Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu Dönüşümü Durum Uzayında Doğrusallaştırma

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu Dönüşümü Durum Uzayında Doğrusallaştırma"

Transkript

1 Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu Dönüşümü Durum Uzayında Doğrusallaştırma 1

2 Daha önce bir sistemi kontrol etmek için, önce o sistemin matematiksel modelinin ortaya konulması gerektiğini, tabiattaki tüm dinamik sistemlerin Diferansiyel Denklemler ile modellendiğini, sonra bu diferansiyel denklem modelinin, kontrolör tasarımı için çok daha kullanışlı bir forma dönüştürüldüğünü söylemiştik. Bu dönüşüm için iki yaklaşım söz konusuydu: 1. Frekans Domeni Yaklaşımı (Klasik Yaklaşım): Sistemi modelleyen diferansiyel denklem, Laplace Dönüşümü yoluyla frekans domeninde ifade edilir. Bu yaklaşım sadece doğrusal sistemlere uygulanabilir.. Zaman Domeni Yaklaşımı (Modern Yaklaşım): Sistemi modelleyen diferansiyel denklem, Durum-Uzay Dönüşümü yoluyla zaman domeninde ifade edilir. Bu yaklaşım hem doğrusal, hem de doğrusal olmayan sistemlere uygulanabilir. Bir önceki derste klasik yaklaşımdan bahsettik. Bugün ise modern yaklaşım tanıtılacaktır.

3 Klasik yaklaşım, sistemi modelleyen diferansiyel denklemi, Laplace dönüşümü yoluyla cebirsel bir denkleme dönüştürür. Bu yaklaşımın temel dezavantajı, sadece doğrusal zamanla değişmeyen sistemlere uygulanabilmesidir. Temel avantajı ise, kararlılık ve geçici zaman cevabı gibi temel performans spesifikasyonları ile ilgili olarak çok fazla matematiksel işleme gerek bırakmadan bilgi sağlamasıdır. Soğuk savaş döneminde uzay araştırmalarının yoğunlaşması, hem kontrol sistemlerine duyulan ihtiyacı artırmış, hem de doğrusal olmayan sistemlerin daha yaygın bir biçimde ortaya çıkmasına sebep olmuştur. Bu nedenle yeni bir modelleme ve kontrol yaklaşımına ihtiyaç duyulmuştur. Modern Yaklaşım, ya da diğer isimleri ile Zaman Domeni Yaklaşımı ve Durum-Uzay Yaklaşımı bu ihtiyacın sonucu olarak ortaya çıkmıştır. Modern yaklaşımın temel avantajı hem doğrusal hem de doğrusal olmayan sistemlere uygulanabilir olmasıdır (bugünkü derste sadece doğrusal sistemlere, son hafta ise doğrusal olmayan sistemlere uygulanmasını inceleyeceğiz,). Temel dezavantajı ise sistem performansının belirlenmesi için görece daha fazla matematiksel hesap gerektirmesidir. Ancak günümüz bilgisayarları ve ticari paket programlar bu hesaplamaları çok kısa sürede yapabilmektedir. 3

4 Durum-Uzay Yaklaşımı ağırlıklı olarak matris cebrine dayalıdır. Bu nedenle temel Lineer Cebir tanım ve aksiyomlarını gözden geçirmeniz önerilir. Şimdi Durum-Uzay Yaklaşımında sıkça kullanacağımız bazı ek kavramların tanımlarını verelim: Lineer Kombinasyon: i, {i=1,,,n} ile gösterilen n adet değişkenin lineer kombinasyonu, S K K... K n n n1 n1 1 1 ile gösterilen toplamdır. Buradaki her bir K i katsayısı birer sabittir. Lineer Bağımsızlık: Bir değişken kümesi, eğer o kümedeki elemanların her biri diğerlerinin lineer kombinasyonu şeklinde yazılamıyorsa lineer bağımsızdır. Örneğin 3 elemanlı, 1, ve 3 değişkenlerinden oluşan kümeyi ele alalım. Eğer bu kümede = şeklinde ise, bu küme lineer bağımsız değildir! Çünkü değişkenlerden biri, diğer ikisinin lineer kombinasyonu şeklinde yazılabiliyordur. Bir elektrik devresinde direncin uçlarındaki gerilim ile direnç üzerinden akan akımdan, yani v r ve i r değişkenlerinden oluşan bir küme düşünelim. v r =Ri r olduğu için, yani bu iki değişken birbirinin lineer kombinasyonu şeklinde yazılabildiği için, bu küme de lineer bağımsız değildir. Bir kümede, ancak tüm K i =0 ve i 0 olduğu zaman S 4 toplamı sıfır oluyorsa o küme bağımsızdır.

5 Sistem Değişkeni: Bir sistemde, herhangi bir girişe (etkiye) tepki üreten tüm değişkenler, o sistem için birer sistem değişkenidir. Örneğin bir elektrik devresine gerilim uygulanırsa, devreden bir akım geçmeye başlar ve bu nedenle akım bir sistem değişkenidir. Ya da dönen bir mekanik sisteme tork uygulanırsa açısal konum değişeceğinden, açısal konum (yerdeğiştirme) bir sistem değişkenidir. Durum Değişkeni: Sistem değişkenlerinin birbirinden lineer bağımsız olanların en küçük kümesine durum değişkenleri denir. Durum değişkenlerinin seçimi, Durum-Uzay Yöntemi için kritik öneme sahiptir. Durum Vektörü: Elemanları durum değişkenleri olan vektördür. Durum Uzayı: Eksenleri durum değişkenleri olan n-boyutlu uzaydır. 5

6 Durum Uzayı kavramını görselleştirmek için aşağıdaki şekli göz önünde bulunduralım. Bu örnek şekilde, bir elektrik devresine ait iki adet durum değişkeni vardır: Direncin uçlarındaki gerilim v R ve kondansatörün uçlarındaki gerilim v C. Bu iki değişken şekildeki gibi boyutlu bir uzay oluşturur. Durum vektörü (t), bu iki değişkeni içeren bir vektördür. Yani; vr () t v C şeklindedir. Yörünge (trajectory), zaman geçtikçe bu vektörün uzayda aldığı değerleri gösterir. Örneğin t=4 anında durum vektörü, yörünge üzerinde şekilde gösterilen konumdadır. 6

