Saf Eğilme(Pure Bending)

Benzer belgeler
Saf Eğilme (Pure Bending)

Kirişlerde Kesme (Transverse Shear)

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Burulma (Torsion) Amaçlar

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

KAYMA GERİLMESİ (ENİNE KESME)

MUKAVEMET Öğr. Gör. Fatih KURTULUŞ

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Özel Laboratuvar Dersi Strain Gauge Deneyi Çalışma Notu

Gerilme Dönüşümleri (Stress Transformation)

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

Gerilme Dönüşümleri (Stress Transformation)

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

VECTOR MECHANICS FOR ENGINEERS: STATICS

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Kesit Tesirleri Tekil Kuvvetler

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

Eksenel Yükleme Amaçlar

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Bileşik kirişlerde kesme akımının belirlenmesi İnce cidarlı kirişlerde kesme akımının belirlenmesi

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Noktasal Cismin Dengesi

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı

STATİK. Ders_9. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

YAPI STATİĞİ MESNETLER

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University

Dairesel Temellerde Taban Gerilmelerinin ve Kesit Zorlarının Hesabı

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

BURULMA DENEYİ 2. TANIMLAMALAR:

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor

SÜLEYMAN DEMİ REL ÜNİ VERSİ TESİ MÜHENDİ SLİ K-Mİ MARLIK FAKÜLTESİ MAKİ NA MÜHENDİ SLİĞİ BÖLÜMÜ MEKANİK LABORATUARI DENEY RAPORU

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

BURULMA. Deformasyondan önce. Daireler yine dairesel kalır. Boyuna çizgiler çarpılır. Radyal çizgiler doğrusal kalır Deformasyondan sonra

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir.

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI

Giriş. Mukavemet veya maddelerin mekaniği (strength of materials, mechanics of materials) kuvvetlere maruz kalmış deforme olan cisimleri inceler.

KİRİŞLERDE VE İNCE CİDARLI ELEMANLARDA KAYMA GERİLMELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

28. Sürekli kiriş örnek çözümleri

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Mohr Dairesi Düzlem Gerilme

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

Giriş. Mukavemet veya maddelerin mekaniği (strength of materials, mechanics of materials) kuvvetlere maruz kalmış deforme olan cisimleri inceler.

T.C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER II DERSİ

TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ

Prof. Dr. Cengiz DÜNDAR

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ

Malzemenin Mekanik Özellikleri

34. Dörtgen plak örnek çözümleri

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Genel Laboratuvar Dersi Eğilme Deneyi Çalışma Notu

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

GERİLME Cismin kesilmiş alanı üzerinde O

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir.

2. Basınç ve Akışkanların Statiği

2.6. Düzlemsel Yüzeylere Etkiyen Hidrostatik Kuvvet. Yatay bir düzleme bir akışkanın uyguladığı kuvvet FR= P.A bağıntısıyla bulunur.

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

JFM 301 SİSMOLOJİ ELASTİSİTE TEORİSİ Elastisite teorisi yer içinde dalga yayılımını incelerken çok yararlı olmuştur.

Elemanlardaki İç Kuvvetler

Kirişlerde İç Kuvvetler

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N

33. Üçgen levha-düzlem gerilme örnek çözümleri

Karabük Üniversitesi, Mühendislik Fakültesi... STATİK (2. Hafta)

KUVVET, MOMENT ve DENGE

KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü (1. ve 2.Öğretim / B Şubesi) MMK208 Mukavemet II Dersi - 1. Çalışma Soruları 23 Şubat 2019

INSA 473 Çelik Tasarım Esasları Basınç Çubukları

29. Düzlem çerçeve örnek çözümleri

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

BURULMA DENEYİ 2. TANIMLAMALAR:

Transkript:

Saf Eğilme(Pure Bending)

Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller en kesiti en az bir eksene göre simetrik olan ve kesite etkiyen eğilme momentinin bu eksene dik bir doğrultuda olması durumu için geçerli olacak.

Saf Eğilme (Pure Bending) Bireksenegöresimetrikenkesitesahipvebueksenedikdoğrultuda etkiyen eğilme momentine (sağ-el kuralını uygula) maruz prizmatik, doğrusal eleman(örneğin kiriş), aşağıda gösterilmiştir: Simetri Ekseni Boyuna Doğrultuda Eksen Tarafsız/Nötr Yüzey (*) (*) Daha sonra bu yüzeye neden nötr yüzey dendiği konusu açıklanacak!

