Mustafa YAĞCI, Geometrik Kombinasyon

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Mustafa YAĞCI, yagcimustafa@yahoo.com Geometrik Kombinasyon"

Transkript

1 Mustafa YĞI w 0 ebir Notları Mustafa YĞI, Geometri Kombinasyon H er farlı ii notanın bir oğru belirttiğini biliyoruz. Pei hangi oğruyu belirtiyorları? O ii notaan geçen oğruyu. Pei her farlı nota aç oğru belirtir? nota oğru belirtiyorsa, nota,5 oğru belirtir emeyin e iğer her cevaba enimi alıştırabilirim. Uzatmayayım, bu sorunun cevabı yotur, çünü soru üzgün bir soru eğil! farlı nota oğrusalsa te bir oğruyu belirtirler ama oğrusal eğillerse farlı oğruyu belirtirler. eme i belirttileri oğru sayısı notaların onumuna göre eğişiyor. Eğer onumlarını belirtmeen bir soru sorma istiyorsa, en az ya a en ço aç tane geçer filan iye sormalıyız veya sormalılar. En az oluğu urum tabii i hepsinin oğrusal olmasıyla mümünür, veya izin varsa hepsini çaışı alırız hiçbir oğru belirtmezler. En ço olması a herhangi üçünün oğrusal olmamasıyla mümünür. İi farlı nota, belirttiğimiz üzere ne yaparsanız yapın, her zaman oğrusal olur. enzer şeile her oğrusal olmayan nota a bir üçgen, ayrıca bu üçgenin üstüne bulunuğu bir üzlem ve bu üçgenin çevrel çemberi olan bir çember belirtir. Üçü oğrusal olmayan ört farlı nota a örtgen belirtir. Örne. 9 farlı nota en ço aç üçgen belirtir? ) 9 ) 8 ) 7 ) E) 8 Çözüm: En ço üçgen için, 9 notayı yine çemberselmiş gibi üşüneceğiz. Çembersel olan 9 notanın herhangi üçü her zaman bir üçgen belirtir. u a (9, ) = 8 tane üçgen emetir. oğru cevap: E. Örne. 9 farlı nota en ço aç örtgen belirtir? ) 5 ) 8 ) 9 ) E) 5 Çözüm: En ço örtgen için 9 notayı yine çemberselmiş gibi üşüneceğiz. Çembersel olan 9 notanın herhangi örü her zaman bir örtgen belirtir. u a (9, ) = tane örtgen emetir. oğru cevap:. Örne. 9 nota en az aç oğru belirtir? ) 0 ) ) 9 ) E) 7 Çözüm: Tabii i 0! (0 fatöryel eğil, biliğin 0). Çünü 9 nota a çaışı olursa herhangi bir oğruyu belirtmezler. ma sorua eğer farlı 9 nota eseyi, hepsinin oğrusal oluğunu farz eere cevaba eri. oğru cevap:. Örne. 9 farlı nota en ço aç oğru belirtir? ) 9 ) 8 ) 7 ) E) 7 Çözüm: öyle sorulara notaların mümün oluğunca ço oğru belirtmesi için notaların herhangi üçünün oğrusal olmaığını üşünmeliyiz. iz bu herhangi üçü oğrusal olmayan notalara bunan böyle çembersel veya ağını iyeceğiz. O hale çembersel olan 9 notanın herhangi iisi her zaman farlı bir oğru belirtir. u a (9, ) = tane oğru emetir. oğru cevap:. Örne. 5 i oğrusal, ü çembersel 9 farlı nota en ço aç oğru belirtir? ) 9 ) 8 ) 7 ) E) 7 Çözüm: İi farlı yolan çözeceğiz. irinci yol. oğrusal olan 5 nota te bir oğru belirtir. Çembersel olan nota a (, ) = oğru belirtir. ir e oğrusal notaların birinen ve çembersel notaların birinen geçen oğrular var. unlar a (5, ) (, ) = 0 taneir. unu a hesaba attı mı, işlem tamam! = 7. İinci yol. Tüm notaların ağını oluğunu üşünün bir an. (9, ) = oğru oluru. oğrusal olan 5 nota a ağını olsayı (5, ) = 0 tane oğru oluştururu ama saece tane oluşturuyorlar. 9 tane oğru aybolmuş yani: 9 = 7. oğru cevap:. 7