7 Durum Denklemleri: n tane durum değişkeni içeren bir sistemin, n adet birinci mertebeden diferansiyel denklem kümesidir. Yani, sistemi modelleyen diferansiyel denklem kullanılarak, sistemin her bir durum değişkeni için bir adet birinci mertebeden diferansiyel denklem yazılır. Çıkış Denklemi: Çıkış değişkeni olarak seçilen değişkene ilişkin denklemdir. Bu denklem, durum değişkenleri ve giriş değişkenlerinin bir kombinasyonudur. Bu kadar göz korkutucu tanımdan sonra, bir sistemin durum-uzay modelinin genel formunu verip, daha sonra örnekler üzerinden, diferansiyel denklem modeli bilinen bir sistemin durum-uzay modelinin nasıl oluşturulacağını açıklayalım. 7

8 Bir sistemin durum-uzay modelinin genel formu aşağıdaki gibidir: A Bu y C Du Bu dersin geri kalan kısmında artık sıkça göreceğiniz bu iki denklemden ilki Durum Denklemi, ikincisi ise Çıkış Denklemi olarak adlandırılır. (Bu denklemlerdeki değişkenler birer vektör/matris olduğu için, matematiksel notasyon gereği kalın yazılırlar). Bu değişkenlerden her biri aşağıdaki gibi isimlendirilir: : Durum vektörü (Elemanları durum değişkenleri olan vektör) : Durum değişkenlerinin zamana göre türevi y : Çıkış vektörü (Elemanları çıkış değişkenleri olan vektör) u : Giriş vektörü (Elemanları giriş değişkenleri olan vektör) A : Sistem matrisi B : Giriş matrisi C : Çıkış matrisi D: İleribesleme matrisi 8

9 A Bu y C Du Diferansiyel denklem modeli bilinen bir sistemin, bu diferansiyel denklem modelinin yukarıdaki durum-uzay formuna sokulmasına ilişkin aşamalar şu şekildedir: 1. Durum değişkenlerinin seçilmesi. Diferansiyel denklem modelinin, cebirsel işlemlere her biri durum değişkenlerinden birinin birinci mertebeden diferansiyel denklemi olacak şekilde yeniden yazılarak Durum Denkleminin oluşturulması 3. Çıkış Denkleminin oluşturulması Buradaki ikinci ve üçüncü aşama basit matematiksel işlemlerden oluşmaktadır. Ancak ilk aşama, yani durum değişkenlerinin seçimi üzerine birkaç önemli noktayı vurgulayalım. 9

10 Her şeyden önce durum değişkenleri lineer bağımsız olmalıdır. Genellikle durum değişkenlerinin sayısı, sistemi modelleyen diferansiyel denklemin mertebesine eşittir. Durum değişkenlerinin seçimine ilişkin pratik bir yaklaşım, sistemde enerji depolayan elemanlara ilişkin değişkenlerin, durum değişkeni olarak seçilmesidir. Örneğin bir elektrik devresinde enerji depolayan elamanlar indüktör ve kapasitördür. İndüktör, enerjiyi manyetik alanda depolar. Manyetik alan, akımın bir fonksiyonu olduğu için indüktör akımı durum değişkeni olarak seçilir. Kapasitör ise enerjiyi elektrik alanda depolar. Elektrik alan, gerilimin bir fonksiyonudur ve bu nedenle kapasitör uçlarındaki gerilim durum değişkeni olarak seçilir. Mekanik sistemlerde ise (genellikle) kütlenin pozisyonu ve hızı durum değişkeni olarak seçilir. Tüm bu bilgilere ek olarak, durum değişkenlerinin seçimi genellikle mühendislik tecrübesi yoluyla edinilen bir yetidir. Tüm bu sıkıcı tanım ve açıklamaları örneklerle somutlaştıralım: 10

11 Ör: İlk önce basit bir diferansiyel denklem modelini Durum-Uzay formuna dönüştürmekle başlayalım. Daha sonra diğer örneklerde fiziksel sistemlere ve bu fiziksel sistemlerde durum değişkenlerinin nasıl seçileceğine geçelim. Aşağıdaki ikinci mertebeden diferansiyel denklemi göz önünde bulunduralım: z( t) z( t) 7 z( t) 3 u( t) İkinci mertebeden bu doğrusal diferansiyel denklemde bağımsız değişken her ne kadar doğrudan görünmese de, (dot) operatörü genellikle zamana göre türevi sembolize eder. Şimdi durum-uzay denklemlerinin genel formunu hatırlayalım: A Bu y C Du Durum Denklemi Çıkış Denklemi Yapmamız gerekenler sırasıyla; (1) durum değişkenlerini () seçmek, () durum değişkenlerinin türevini, yine durum değişkenleri () ve giriş değişkeni (u) cinsinden birinci mertebeden denklemler şeklinde yazarak durum denklemini oluşturmak, (3) çıkış değişkenini (y) seçmek ve çıkış değişkenini durum değişkenleri ve giriş değişkeni cinsinden yazmak. 11

12 z( t) z( t) 7 z( t) 3 u( t) Bu diferansiyel denklem ikinci mertebeden olduğu için iki adet durum değişkeni olacaktır. Bu durum değişkenlerini 1 z() t z() t olarak seçelim. Bu durum değişkenlerinin türevini aldığımızda; z() t 1 z( t) 7 3u 1 Böylece durum değişkenlerinin türevini, yine durum değişkenleri ve giriş değişkeni cinsinden ifade etmiş olduk. Yani artık durum denklemini yazabiliriz: A Bu u 7 3 A B 1