Saf Eğilme (Pure Bending) Doğrusal Elemanlar Gözle izlenebilir düzeyde deforme olabilen bir malzemeden yapılmış, (örneğin: kauçuk malzemesi), prizmatik bir elamanın uçlarına etkiyen eğilme momenti etkisi altındaki deformasyonunu inceleyelim, elemanın en kesiti dikdörtgen olsun: Yatay çizgiler eğildi Deformasyondan Önce Düşey çizgiler düz kaldı, ancak döndü Deformasyondan Sonra

Yukarıdaki gözlemlerden, gerilmelerin malzemeyi nasıl deforme ettiği ile ilgili şu kabulleri yapmak mümkün: (i) düzlemden önce düzlem olan kesitler eğildikten sonra da düzlem kalmaktadır, (ii) tarafsız düzlemde bulunan boyuna doğrultudaki x ekseninin boyu değişmemektedir, sadece eğilmektedir, (iii) kirişin deformasyondan önce x eksenine dik olan tüm kesitleri deformasyon sonrasında da x eksenine dik kalmaktadır, (iv) kesitlerin kendi düzlemleri içindeki deformasyonları ihmal edilecektir. Saf Eğilme (Pure Bending) Doğrusal Elemanlar Boyuna Ekse zekseni tarafsız eksen! Nötr yüzey

Momentin yönü aşağıdaki gibiyse (+ moment) eğilme etkisine maruz bir elemanın alt kısımları(lifleri) çekme, üst kısımları(lifleri) ise basınç etkisine maruz kalacaktır. Bu durumda bu iki bölüm arasında, şekil değiştirmeyen bir yüzey olmak zorundadır. Bu yüzeye tarafsız veya nötr yüzey denir. Saf Eğilme (Pure Bending) Doğrusal Elemanlar M M

Saf Eğilme (Pure Bending) Doğrusal Elemanlar Bu şekil değişiminin malzemeyi nasıl zorladığını incelemek için kirişin mesnetlenmiş noktasından x mesafesinde ve deforme olmamış kalınlığı Δx olan bir kiriş dilimi çıkarılacaktır. Bu dilimin deforme olmadan önce ve sonraki durumu aşağıda gösterilmiştir: Dikkat edilirse, nötr eksen üzerinde herhangi bir şekil değişimi olmamakta! x Boyuna eksen Boyuna eksen Deformasyondan Önce Deformasyondan Sonra

Saf Eğilme (Pure Bending) Doğrusal Elemanlar Nötr eksenin üstünde kalan kısımlarda boy kısalması, altında kalan kısımlarda ise boy uzaması olacaktır. Nötr eksenin üzerinde herhangi bir y mesafesindeki bir lifte oluşan normal birim şekil değiştirme aşağıdaki gibi bulunur: ε = lim s s s s 0 (1) Boyuna eksen Şimdi bu şekil değişiminidilimin çıkarıldığı noktadaki eğrilik yarıçapı (ρ)vey mesafesi cinsinden ifade edelim. Deformasyondan Sonra

Saf Eğilme (Pure Bending) Doğrusal Elemanlar Deformasyondan önce Δs = Δx. Deformasyondan sonra Δx, O merkezine sahip ρ eğrilik yarıçapına sahip olacaktır. Δθ en kesitler arasındaki açıyı tanımlamaktadır, bu durumda, x= s= ρ θ Benzer şekild, tarafsız eksenden y mesafesindeki kısalmış boy aşağıdaki gibi bulunur: ( ρ y) s = θ (2) (3) Boyuna eksen

Saf Eğilme (Pure Bending) Doğrusal Elemanlar (2) ve(3) nolu ifadeler(1) nolu ifadede yerine konur ve sadeleştirmeler yapılırsa, ( ρ y) θ ρ θ y ε = lim = s 0 ρ θ ρ Bu çok önemli bir sonuçtur ve şunu ifade eder: kirişin herhangi bir noktasındaki eğilmeden kaynaklı oluşan boyuna normal birim şekil değiştirme, o noktanın kesitteki yerini tanımlayan y mesafesine ve incelenen kesite ait eğrilik yarıçapına bağlı olarak değişir.

Saf Eğilme (Pure Bending) Doğrusal Elemanlar Bir başka deyişle, boyuna doğrultudaki normal birim şekil değiştirme, nötr eksenden ölçülen y mesafesi ile lineer olarak değişmektedir. +y mesafesinde kısalma şekil değişimleri (negatif işaret), -y mesafesinde ise uzama birim şekil değişimleri oluşacaktır(pozitif işaret) ε ε max = y/ ρ c/ ρ y ε = ε c max Kesitteki normalşekil değişimi dağılımı

Bu sonuçlar yaptığımız kabuller altında geçerlidir ve kiriş sadece moment etkisi altındadır. Bu durumda kirişte sadece eksenel doğrultuda normal birim şekil değişimi oluşmaktadır. Bu durumda şunu söylemek de uygun olacaktır: kirişte sadece boyuna eksen doğrultusunda normal gerilmeler oluşmaktadır (Hookeyasasıgereği:σ x =Eε x ). Saf Eğilme (Pure Bending) Doğrusal Elemanlar Poissonoranıgereğidiğerikiyöndedeşekildeğişimleroluşacaktır:ε y =-ϑε x ve ε z =-ϑε x budeğerlerkesitikendiiçindedeformeedeceklerdir. Bu tip bir deformasyon, nötr eksenin üstünde kalan kısımların en kesit alanını büyütecek, altında kalanlarının ise küçültecektir. Bu deformasyonlar, bu derste ihmal edilecektir.