2 Mustafa YĞI Geometri Kombinasyon Örne. 5 i oğrusal, ü çembersel olan 9 farlı nota en ço aç üçgen belirtir? ) 7 ) 8 ) 9 ) E) 5 Çözüm: Yine ii yol vereceğiz. irinci yol. oğrusal olan 5 nota hiçbir üçgen belirtmez. Çembersel olan nota a (, ) = üçgen belirtir. yrıca oğrusal 5 notanın sinen ve çembersel notanın inen geçen oğrularla, i bunlar (5, ) (, ) = 0 = 0 taneir, oğrusal 5 notanın inen ve çembersel notanın sinen geçen oğruları a sayacağız, i bunlar a (5, ) (, ) = 5 = 0 taneir. O hale = 7. İinci yol. Tüm notaların ağını oluğunu üşünün. (9, ) = 8 üçgen oluşuru. oğrusal 5 nota (5, ) = 0 üçgen belirtmeliyen hiç belirtmiyor. 8 0 = 7. oğru cevap:. Örne. Yan şeilei 0 nota, saece ii öşesi çember üzerine olan aç farlı üçgen belirtir? ) 0 ) ) ) 0 E) 0 Çözüm: Çember üzerinei 7 notaan sini seçelim. unu (7, ) = aar farlı şeile yapabiliriz. Şimi üçüncü öşeyi seçeceğiz. Üçüncü öşe çember üzerine olamayacağınan geri alan notaan birini seçeceğiz. unu a (, ) = aar eğişi şeile yapabiliriz. O hale bahsi geçen tane üçgen varır. Faat cevap eğil! Çünü ya çember üzerinen seçtiğimiz notanın si e aynı zamana oğrunun a üstüne olan notalarsa? O ii notayla, ışarıai notanın oluşturuğunu zanneere sayığımız üçgeni toplaman çıarmalıyız. O hale cevap = 0 olmalıır. oğru cevap:. Örne. Yan şeile verilen 0 nota en ço aç oğru belirtir? l Örne. 5 oğru en ço aç farlı notaa esişebilir? ) 5 ) 0 ) 0 ) 5 E) 5 ) 5 ) 5 ) ) 0 E) 7 Çözüm: Önce 0 notanın hepsinin ağını oluğunu üşünün, yani herhangi üç tanesi oğrusal olmasın. Öyle olsaları (0, ) = 5 tane oğru belirtirleri. Öyle bir uruma l oğrusu üzerinei beş nota a (5, ) = 0 tane oğru belirteceleri ama maalesef saece tane oğru belirtiyorlar. Yani 9 tane esiğimiz var. u yüzen cevap = 5 9 = olmalıır. oğru cevap:. Örne. Yan şeile verilen 0 nota en ço aç üçgen belirtir? ) 0 ) 0 ) 05 ) 90 E) 7 Çözüm: Önce 0 notanın hepsinin ağını oluğunu üşünün, yani herhangi üç tanesi oğrusal olmasın. Öyle olsaları (0, ) = 0 tane üçgen belirtirleri. Öyle bir uruma l oğrusu üzerinei beş nota a (5, ) = 0 tane üçgen belirteceleri ama maalesef saece tane bile belirtmiyorlar. Yani 0 tane esiğimiz var. u yüzen cevap 0 0 = 0 olmalıır. oğru cevap:. l Çözüm: Kesim notalarının ço olması isteniğinen mümün oluğunca oğruları birbirlerine paralel almayacağız. yrıca iien fazla oğrunun te bir notaa esiştiğini e üşünmeyeceğiz. Velhasıl, bir esim notası için farlı ii oğru lazım. O hale (5, ) = 0 tane esim notası olur. oğru cevap:. Örne. 5 çember en ço aç farlı notaa esişebilir? ) 5 ) 0 ) 0 ) 0 E) 5 Çözüm: Kesim notalarının mümün oluğunca ço olması isteniğinen, çemberlerin herhangi ii esim notasının çaışmaığını üşüneceğiz. İi çember en ço farlı notaa esişir. O hale (5, ) = 0 tane farlı ii çember seçilebileceğinen 0 = 0 esim notası olur. oğru cevap:. Örne. 5 üçgen en ço aç farlı notaa esişebilir? ) 5 ) 0 ) 0 ) 0 E) 5 Çözüm: Kesim notalarının mümün oluğunca ço olması isteniğinen, üçgenlerin herhangi ii esim notasının çaışmaığını üşüneceğiz. İi üçgen en ço farlı notaa esişir. O hale (5, ) = 0 tane farlı ii üçgen seçilebileceğinen 0 = 0 esim notası olur. oğru cevap:. 7