13 Çıkış değişkenini de y=z olarak seçelim. Bu durumda çıkış denklemi vektör-matris formunda aşağıdaki gibi olacaktır: y Bu örnekte çıkışın (y), giriş (u) ile doğrudan bir bağıntısı olmadığı için D matrisi sıfıra eşittir. Sonuç olarak bu diferansiyel denklemin durum-uzay gösterimi aşağıdaki gibi olacaktır: A Bu y C Du C u 7 3 y

14 Sistem n boyutluysa, yani sistemi modelleyen diferansiyel denklem n inci mertebeden bir denklemse, A matrisi n n boyutlu bir kare matristir. Bu örnekte iki durum değişkeni olduğu için, A matrisi bir matristir. Sistemdeki diğer matris ve vektörlerin boyutu aşağıdaki gibidir: (Bu örnekte sistem Tek Giriş Tek Çıkış bir sistemdir. Birçok sistem Çok Giriş Çok Çıkış (Multi Input Multi Output) olabilir. Yani birden fazla giriş ve/veya çıkış değişkenine sahip olabilir. Bu nedenle aşağıda matris boyutlarının en genel hali verilmiştir. p giriş değişkeni sayısını, r ise çıkış değişkeni sayısını göstermektedir.) : n 1 : n 1 y : r 1 u : p 1 A : n n B : n p C : r n D: r p 14

15 A Bu y C Du Sistemi modelleyen diferansiyel denklemi neden yukarıdaki formda yazmaya zorladığımız sorusu haklı olarak akla gelebilir. Hatırlanacağı üzere klasik yaklaşımda sistemi modelleyen diferansiyel denklemi Laplace Dönüşümü yoluyla frekans domeninde ifade edip, daha sonra transfer fonksiyonunu yazıyorduk. Bunun nedeni, transfer fonksiyonunun sistemin davranışı hakkında bize kullanışlı bilgiler sağlamasıydı. Örneğin sistem kararlılığı, geçici hal cevabı gibi önemli performans kriterlerini transfer fonksiyonu yoluyla belirleyebiliriz. Aynı neden, modern yaklaşım için de geçerlidir. Yani sistemi modelleyen diferansiyel denklemi Durum- Uzay Dönüşümü yoluyla yukarıdaki formda yazmamızın nedeni, buradaki A, B, C ve D matrislerinin sistem performansı hakkında kullanışlı bilgi sağlamasıdır. Örneğin sistemin kararlı olup olmadığı A matrisinin özdeğerleri bulunarak belirlenebilir. Aynı diferansiyel denklemi hem transfer fonksiyonu formunda hem de durum-uzay formunda ifade edersek, A matrisinin özdeğerleri ile transfer 15 fonksiyonunun kutuplarının tamamen aynı değerde olduğunu görürüz.

16 Ör: Şimdi de daha önce transfer fonksiyonunu türettiğimiz aşağıdaki mekanik sistemin durum-uzay denklemlerini türetelim. Cisme etki eden kuvvetler şekilde gösterildiği gibidir. Newton yasasına göre; F ma d t f ( t) fv K( t) m dt ( ) d ( t) Sistemin giriş değişkeninin f(t) olduğunu biliyoruz. Çıkış değişkeni olarak, yani değişimini gözlemek istediğimiz değişken olarak (t) yi seçelim. Yukarıdaki diferansiyel denklem ikinci mertebeden olduğu için iki adet durum değişkeni olmalıdır. Bu değişkenlerin bu tür mekanik sistemlerde genellikle kütlenin konumu (t) ve hızı v(t) olarak seçildiğini daha önce vurgulamıştık. dt 16

17 Durum değişkenlerini 1 d ( t) d( t) m f ( ) ( ) v K t f t dt dt () t d() t dt olarak seçelim. Bu durum değişkenlerinin zaman göre türevini aldığımızda 1 fv k 1 1 f () t m m m elde ederiz. Çıkış denklemi ise şu şekildedir: y 1 17

18 1 fv k 1 1 f () t m m m Durum Denklemi y 1 Çıkış Denklemi Bu denklemler, vektör-matris formunda aşağıdaki gibi yazılır: A Bu y C Du k f v 1 m m m y f() t 18

19 Ör: Şimdi de elektriksel bir sistemin durum-uzay denklemlerini türetelim. Aşağıdaki devrede çıkış değişkeni olarak direncin üzerinden akan akımı, i R (t), seçelim. Giriş değişkeninin ne olduğu ise aşikardır: v(t). Daha önce elektrik devrelerinde durum değişkenlerinin seçimi ile alakalı olarak şunları söylemiştik: Bir elektrik devresinde enerji depolayan elamanlar indüktör ve kapasitördür. İndüktör, enerjiyi manyetik alanda depolar. Manyetik alan, akımın bir fonksiyonu olduğu için indüktör akımı durum değişkeni olarak seçilir. Kapasitör ise enerjiyi elektrik alanda depolar. Elektrik alan, gerilimin bir fonksiyonudur ve bu 19 nedenle kapasitör uçlarındaki gerilim durum değişkeni olarak seçilir.

20 Bu nedenle durum değişkenlerini i L ve v C olarak seçelim. Bu aşamadan sonra sistemi modelleyen denklemler türetilip, bu denklemler yardımıyla durum değişkenlerinin türevinin, durum değişkenlerinin kendisi ve giriş değişkeni cinsinden yazılması gerekir. Yani Kirchhoff kanunları yardımıyla yazacağımız denklemler üzerinde manipülasyon yapıp, bu denklemleri durum değişkenlerinin türevinin, durum değişkenlerinin kendisi ve giriş değişkeni cinsinden yazılmış forma sokmamız gerekir. Durum değişkenlerinin türevi bize aşağıdaki büyüklükleri verir: dv di C C ic L vl dt dt 0

21 1 nolu düğümden: Bu denklem, birinci durum değişkeninin türevinin, durum değişkenlerinin kendisi cinsinden yazılmış formunu verir. Çünkü i C akımı birinci durum değişkeni olan v C nin türevine eşittir. Yani C dv dt C i C i i i C R L 1 v R olduğu için, birinci durum değişkenine ilişkin denklem şu şekilde olur: dvc 1 1 vc i dt RC C L C i L 1