Saf Eğilme (Pure Bending) Eğilme Formülü Şimdi boyuna doğrultuda oluşan gerilmeler ile kirişte oluşan moment arasında bir ilişki geliştirelim. Bu ilişki için, malzemenin lineer elastik davrandığı kabulü yapılacaktır, yani Hooke yasası geçerlidir. Bu durumda, kesitte oluşan lineer normal şekil değiştirme, lineer normal gerilmelerin bir sonucu olarak oluşacaktır: y ε = ε c max y σ = σ c max Üçgenlerin benzerliğinden Kesittengelişennormalbirim şekil değişimi (yandan görünüş) Kesitte gelişen normal gerilme değişimi (yandan görünüş)

Saf Eğilme (Pure Bending) Eğilme Altında Kırılma/Göçme Modu

Buradaki pozitif işaret kabulü önemlidir: pozitif moment (+z yönünde), +y doğrultusunda negatif gerilmeler (basınç), y doğrultusunda ise pozitif gerilmeleri(çekme) oluşturmaktadır. Aşağıdaki eğilme durumunu düşünelim: Saf Eğilme (Pure Bending) Eğilme Formülü Örneğin kesit üzerinde y mesafesindeki bir noktada, basınç gerilmesi oluşacaktır. + Tek bir noktada, tek bir gerilme durumu söz konusudur. Kesit üzerindeki eğilme gerilmesi değişimi

Saf Eğilme (Pure Bending) Eğilme Formülü Nötr eksenin yerini bulmak için kesite etkiyen kuvvetler düşünülmelidir. Bu durumda denge şartından kesitteki normal gerilmelerden dolayı oluşan bileşke kuvvet sıfır olmalıdır(sadece moment var). Aşağıdaki şekle referansla: Eğilme gerilmesi dağılımı ya = 0 y = df = A σda= A σ A maxda c σmax = yda c A Bu ifadenin sıfır olabilmesi için integrantın sıfır olması gerekmektedir, yani: A yda=0 Alanın nötr eksene göre birinci momentinin sıfır olması gerekmekte. Bu durum ancak nötr eksenin kesitin merkezinden geçmesi durumunda mümkündür. Bir başka deyişle, kesitin merkezi biliniyorsa nötr eksenin yeri de bilinmektedir.

Saf Eğilme (Pure Bending) Eğilme Formülü Kesitte oluşan gerilmelerin şiddeti ise denge şartını dikkate alarak bulunabilir: kesit momenti(iç kuvvet) = gerilme dağılımının oluşturduğu moment değerine eşit olmak zorundadır. ( M ) R = y( σda) = M ; M = dm = ydf z z A A ( ) ; 0 R A y = y A σ c σmax M= c A M M z σ da y = y = A max Dikkate edilirse, kesit y-eksenine göre simetrik olduğunda aşağıdaki koşul otomatik olarak sağlanmakta: 2 y da

Saf Eğilme (Pure Bending) Eğilme Formülü σ M= c max y 2 da A Yukarıdaki denklemde, integrand nötr eksene (kesit merkezinden geçen z-eksenine) göre kesitin atalet momentidir ve I harfi ile gösterilir. Budurumdaσ max aşağıdakigibiyazılabilir: σ max M = c I σ max /c=-σ/yifadesikullanılarak,kesitinherhangibiryerindekigerilme değeri formülü yazılabilir. Bu ifadeye EĞİLME FORMÜLÜ denir ve çok önemli bir ifadedir: M σ=- y I (-)işareti önemlidir, çünkü şağel kuralına göre belirlenen pozitif moment, nötr eksenin üstünde basınç altında ise çekme gerilmeleri oluşturmaktadır!

Saf Eğilme (Pure Bending) Eğilme Formülü σ max M = c I Eğilme formülü (i) kesitin nötr eksene göre dik olan bir eksene göre simetrik olması durumunda, ve (ii) momentin nötr eksen doğrultusunda etkimesi durumunda kullanılabilir.

