5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos d v =- cos / =- cossin + sin cos d # 7. y = f () fonksiyonu için tablo yapılısa f () f() Yeel min + + + Yeel ma Yeel min Tabloda göüldüğü gibi = noktası yeel maksimum noktasıdı. & I = sin d -I # I = A A I = bulunu. f ( ) + f l ( ). hl ( ) = f( ) fl ( ) & hl ( ) = + f ( ) f l ( ) hl ( ) = + = bulunu. f( ) a 5. Daf( P) = f( P) : a = ( y,,-) (,, ) : (,, ) = (-,-,-): =- =- P bulunu. 8. a n lim n = n ak a olmak üzee + = lim k " k k " k = lim = = L k " ( k + ) -k - ( k + ) -k k R = = bulunu. L. (, ) eği üzeinde olduğundan = 8a + b di. y = a y () = olmalıdı. a = & a = 8 + b = & b = 6 olu. O hâlde a + b = 7 bulunu. 6. = cos i *, J = y = sin i i olmak üzee I = # # tan ddi dı. 9. lim a n n = olsun. Alt dizi ile üst dizinin limiti eşit olduğundan (a n ) dizisinin bütün alt " dizileinin limiti de olu. Bu takdide = + 5+ ( - ) = 5+ -- = ( - )( + ) = = olup lim a = bulunu. a " n Diğe sayfaya geçiniz.
5 ÖABT / MTL TG. f süekli ve atan ise bie bidi. I de f öten olduğundan tesi vadı. f, I de atandı ve süeklidi. I ve III doğudu.. Sayılabili kümele Tam sayıla Doğal sayıla Rasyonel sayıladı. O hâlde I, II ve III bulunu. 6. A ve B köşegen iki matis ise toplamı ve skalele çapımı yine köşegen bi matisti. Aynı duum iki matisin izi içinde geçelidi. O hâlde I ve III alt uzaydı. II alt uzay değildi. Çünkü A ve B bu uzayın iki elemanı olduğunda, A + B nin de bu uzayın elemanı olması geeki. Ancak A = A, B = B iken (A + B) = A + B değildi.. y y = + / y = Alan = = # f + + # # = ( actan - ) dyd - pd ;. infa = dı. Çünkü 6f > için n > n = - f olduğundan f n < - n + < f sağlanı. supa = di. Çünkü 6f > için n > f n = - f olduğundan n - f < + < sağlanı. n + infa + supa = bulunu. 7. Veilen eşitsizlik bi satıda köşegen elemanını mutlak değeinin diğe elemanladan mutlak değece büyük olacağını göstemektedi. B seçeneğinde ilk satı için < olduğundan B deki matis köşegen baskın değildi. = : - = - bulunu.. y a a y = v a 5. A, B ve C matislei için iz(ab) = iz(ba) ve iz(abc) = iz(cab) = iz(bca) dı. 8. T(,, ) = (,, ) T(,, ) = (,, ) T(,, ) = (,, ) a ( - a) A = 6a- a Al = a = bulunu. = Buna göe I. yanlıştı, II. doğudu, III. doğudu. J - N T = - K - O L P J N - T = - K - O L P T (, y, z) = ( + z, y + z, y + z) bulunu. Diğe sayfaya geçiniz.
5 ÖABT / MTL TG 9. A bi tamlık bölgesi değildi. Çünkü. Öyle bi L(D) bulmalıyız ki 5. y + y = []:[] = []! A dı. L(D) e = olsun. ʎ = e t [] ve [] sıfı bölendi. A bi halkadı. Çünkü halka aksiyomlaını sağla. Ama cisim değildi. Çünkü çapmaya göe biim elemanı yoktu. (D )e = (D ) (e ) = (D ) ( e ) = bulunu. e t y = c y = ce t y() = & c = lim y() t = bulunu. t ". (8, n) = n =, 5, 7,,, 7 Toplam 6 faklı üeteci vadı.. W( y, y ; c) = ce = ce = ce - # - d - # d- + n d - a - # a d 6. Özel çözüm için y P = Ae + B alınısa yl = Ae + e : A + B yll = Ae + e : A + Ae = ce --ln( - ) - ce = bulunu. - yeine yaz lsa yll - yl = + e A: e - B = + e A = olu. B = olu. O hâlde özel çözüm y = e bulunu.. = noktası düzgün aykıı noktadı. n+ Dolayısıyla y = / a n çözümdü. n= Tüevle denklemde yazılısa n+ - / ( n+ ) :( n+ - ) an : n =. da a(lna) (lna) k - k+ - k = dt (lna = u) t = lnt+ c a() = & c = / n+ - + ( n+ ) : an : n = / n+ - an : = n = / n+ - & [ ( n+ ) : ( n+ - ) an+ ( n+ a ) n] n = / n+ - an : = n = olaak düzenleni. (lna) - k+ - k a( a) = e lna - k = = lnt a = e - k bulunu. 7. Binom dağılımından dolayı f p( 75, ) (, 5) = : d n : = d n bulunu. O hâlde indisel denklem ilk seide n = yazılaak bulunu. Buadan :( ) + & :( ) = bulunu. 5 Diğe sayfaya geçiniz.