22 İkinci durum değişkeni için, Kirchhoff un Gerilimler Kanununa göre, dış çevreden şu denklemi yazabiliriz: v v v() t L C Bu denklem yardımıyla da ikinci durum değişkeninin türevini, durum değişkenlerinin kendisi ve giriş değişkeni cinsinden yazabiliriz. Yani L di L dt olduğu için, ikinci durum değişkenine ilişkin denklem şu şekilde olur: v dil 1 1 vc v () t dt L L L

23 Son olarak çıkış denklemi de i R 1 v R olarak yazılırsa, sistemin durum-uzay denklemleri aşağıdaki gibi olur: C vc RC C vc 1 vt () i L 1 i L 0 L L i R 1 vc 0 R i L 3

24 Alıştırma: Aşağıdaki sistemin durum-uzay denklemlerini türetiniz. Çıkış değişkeni olarak v o (t) değişkenini seçiniz. y 1/ C1 1/ C1 1/ C1 0 1/ L vi ( t) 1/ C 0 1/ C

25 Alıştırma: Aşağıdaki sistemin durum-uzay denklemlerini türetiniz. Çıkış değişkeni olarak (t) değişkenini seçiniz. İpucu: Bu sistemde hareket eden iki adet kütle olduğu için, her birine ilişkin birer tane ikinci mertebeden diferansiyel denklem olacaktır. Dolayısıyla her bir kütleye ilişkin ikişer tane de durum değişkeni, yani toplamda dört durum değişkeni olacaktır. Bu durum değişkenleri 1, v 1, ve v dir. 5

26 v 1 K / M1 D / M1 K / M1 0 v v K / M 0 K / M 0 v 1/ M f() t Çıkış denklemi? 6

27 Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu Dönüşümü Durum Uzayında Doğrusallaştırma 7

28 Daha önce bir sistemin transfer fonksiyonu modeli ile durum-uzay modelinin birbirinin duali olduğunu, sistemin dinamik davranışı hakkında aynı bilgileri verdiklerini, örneğin transfer fonksiyonunun kutupları ile sistem matrisi A nın özdeğerlerinin aynı olduğunu söylemiştik. Bu durumda bu iki modelin birbirine dönüştürülmesi mümkündür. Her iki modelleme yaklaşımının da birbirlerine göre avantajlı yönleri vardır. Dolayısıyla bu dönüşümlerde amaç, dönüşüm yapılan modelleme yaklaşımının avantajlarından faydalanmaktır. Bir sistemin transfer fonksiyonu modelinin, durum-uzay modeline nasıl dönüştürüleceğinden başlayalım. Bunun için önce o transfer fonksiyonuna ilişkin diferansiyel denklem yazılır, daha sonra bu dif. denklem durum-uzay formuna dönüştürülür. Önce n inci mertebeden bir diferansiyel denklemin durum-uzay formunda yazılmasını aşama aşama anlatıp, daha sonra bunun transfer fonksiyonlarına nasıl uygulanacağını gösterelim. n inci mertebeden sabit katsayılı lineer bir diferansiyel denklemin genel formu n n1 n d y d y d y n 1 1 n... dy n n n a a a a y b u dt dt dt dt şeklindedir. 8

29 n n1 n d y d y d y n 1 1 n... dy n n n a a a a y b u dt dt dt dt şeklindedir. Bu diferansiyel denklemi durum-uzay formunda ifade etmek için, durum değişkenlerini birbirinin ardışık türevi olacak şekilde aşağıdaki gibi seçelim: dy 1 y 1 dt dy d y dt 3 dt d y 3 3 Denklemlerin her iki d y 3 4 dt tarafının türevi alınırsa: 3 dt n d dt n1 y n1 n d y n a01 a1... a n n1n b9 0u dt

30 Bu durumda bu diferansiyel denklemin durum-uzay formu aşağıdaki gibi olacaktır u n1 n1 n a0 a1 a a3... a n1 n b0 Yukarıdaki forma faz-değişkeni formu denir. Bu form, sistem matrisindeki ve 1 ve 0 ların deseninden kolayca tanınabilir. 30

31 Çıkış değişkeni, diferansiyel denklemin çözümü olan y(t) dir. Bu değişken 1 olarak seçildiği için, çıkış denklemi ise şu şekilde olacaktır: 1 3. y n1 n Özet olarak, transfer fonksiyonunu durum-uzay formuna dönüştürmek için, önce o transfer fonksiyonunun içler-dışlar çarpımı yoluyla ve tüm başlangıç koşulları sıfır kabul edilerek Ters Laplace Dönüşümü ile diferansiyel denklemi yazılır, daha sonra bu diferansiyel denklem yukarıda anlatıldığı gibi faz-değişkeni formu nda durumuzay denklemlerine dönüştürülür. Örneklerle somutlaştıralım: 31

32 Ör: Aşağıdaki transfer fonksiyonunun durum-uzay gösterimini türetiniz. Cs ( ) 4 R s s s s 3 ( ) C: Bu dönüşüm, aşağıda adım adım gösterilmiştir: Adım 1: Transfer fonksiyonunu diferansiyel denkleme dönüştür: İçler-dışlar çarpımı yapılırsa: 3 s s s C s R s ( ) 4 ( ) Ters Laplace Dönüşümü alınırsa: (Tüm başlangıç koşulları = 0) c 9c 6c 4c 4r Adım : Durum değişkenlerini seç: Durum değişkenleri, çıkış değişkeninin ardışık türevleri olarak seçilirse: 1 3 c c c Denklemlerin her iki tarafının türevi alınırsa: r

33 Çıkış denklemi de y=c= 1 olduğu için, verilen transfer fonksiyonunun durum-uzay formu aşağıdaki gibi olur: r y Sağdaki şekil ise, bu sistemin blok diyagramıdır. 33

34 Bu örnekte, verilen transfer fonksiyonunun pay kısmında sadece bir sabit sayı (4) vardı. Peki pay kısmında bir polinom olması durumunda dönüşümün nasıl bir form alır? Genel formu Şekil (a) da görülen bu tür bir transfer fonksiyonunun durumuzay formunun hesaplanması için en pratik yöntem, Şekil (b) de görüldüğü gibi transfer fonksiyonunu iki ayrı blok diyagramın kaskat bağlı hali gibi düşünmektir. Böylece ilk önce R(s) ile X 1 (s) arasındaki transfer fonksiyonunun durum-uzay formu, az önceki örnekte anlatıldığı gibi elde edilir. 34

35 Bu durumda çıkışın ifadesi: C( s) b s b s b X ( s) d 1 d Ters Laplace Dönüşümü alınırsa: y( t) c( t) b b b dt dt Durum değişkenleri, çıkış değişkeninin ardışık türevleri olarak seçildiği için, bu denklem aynı zamana şuna eşittir: y( t) c( t) b3 b1 b01. Yani pay kısmındaki polinom, sadece çıkış denklemini etkiler. Buna ilişkin bir örnek yapalım.