Örnek -1 Şekilde gösterilen kiriş dikdörtgen en kesit alanına sahiptir ve kesit üzerinde gösterilen gerilme dağılımına sahiptir, kesitteki normal gerilmenin nedeni M eğilme momentini: (a) eğilme formülünü kullanarak ve(b) gerilme dağılımının bileşkesini kullanarak bulunuz. 1 lb= 4.448 N 1 in = 2.54 cm 1 ft= 12 in 1 ft= 0.3048 m

Örnek 1 (devam) (a) şekline referansla maksimum gerilmenin c = 6 in değerinde oluşacağını görebiliriz: Eğilme formülünü kullanırsak: σ max M = c I Bu durumda

Örnek 1 (devam) (b)aşağıda gerilme dağılımlarının altında kalan hacimler birbirine eşittir ve bir kuvvet çifti sistemi oluştururlar. Bu durumda, bileşke kuvvet F aşağıdaki gibi bulunabilir: = Kuvvet çifti arasındaki mesafesinin 8 in olduğu görülürse, kesitte oluşan moment değeri bulunabilir:

Örnek -2 Şekilde gösterilen basit mesnetli kirişin en kesit geometrisi aşağıda gösterilmiştir. Kirişte oluşan mutlak maksimum gerilme değerini bulunuz ve gerilme dağılımını kesit üzerinde çiziniz.

Örnek 2 (devam) Maksimum gerilme değeri maksimum momentin oluştuğu noktada oluşacaktır (gerilme formülünü hatırlayınız). Bu nedenle önce kirişin moment diyagramının çizilerek, maksimum moment değerinin bulunması gerekmektedir: 0 3 6 22.5 kn.m M [kn.m] Bu yükleme durumu için maksimummoment kirişin tam ortasında 22.5 knm şiddetindedir.

Örnek 2 (devam) Simetriden dolayı en kesitin alan merkezinin simetri eksenlerinin kesiştiği noktada olduğu ve dolayısıyla tarafsız eksenin de buradan geçtiği görülecektir. Bir başka deyişle ağırlık merkezini ayrıca hesaplamaya gerek yoktur. Tarafsız (nötr) eksen toplam yüksekliğin tam ortasında olacaktır! Bu eksene göre atalet momenti paralel eksenler teoremi kullanılarak hesaplanabilir:

Örnek 2 (devam) Eğilmeden dolayı oluşan gerilmeler gerilme formülü uygulanarak hesaplanır, c = 170 mm için en dış lifte mutlak maksimum gerilmeler oluşacaktır: Gerilme diyagramını çizmek için, kesitin B noktasında oluşan gerilme değerini de hesaplamak gerekmektedir (kesitteki gerilme dağılımı doğrusal olduğunda dolayı aslında iki noktada oluşan gerilmenin bilinmesi yeterlidir):

Kesitteki gerilme dağılımının üç boyutlu görünümü aşağıda gösterilmiştir: Örnek 2 (devam) Sınavda iki boyutlu görünümü çizmek yeterli olacaktır!

Örnek -3 Şekilde gösterilen ankastre mesnetli kirişin en kesit geometrisi aşağıdaki gibidir. a-a kesitinde eğilmeden dolayı oluşan maksimum gerilmeyi bulunuz.

Örnek 3 (devam) Bileşke iç kuvvetlerin kesit üzerinde etkidiği nokta kesitin alan merkezidir, ayrıca nötr (tarafsız) eksen kesitin merkezinden geçmektedir. Bu nedenle ilk önce kesitin merkezi bulunmalıdır, bu işlem için hatırlanırsa ağırlıklı ortalama formülü kullanılır: Nötr eksen z

Örnek 3 (devam) a-a kesitinde oluşan moment değerini bulalım. Bunun için, kiriş a-a kesitinden kesilir ve sol parçanın dengesi incelenir: Dikkat edilirse, iç kuvvetlerin bileşkesi kesit alan merkezinden geçtiği kabul edilmekte! Önemli Not: Bu moment değeri eğilmeden kaynaklı oluşan normal gerilmelerin hesabında kullanılacaktır. Normal kuvvet ise kesitte ekstra gerilmeler oluşturacaktır, ileride bu gerilmelerle momentten kaynaklı gerilmelerin süperpozisyonu gerçekleştirilecektir. Burada sadece momentten kaynaklı gerilmeler dikkate alınacaktır.

Örnek 3 (devam) Kesitin nötr eksene göre atalet momentine ihtiyaç var:

Örnek 3 (devam) Maksimum gerilme nötr eksenden en uzak mesafede oluşacaktır, burasıkesitinenaltnoktasıdırvec=0.2 0.05909=0.1409m dir. 59.09 mm 0.1409 mm Bu örnekte momentin etkime yönünden dolayı nötr eksenin üst tarafında çekme, alt tarafında ise basınç gerilmeleri oluşmaktadır.