANİZMA TEKNİĞİ (3. Hafta) MEKANİZMALARIN KİNEMATİK ANALİZİ Temel Kavramlar MEKANİZMA TEKNİĞİ (3. Hafta) Bir mekanizmanın Kinematik Analizinden bahsettiğimizde, onun üzerindeki tüm uzuvların yada istenilen herhangi bir noktanın

Detaylı

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ 1-STATİĞİN TEMEL İLKELERİ 1- BİRİMLER 2-TRİGONOMETRİ 3-VEKTÖRLER 3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması 3.3 Vektörlerin uç-uca eklenerek toplanması 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile

Detaylı

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır.

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır. Bölüm 3 VEKTÖRLER Bölüm 3: Vektörler Konu İçeriği Sunuş 3-1 Koordinat Sistemleri 3-2 Vektör ve Skaler nicelikler 3-3 Vektörlerin Bazı Özellikleri 3-4 Bir Vektörün Bileşenleri ve Birim Vektörler Sunuş Fizikte

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

Düzgün olmayan dairesel hareket

Düzgün olmayan dairesel hareket Düzgün olmayan dairesel hareket Dairesel harekette cisim üzerine etki eden net kuvvet merkeze doğru yönelmişse cismin hızı sabit kalır. Eğer net kuvvet merkeze doğru yönelmemişse, kuvvet teğetsel ve radyal

Detaylı