36 Ör: Aşağıdaki transfer fonksiyonunun durum-uzay gösterimini türetiniz. C: Bu dönüşüm, aşağıda adım adım gösterilmiştir: Adım 1: Transfer fonksiyonunu aşağıdaki gibi iki blok halinde ayır: Adım : R(s) ile X 1 (s) arasındaki transfer fonksiyonunu bul: Payda polinomunun katsayıları bir önceki örnekle aynıdır (sadece pay kısmında 4 yok) r

37 Adım 3: Çıkış denklemini elde et: C s s s X s ( ) 7 1( ) y( t) c( t) y( t) c( t) y

38 Alıştırma: Aşağıda verilen transfer fonksiyonunun durum-uzay formunu elde ediniz. Gs () s s 1 7s9 y rt ()

39 Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu Dönüşümü Durum Uzayında Doğrusallaştırma 39

40 Şimdi de dinamik modeli durum-uzay formunda verilmiş bir sistemin transfer fonksiyonunun nasıl bulunacağını inceleyelim. Durum denkleminin ve çıkış denklemlerinin genel formu: A Bu Denklemlerin her iki tarafının Laplace Dönüşümü alınırsa: Durum denklemi X(s) için çözülürse: sx ( s) AX ( s) BU( s) Y ( s) CX ( s) DU( s) si A X ( s) BU( s) y C Du 1 X ( s) si A BU( s) X(s) için elde edilen bu ifade çıkış denkleminde yerine yazılırsa: 1 Y ( s) C si A BU( s) DU ( s) 1 Y ( s) C si A B DU( s) (I: Birim matris) Dikkat edilirse bu denklem, sistem çıkışı Y(s) ile sistem girişi U(s) i doğrudan birbiriyle 40 ilişkilendirir. Eğer giriş ve çıkış skaler ise, bu denklem kullanılarak transfer fonksiyonu yazılır.

41 1 Y ( s) s ( s) C I A B D U T() s Ys () C si A 1 B D Us () Bu denklem kullanılarak transfer fonksiyonunun nasıl hesaplanacağına ilişkin bir örnek yapalım. 41

42 Ör: Aşağıda durum-uzay modeli verilen sistemin transfer fonksiyonunu türetiniz. y u Ys () T() s C si A 1 B D Us () C: Dönüşüm, denklemi kullanılarak yapılır. Bu denklemin en çok hesap yükü gerektiren kısmı (si-a) -1 matrisidir. Bu matrisin hesaplanması için öncelikle (si-a) matrisi hesaplanıp, daha sonra bu matrisin tersi bulunur. s s 1 0 si A 0 s s s s 3 4

43 si s 3s s s( s 3) s 1 adj si A s (s 1) s A 3 det si A s 3s s 1 T() s Ys () C si A 1 B D Us () s 3s s s( s 3) s 10 s (s 1) s Ts ( ) s 3s s 1 0 Ts () 10 s 3s 3 s s s 3 1 C (si-a) -1 B D 43

44 Alıştırma: Aşağıda durum-uzay modeli verilen sistemin transfer fonksiyonunu türetiniz. y u Gs () s 3s 5 4s6 44

45 Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu Dönüşümü Durum Uzayında Doğrusallaştırma 45

46 İlk hafta, doğrusal olmayan bir diferansiyel denklemin nasıl doğrusallaştırılacağını görmüştük. Bu haftaki dersin son kısmında ise, doğrusal olmayan bir sistemin durum-uzay denklemlerinin nasıl doğrusallaştırılacağından bahsedeceğiz. Esasen kullanacağımız yöntem tamamen geçen hafta kullandığımız yöntemle aynıdır: Taylor Serileri Açılımı! Bu nedenle de tamamen aynı formülasyonu kullanacağız. Bunu oldukça yaygın olarak kullanılan bir örnekle açıklayalım: Sarkaç 46

47 Ör: Şekildeki sarkaçta T sarkaca uygulanan tork, Mg sarkacın ağırlığı, J eylemsizliği, L uzunluğu ve θ sarkacın konumudur. Önce bu sistemin hareket denklemini yazalım, daha sonra durum-uzay denklemlerini türetip, bu denklemleri denge noktasının küçük komşulukları için doğrusallaştıralım: Hareket Denklemi: Bu doğrusal olmayan modeli, denge noktası 1 =0 ve =0 noktasının etrafında doğrusallaştıralım. (Model neden doğrusal değil? Belirtilen noktanın bir denge noktası olduğunu nasıl bulduk? Başka denge noktası/noktaları var mı?) d MgL J sin T dt Durum değişkenleri: 1 d dt Durum-uzay modeli: 1 MgL sin J 1 T J

48 1 1 Bu aşamadan sonrası daha önce gördüğümüz doğrusallaştırma yaklaşımının uygulanması işlemidir. Elde ettiğimiz durum denklemlerinde, durum değişkenleri 1 ve yerine, onların denge noktası [0,0] etrafındaki küçük değişimlerini temsil eden 1 1 değerlerini yazalım. Bu durumda denklemler MgL sin J MgL sin J T 1 halini alır. İlk denklem zaten doğrusal bir denklemdir. Bu modeli doğrusal olmayan bir model yapan, ikinci denklemdeki sin terimidir. Dolayısıyla doğrusallaştırılacak olan ifade, f()=sin(δ 1 +0)= sinδ 1 ifadesidir. J T J