3 Mustafa YĞI Geometri Kombinasyon Örne. 5 oğrunun esim notası en ço aç üçgen belirtebilir? ) 0 ) 0 ) 0 ) 00 E) 0 Çözüm: oğruların herhangi iisinin birbirlerine paralel olmaılarını üşünelim i, esim notası fazla çısın. öyle bir uruma 5 oğrunun herhangi iisi bir esim notası belirteceğinen (5, ) = 0 farlı esim notası varır. Şimi soru, 0 nota en ço aç üçgen belirtebilir sorusuna önü gibimize geliyor ama tam öyle eğil. Çünü sistemei her oğru iğer ört oğruyla a esişmete oluğunan her oğrunun üzerine tane nota var. u notalar oğrusal oluğunan bazı üçgenler belireceleri yere belirmiyorlar. u 5 oğru üzerinei er notanın belirtmeileri üçgenleri toplam üçgen sayısınan çıartara sonuca ulaşacağız. 0 5 = 0 5 = 00. oğru cevap:. Örne. üzleme oğru ve farlı yarıçaplara çember veriliyor. u oğru ile çember en ço aç esim notası oluşturabilir? ) 8 ) 0 ) 75 ) 80 E) 00 Çözüm: En ço esim notası ele eebilme amacıyla oğruların hiçbirinin herhangi bir çembere teğet olmaığını üşünmeliyiz, her biri bir çemberi farlı notaa essin. O hale = 8 esim notası buraan gelir. iğer yanan oğru eni arasına (, ) = 5 tane esim notası oluşturur. ir e çemberler eni arasına (, ) = esim notası oluştururlar. O hale en ço = 75 esim notası oluşabilir. oğru cevap:. Örne. aşlangıç notaları aynı bir P notası olan ve herhangi iisi oğrusal olmayan tane ışın veriliyor. u ışınlaran öşesi P e olan aç tane açı oluşur? ) ) 9 ) ) 5 E) 0 Çözüm: Köşesi P e olan herhangi ışın bir açı oluşturacağınan (,) 5 = tane açı oluşur. oğru cevap:. i. Kaç farlı oğru belirtir? ynı oğru üstüne olmayan ii notaya ihtiyacımız var: (, ) (5, ) = 5 = 0. unlara bir e ve oğrularını elerse cevap olur. ii. Kaç farlı üçgen belirtir? Üçü aynı oğru üstüne olmayan notaya ihtiyacımız var. O hale si en i en ve i en si en olma üzere nota seçelim: (, ) (5, ) + (, ) (5, ) = 5+ 0 = 70. iii. Kaç farlı yamu belirtir? si en ve si en notaya ihtiyaç var: (, ) (5, ) = 0 = 0. iv. an geçen aç oğru belirtir? oğru mecburen an geçecese iğer notası mecburen oğrusu üstüne olaca. ir e oğrusunun enisi var: (5, ) + = 5 + =. v. an geçen ama en geçmeyen aç oğru belirtir? oğrusu üzerinei 5 notaan aı olan birini yasalaılar ama iğer üne hala izin var, bir e oğrusunun enisi var: (, ) + = + = 5. vi. ir öşesi olan aç üçgen belirtir? Ya iğer notayı en ya a ini en (ama notası ışınaileren), ini en seçeceğiz. iğer ii notayı a en seçerse, oğrusal olacalarınan üçgen ele eilemez: (5, ) + (, ) (5, ) = = 5. vii. ve öşelerine sahip aç üçgen belirtir? Üçüncü notayı hangi oğruan seçerse seçelim, ama ve ışınai notalar olma zoruna, her zaman üçgen oluşur (alan 7 taneen biri yani): (, ) + (, ) = + = 7. Örne. notasıyla birlite notası olan bir oğrusu ile notası ile birlite 5 notası bulunan ye paralel bir oğrusu veriliyor. u şeilei 9 nota; viii. ir öşesi olan ama iye bir öşesi olmayan aç yamu belirtir? ize üzerine en farlı bir nota ve üzerine an farlı nota lazım: (, ) (, ) = =. 7