5 ÖABT / MTL TG 8. ʎ = Poisson dağılımında e : P ( = ) =! = e - - bulunu.. f() in olasılık yoğunluk fonksiyonu olması için f( ) + f( ) = olmal d. & a- + a- = & a- + a- = a -a- a + & a - 6a+ =. Bu nokta (, y) olsun. ( - ) + ( y- ) = ( + ) + ( y- ) - + + y - y+ = + 6+ 9+ y - y+ 8+ y+ 5 = bulunu. 6 & a+ a = = bulunu. 9. Evli çift iki uçta ise ::6! Evli çift otada ise + :6! 6:6! bulunu. #. E ( ) = sgn( -) d - # # = - d+ d = - + - - =- ( - ) + ( 6 - ) 5. < uvw, > = - k = : (- ) + k( - ) = k =- bulunu. = 5 bulunu. 9. ( 9 - n f p ) ( y- z) n n = 9 olmal = : ( ) ( y-z) 9 ( ) ( ) m y 9 - m = f p - z m = 7 olmal 9 ( y) ( z) y z 7 9: 8 7 = f p - = : 9 =-y z n 9 7 m 7 bulunu.. y y = + y = + doğusu oijin etafında saat yönünde döndüülüse y = doğusu oluşu. (Eğimle çapımı di.) : Alan = = b bulunu. 6. Otak noktası olması için n - m - = olmalıdı. (m 8) ( n) + mn + = 6m + 6n + mn 6 + 9 + = - 6n m = bulunu. 6 + n 6 Diğe sayfaya geçiniz.
5 ÖABT / MTL TG 7. Nomalleinin iç çapımı olmalıdı. <(,, k), (,, )> = + k = k = bulunu.. F(,) odak, P(,y) ün paabolün üzeinde bi nokta olsun. P nin y = e uzaklığı y- = ( - ) + y y y + = + + y + y + y + = bulunu.. Ali Öğetmen veilen abcd sayısını 7 nin katlaı şeklinde açtığından 7 ile bölünme kualını anlatı ve yeni pogama göe 7 ile bölünebilme. sınıf düzeyinde ele alınmaktadı. 8. y C(,y) i b A a B y AC doğusunun eğimi m = - - y BC doğusunun eğimi m =- - - i = b a olduğundan tanjantı alınısa di = n y - y - - - - = den ( y - ) + ( -)( -). Matematiksel süeç beceilei İletişim sağlayabilme Akıl yüütme ve ispat yapabilme İlişkilendime yapabilme Matematiğe ve matematik öğenime değe veme Psikomoto beceilede gelişim sağlama İletişim teknolojileini kullanma O hâlde I, II ve III doğudu.. Dolaylı ispat yöntemlei olmayana egi yöntemi çelişki yöntemiyle ispat deneme yöntemiyle ispat aksine önek veeek ispattı. O hâlde I, II ve III bulunu. ( )( ) + (y ) (y ) = + y y + 6 = bulunu. 5. Veilenle sıası ile uygulanısa L b K a A 6 6 a b a a b 6 6 B C şekli elde edili. AK = AB, LA = LC ve 9. m T 6 =- =- =- ise 8y 6 6 m = 6 di. N Nomalin denklemi & y- = 6 ( - ) olu. = için y =- 6 bulunu.. Bi teimi tanıma, olguyu tanıma, bi kavamın öneğini hatılama, denk gösteimlei hatılama, belili bi işlemi yapma, bi basamaklı bi poblem çözme ve basit geometik figülei çizme düşük kamaşıklıktaki sou çeşitleinden bazılaıdı. O hâlde bi basamaklı bi poblem çözme doğu yanıtımızdı. % % mkac ( ) = mlab ( ) = 6 + a olduğundan & & ( AKC) ve ( ABL) eflti. AK AC KC = = olu. AB AL LB a b KC = = = bulunu. a b LB 7 Diğe sayfaya geçiniz.
5 ÖABT / MTL TG 6. Güncellenen yeni pogamda A, B, C ve E seçeneklei. sınıf temel düzeyde ele alınıken Bilinçli tüketici aitmetiği Sayı dizilei Bölünebilme Vei analizi Olasılık. sınıf temel düzeyiyle ilgilidi. 9. Yeine koyma metoduyla y = + = 9 = şeklinde çözüme gidilebili. Matis yadımı ile - > H : > H = > H y 6 9 A : X = B indigeme yapılaak çözüme gidilebili. Tes matis A:X = B ise A :A:X = A :B X = A :B çözüme gidilebili. Sou çözümünde deteminant kullanılmaz. 7. Dikdötgenin içindekile toplanısa 5 + 5 + elde edili. Çapanlaına ayılısa 5 + 5 + 7 5 5 + O hâlde 8 5 5 (7 + 5) (5 + ) çapımı elde edili. 5. Bottema teoemi olaak bilinen bu ispat aşağıdaki gibidi: P S T A L K a G b a H b a b B M C R 8. 9, ve. sınıflada güncellenen pogam;. sınıfta eski pogam uygulanmaktadı. I. Toplam fak, yaım açı, dönüşüm, tes dönüşüm. sınıf düzeyinde ele alınmaktadı. II. Üçgen özelliklei 9. sınıf düzeyinde ele alınmaktadı. III. Bölünebilme ve modüle aitmetik.sınf düzeyinde ele alınmaktadı. K ve L ağılık mekezi ise AH = HC AG = BG olu ve a + B = 9 olduğundan & mkml ( ) = 9 bulunu. 8