49 Bunun için daha önce elde ettiğimiz değerleri yerine koyalım: df f ( ) f 0 d 0 denkleminde df f ( ) f 0 d 0 sin sin 0 d(sin ) d 0 1 Buradan, doğrusal olmayan terimin, denge noktasının küçük komşulukları için doğrusallaştırılmış hali şu şekilde bulunur: sin 1 1 Böylece, doğrusallaştırılmış durum-uzay denklemleri şu şekilde elde edilir: Çıkış denklemi? 1 MgL 1 J T J

50 Alıştırma: Aşağıdaki şekilde görülen mekanik sistemde yay, doğrusal olmayan bir karakteristiğe sahiptir ve yayın kuvveti f s ile yerdeğiştirmesi s arasındaki ilişki f s denklemi ile verilmektedir. sistemin durum-uzay modelini türetiniz ve denge noktası etrafında doğrusallaştırınız. Çıkış değişkeni olarak kütlenin yerdeğiştirmesi, (t), değişkenini seçiniz. Sisteme uygulanan kuvvet f(t)=10+δf(t) değerine sahiptir ve burada δf(t), 10 N kuvvet değerinin küçük komşuluklarını temsil etmektedir. (İpucu: Bu değer, denge noktasını bulmanıza yarar.) s y f() t

Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu DönüşümÜ

Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu DönüşümÜ DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ MM306 SİSTEM DİNAMİĞİ Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu DönüşümÜ 1 EEM304 MM306

Detaylı

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI Blok Diyagramlar Geribeslemeli Sistemlerin Analizi ve Tasarımı İşaret Akış Diyagramları Mason Kuralı Durum Denklemlerinin İşaret Akış Diyagramları Durum Uzayında Alternatif Gösterimler 1 Birçok kontrol

Detaylı

Elektrik Mühendisliği Elektrik Makinaları Güç Sistemleri (Elektrik Tesisleri) Kontrol Sistemleri

Elektrik Mühendisliği Elektrik Makinaları Güç Sistemleri (Elektrik Tesisleri) Kontrol Sistemleri Elektrik Mühendisliği Elektrik Makinaları Güç Sistemleri (Elektrik Tesisleri) Kontrol Sistemleri Elektronik Mühendisliği Devreler ve Sistemler Haberleşme Sistemleri Elektromanyetik Alanlar ve Mikrodalga

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ MÜHENDİSLİĞİ BÖLÜMÜ

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ MÜHENDİSLİĞİ BÖLÜMÜ DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ MÜHENDİSLİĞİ MM306 EEM304 SİSTEM KONTROL DİNAMİĞİ SİSTEMLERİNE GİRİŞ Kontrol Kavramı Laplace Dönüşümü Transfer Fonksiyonu

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI Kontrol Kavramı Laplace Dönüşümü Transfer Fonksiyonu Elektriksel Sistemlerin Transfer Fonksiyonu Mekanik Sistemlerin Transfer Fonksiyonu Elektromekanik Sistemlerin Transfer Fonksiyonu Doğrusalsızlıklar

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

Fiziksel Sistemlerin Matematik Modeli. Prof. Neil A.Duffie University of Wisconsin-Madison ÇEVİRİ Doç. Dr. Hüseyin BULGURCU 2012

Fiziksel Sistemlerin Matematik Modeli. Prof. Neil A.Duffie University of Wisconsin-Madison ÇEVİRİ Doç. Dr. Hüseyin BULGURCU 2012 Fiziksel Sistemlerin Matematik Modeli Prof. Neil A.Duffie University of Wisconsin-Madison ÇEVİRİ Doç. Dr. Hüseyin BULGURCU 2012 Matematik Modele Olan İhtiyaç Karmaşık denetim sistemlerini anlamak için

Detaylı

Dr. Uğur HASIRCI. Blok Diyagramlar Geribeslemeli Sistemlerin Analizi ve Tasarımı

Dr. Uğur HASIRCI. Blok Diyagramlar Geribeslemeli Sistemlerin Analizi ve Tasarımı EET305 MM306 OTOMATİK SİSTEM DİNAMİĞİ KONTROL I Blok Diyagramlar Geribeslemeli Sistemlerin Analizi ve Tasarımı 1 Birçok kontrol sistemi, aşağıdaki örnekte görüldüğü gibi çeşitli altsistem ler içerir. Dolayısıyla

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

x 0 = A(t)x + B(t) (2.1.2)

x 0 = A(t)x + B(t) (2.1.2) ÖLÜM 2 LİNEER SİSTEMLER Genel durumda diferansiyel denklemlerin çözümlerini açık olarak elde etmek veya çözümlerin bazı önemli özelliklerini araştırmak için genel yöntemler yoktur, çoğu zaman denkleme

Detaylı

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması 10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Laplace Devre Çözümleri Aşağıdaki devrenin

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI KARARLILIK Kontrol sistemlerinin tasarımında üç temel kriter göz önünde bulundurulur: Geçici Durum Cevabı Kararlılık Kalıcı Durum Hatası Bu üç temel spesifikasyon arasında en önemlisi kararlılıktır. Eğer

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2015 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2018 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

Bu ders boyunca, ilk önce sayısal kontrol sistemlerinin temellerini tanıtıp, daha sonra birkaç temel pratik uygulamasından bahsedeceğiz.

Bu ders boyunca, ilk önce sayısal kontrol sistemlerinin temellerini tanıtıp, daha sonra birkaç temel pratik uygulamasından bahsedeceğiz. Özellikle 2000 li yıllarda dijital teknolojideki gelişmeler, dijital (sayısal) kontrol sistemlerini analog kontrol sistemleriyle rekabet açısından 90 lı yıllara göre daha üst seviyelere taşımıştır. Düşük

Detaylı

MM 409 MatLAB-Simulink e GİRİŞ

MM 409 MatLAB-Simulink e GİRİŞ MM 409 MatLAB-Simulink e GİRİŞ 2016-2017 Güz Dönemi 28 Ekim 2016 Arş.Gör. B. Mahmut KOCAGİL Ajanda-İçerik Simulink Nedir? Nerelerde Kullanılır? Avantaj / Dezavantajları Nelerdir? Simulink Arayüzü Örnek

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

BÖLÜM 24 PAULI SPİN MATRİSLERİ

BÖLÜM 24 PAULI SPİN MATRİSLERİ BÖLÜM 24 PAULI SPİN MATRİSLERİ Elektron spini için dalga fonksiyonlarını tanımlamak biraz kullanışsız görünüyor. Çünkü elektron, 3B uzayda dönmek yerine sadece kendi berlirlediği bir rotada dönüyor. Elektron

Detaylı

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders # Otomatik Kontrol Laplas Dönüşümü Pierre-Simon Laplace, 749-87 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ Zamanla değişen bir f(t)

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Lineer Denklem Sistemleri

Lineer Denklem Sistemleri Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu KUADRATİK FORMLAR KUADRATİK FORM Tanım: Kuadratik Form Bir q(x,x,,x n ) fonksiyonu q x : n şeklinde tanımlı ve x i x j bileşenlerinin doğrusal kombinasyonu olan bir fonksiyon ise bir kuadratik formdur.

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

Birinci Mertebeden Adi Diferansiyel Denklemler

Birinci Mertebeden Adi Diferansiyel Denklemler Birinci Mertebeden Adi Diferansiyel Denklemler Bir veya daha çok bağımlı değişken, bir veya daha çok bağımsız değişken ve bağımlı değişkenin bağımsız değişkene göre (diferansiyel) türevlerini içeren bağıntıya

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Lineer Cebir Doç. Dr. Niyazi ŞAHİN TOBB İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Bölüm 1 - Lineer Eşitlikler 1.1. Lineer Eşitliklerin Tanımı x 1, x 2,..., x

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

6. Ders. Mahir Bilen Can. Mayıs 16, 2016 6. Ders Mahir Bilen Can Mayıs 16, 2016 Bu derste lineer cebirdeki bazı fikirleri gözden geçirip Lie teorisine uygulamalarını inceleyeceğiz. Bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği

Detaylı

Math 103 Lineer Cebir Dersi Ara Sınavı

Math 103 Lineer Cebir Dersi Ara Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Ara Sınavı 6 Kasım 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 3: Bitiş Saati: 4: Toplam Süre: 6 Dakika Lütfen adınızı ve soyadınızı

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır.

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır. ÖRNEKLER-VEKTÖR UZAYLARI. vektör uzayında yer alan w=(9 7) vektörünün, u=( -), v=(6 ) vektörlerinin doğrusal bir kombinasyonu olduğunu ve z=( - 8) vektörünün ise bu vektörlerin doğrusal bir kombinasyonu

Detaylı

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI BLOK DİYAGRAM İNDİRGEME KURALLARI Örnek 9: Aşağıdaki açık çevrim blok diyagramının transfer fonksiyonunu bulunuz? 2 BLOK DİYAGRAM İNDİRGEME

Detaylı

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz.

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz. ANALİZ 1.) a) sgn. sgn( 1) = 1 denkleminin çözüm kümesini b) f ( ) 3 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var

Detaylı

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Bir Matrisin Rankı A m n matrisinin determinantı sıfırdan farklı olan alt kare matrislerinin boyutlarının en büyüğüne A matrisinin rankı denir. rank(a)

Detaylı

Yapı Sistemlerinin Hesabı İçin. Matris Metotları. Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL Bahar Yarıyılı

Yapı Sistemlerinin Hesabı İçin. Matris Metotları. Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL Bahar Yarıyılı Yapı Sistemlerinin Hesabı İçin Matris Metotları 05-06 Bahar Yarıyılı Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL BÖLÜM VIII HAREKET DENKLEMİ ZORLANMIŞ TİTREŞİMLER SERBEST TİTREŞİMLER Bu bölümün hazırlanmasında

Detaylı

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y SABİT KATSAYILI DENKLEMLERE DÖNÜŞTÜREBİLEN DENKLEMLER Bu bölümde sabit katsayılı diferansiyel denklemlere dönüşebilen değişken katsayılı diferansiyel denklemlerden Cauchy Euler ve Legendre difarensiyel

Detaylı

ÖZDEĞERLER- ÖZVEKTÖRLER

ÖZDEĞERLER- ÖZVEKTÖRLER ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler

Detaylı

Nazım K. Ekinci Matematiksel İktisat Notları ax 1 + bx 2 = α cx 1 + dx 2 =

Nazım K. Ekinci Matematiksel İktisat Notları ax 1 + bx 2 = α cx 1 + dx 2 = Naım K. Ekinci Matematiksel İktisat Notları 0.6. DOĞRUSL DENKLEM SİSTEMLERİ ax + bx = α cx + dx = gibi bir doğrusal denklem sistemini, x ve y bilinmeyenler olmak üere, çömeyi hepimi biliyoru. ma probleme

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

Fizik 101: Ders 23 Gündem

Fizik 101: Ders 23 Gündem Fizik 101: Ders 3 Gündem Basit Harmonik Hereket Yatay yay ve kütle Sinus ve cosinus lerin anlamı Düşey yay ve kütle Enerji yaklaşımı Basit sarkaç Çubuk sarkaç Basit Harmonik Hareket (BHH) Ucunda bir kütle

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math Lineer Cebir Dersi Final Sınavı 8 Ocak 8 Hazırlayan: Yamaç Pehlivan Başlama saati: 4: Bitiş Saati: 5:5 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı

FİZ217 TİTREŞİMLER VE DALGALAR DERSİNİN 2. ARA SINAV SORU CEVAPLARI

FİZ217 TİTREŞİMLER VE DALGALAR DERSİNİN 2. ARA SINAV SORU CEVAPLARI 1) Gerilmiş bir ipte enine titreşimler denklemi ile tanımlıdır. Değişkenlerine ayırma yöntemiyle çözüm yapıldığında için [ ] [ ] ifadesi verilmiştir. 1.a) İpin enine titreşimlerinin n.ci modunu tanımlayan

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR KONTROL SİSTEMLERİ GİRİŞ Son yıllarda kontrol sistemleri, insanlığın ve uygarlığın gelişme ve ilerlemesinde çok önemli rol oynayan bir bilim dalı

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU Amaçlar: a) Korunumlu kuvvetlerin potansiyel enerjisinin hesabı. b) Enerjinin korunumu prensibinin uygulanması. ENERJİNİN KORUNUMU Enerjinin korunumu

Detaylı

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/ Vektör Uzayları Lineer Cebir David Pierce 5 Mayıs 2017 Matematik Bölümü, MSGSÜ dpierce@msgsu.edu.tr mat.msgsu.edu.tr/~dpierce/ Bu notlarda, alıştırma olarak her teorem, sonuç, ve örnek kanıtlanabilir;

Detaylı

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi...

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi... ÇNDEKLER II. CLT KONULAR 1. Öz Deer Öz Vektör.. 1 Kare Matrisin Öz Deeri ve Öz Vektörleri... 21 Matrisin Karakteristik Denklemi : Cayley Hamilton Teoremi.. 26 Öz Deer - Öz Vektör ve Lineer Transformasyon

Detaylı

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması.

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Projenin Amacı: Aritmetik bir dizinin ilk n-teriminin belirli tam sayı kuvvetleri toplamının

Detaylı

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Ders Adı : Bilgisayar Mühendisliğinde Matematik Uygulamaları

Detaylı

ELKE315-ELKH315 Introduction to Control Systems FINAL January 2, 2016 Time required: 1.5 Hours

ELKE315-ELKH315 Introduction to Control Systems FINAL January 2, 2016 Time required: 1.5 Hours SORU. Yanda serbest uyarmalı bir DA motorunun elektromekanik şeması verilmiştir. Bu doğru akım motoru, hızı kontrol edilmek üzere modellenecektir. Hız kontrolü hem endüvi devresi hem de uyarma devresi

Detaylı

Math 103 Lineer Cebir Dersi Ara Sınavı

Math 103 Lineer Cebir Dersi Ara Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Ara Sınavı 9 Kasım 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 3: Bitiş Saati: 4:5 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

Analog Alçak Geçiren Filtre Karakteristikleri

Analog Alçak Geçiren Filtre Karakteristikleri Analog Alçak Geçiren Filtre Karakteristikleri Analog alçak geçiren bir filtrenin genlik yanıtı H a (jω) aşağıda gösterildiği gibi verilebilir. Ω p : Geçirme bandı kenar frekansı Ω s : Söndürme bandı kenar

Detaylı

DİĞER ANALİZ TEKNİKLERİ

DİĞER ANALİZ TEKNİKLERİ DİĞER ANALİZ TEKNİKLERİ İÇERİK EŞDEĞERLİK DOĞRUSALLIK KAYNAK DÖNÜŞÜMÜ SUPERPOZİSYONUN UYGULANMASI THEVENIN VE NORTON TEOREMLERİ ENFAZLA GÜÇ AKTARIMI EE-201, Ö.F.BAY 1 DİĞER ANALİZ TEKNİKLERİ ÖĞRENME HEDEFLERİ

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 2. TEMEL KANUNLAR Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi Bu bölümde Ohm Kanunu Düğüm, dal, çevre 2.1. Giriş Kirchhoff Kanunları Paralel

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin

MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin MAK 308 MAKİNA DİNAMİĞİ 017-018 Bahar Dr. Nurdan Bilgin EŞDEĞER ATALET MOMENTİ Geçen ders, hız ve ivme etki katsayılarını elde ederek; mekanizmanın hareketinin sadece bir bağımsız değişkene bağlı olarak

Detaylı

Sistem nedir? Başlıca Fiziksel Sistemler: Bir matematiksel teori;

Sistem nedir? Başlıca Fiziksel Sistemler: Bir matematiksel teori; Sistem nedir? Birbirleriyle ilişkide olan elemanlar topluluğuna sistem denir. Yrd. Doç. Dr. Fatih KELEŞ Fiziksel sistemler, belirli bir görevi gerçekleştirmek üzere birbirlerine bağlanmış fiziksel eleman

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Rasyonel Fonksiyonlar 5 Bibliography 35 Inde 39 Rasyonel Fonksiyonlar Polinomlar Yetmez! Bölme

Detaylı

SONLU FARKLAR GENEL DENKLEMLER

SONLU FARKLAR GENEL DENKLEMLER SONLU FARKLAR GENEL DENKLEMLER Bir elastik ortamın gerilme probleminin Airy gerilme fonksiyonu ile formüle edilebilen halini göz önüne alalım. Problem matematiksel olarak bölgede biharmonik denklemi sağlayan

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 7 Hazırlayan: Yamaç Pehlivan Başlama saati: : Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir.

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir. .. Diferensiyel Denklemler y f (x) de F ( x, y, y, y,...) 0 veya y f ( x, y, y,...) x ve y değişkenlerinin kendileri ve türevlerini içinde bulunduran denklemlerdir. (Türevler; "Bağımlı değişkenin değişiminin

Detaylı

İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ

İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ Yapı Statiği nde incelenen sistemler çerçeve sistemlerdir. Buna ek olarak incelenen kafes ve karma sistemler de aslında çerçeve sistemlerin

Detaylı

Devre Teorisi Ders Notu Dr. Nurettin ACIR ve Dr. Engin Cemal MENGÜÇ

Devre Teorisi Ders Notu Dr. Nurettin ACIR ve Dr. Engin Cemal MENGÜÇ BÖLÜM III RLC DEVRELERİN DOĞAL VE BASAMAK CEVABI RLC devreler; bir önceki bölümde gördüğümüz RC ve RL devrelerden farklı olarak indüktör ve kapasitör elemanlarını birlikte bulundururlar. RLC devrelerini

Detaylı