4 Mustafa YĞI Geometri Kombinasyon Örne. Şeile paralel olan üç oğru ile bu oğruları esen notaaş oğru görülmeteir. u 9 oğru bu onumlarıyla aç farlı üçgen belirtirler? ) 5 ) 8 ) 0 ) 5 E) 0 Çözüm: ir üçgen ele eilebilme için te notaa esişen oğrularan herhangi iisi ve birbirlerine paralel olan oğrularan herhangi ine ihtiyacımız var. O hale bu seçimi aç farlı şeile yapabileceğimizi bulmalıyız. (, ) (, ) = 5 = 5. oğru cevap:. Örne. Şeilei üçgeni üzerine farlı nota varır. u notaları öşe abul een aç eğişi örtgen çizilebilir? ) 0 ) 0 ) 0 ) 80 E) 70 Çözüm: öyle sorulara tersten gitme aha avantajlıır. Önce nota çembersel olsaları aç eğişi örtgen oluru, onu bulalım. (, ) = 95 tane örtgen çizilebiliri. Şimi enarı üzerinei 5 notaya oalanalım. u beş nota oğrusal olsaları (5, ) = 5 tane örtgen oluştururu ama bu uruma oluları için oluşturamıyorlar. yrıca bu 5 tanenin ü ve iğer 7 tanenin i e (5, ) (7, ) = 70 tane örtgen oluşturabilirleri, faat bunu a oluşturamıyorlar. ynı urumlar ve enarlarına oalanılığına oluşacağınan = 70 farlı örtgen çizme mümünür. oğru cevap: E. Örne. Yatay olan oğru ve iey olan oğru birbirlerine paralel oluğuna göre şeile aç farlı paralelenar varır? ) 5 ) 8 ) 0 ) 5 E) 0 Çözüm: ir paralelenar oluşturma için, bize yataylaran herhangi iisi ve ieyleren herhangi iisi lazım. O hale bu seçimi aç farlı şeile yapabileceğimizi bulmalıyız. en bulum: (, ) (, ) = 5 = 5. oğru cevap: E. Örne. Şeilei iörtgenin üzerine bulunan notayı öşe abul een en fazla aç tane üçgen çizilebilir? ) 90 ) 08 ) 0 ) E) 98 Çözüm: Yine tersten gieceğiz. nota ağını olsayı (, ) = 0 farlı üçgen çizme mümün oluru. ve enarları üzerinei 5 er nota oğrusal olmasaları (5, ) = 0 ar tane, ve enarları üzerinei er nota a oğrusal olmasaları (, ) = er tane üçgen oluştururları. O hale bu urumai çizilebilece üçgen sayısı 0 0 = 98 ir. oğru cevap: E. Örne. Şeile taralı airenin herhangi bir parçasını apsayan aç farlı iörtgen varır? ) 50 ) 0 ) 70 ) 90 E) 00 Çözüm: u sorua a tersten gitme aha fayalıır. Tüm iörtgen sayısınan taralı airenin herhangi bir parçasını apsamayan iörtgenlerin sayısını çıartacağız. Toplam (7, ) (5, ) = 0 farlı iörtgen varır. En sol ve en sağ sütunlarai arelerin oluşturuları iörtgenler taralı bölgenin herhangi bir parçasını apsamıyorlar. aalım sol sütuna öyle aç iörtgen var? (, ) (5, ) = 0 tane varmış, 0 tane e sağa varır. O hale cevap = 90 tane olmalıır. oğru cevap:. Örne. Yanai şeile aç farlı üçgen varır? ) 0 ) 5 ) ) 0 E) Çözüm: En büyü üçgene iyelim. Şele iat eilece olursa, üçgenlerin hepsinin bir enarının oğrusu üzerine oluğunu anlarız. üzerine 9 farlı nota oluğunan (9, ) = tane farlı nota iilisi bulunur. nota iilisinin belirttiği oğru parçasının tamamı farlı üçgene aittir. eme i şeile farlı üçgen mevcuttur. oğru cevap:. 75

5 Mustafa YĞI Geometri Kombinasyon Örne. Yanai üçgenine, ve notaları oğrusalır. una göre şeile aç farlı üçgen mevcuttur? ) ) ) 8 ) 50 E) 5 Çözüm: İi farlı yolan çözelim. irinci yol. en çıan ışınların herhangi iisiyle oğrusu farlı birer üçgen belirtir. ynı urum en çıan ışınlar için e geçerliir. ir e tabanı olup, tepesi [[ üstüne olan üçgenler e mevcuttur. Şimi saymaya geçelim: + + = İinci yol. Şeilei 9 nota çembersel olsayı (9, ) = 8 üçgen oluşuru. u 9 notaan üzerinei 7 nota a o uruma (7, ) = 5 tane üçgen oluşturacaları ama maalesef hiç oluşturmuyorlar. enzer şeile,, oğrusal notaları a üçgeni oluşturacağı yere oluşturmuyorlar. nlayacağınız 5 + = tane ayıp var. unu 8 ten çıartalım, cevabı bulalım: = 8 [ 5 + ] = 8. oğru cevap:. Örne. Yuarai şeile aç tane üçgen varır? ) 8 ) 0 ) 0 ) 0 E) 00 Çözüm: Üçgenlerin hepsini eşenar abul etmemiz çözümü etilemeyecetir. iğer yanan tüm üçgenlerin veya şeline ii gruba ayrılabileceğini e far eelim. ir enar uzunluğu x birim olup, tepe notası yuara olan üçgenleri xy, bir enar uzunluğu x birim olup tepe notası aşağıa olan üçgenleri e x ile gösterelim. Y üçgenlerinin aei = Y üçgenlerinin aei = Y üçgenlerinin aei = Y üçgenlerinin aei = Y üçgenlerinin aei = + + Y üçgenlerinin aei = + 7Y üçgenlerinin aei = üçgenlerinin aei = + üçgenleri aeinin = üçgenleri aeinin = Geriye saece bu toplamları toplama alı. en toplaım, 8 çııyor. oğru cevap:. Örne. Yanai şeile aç üçgen varır? ) ) ) ) 0 E) 0 Çözüm: enarı an çıan bir oğru gibi e üşünülebilir, en çıan bir oğru gibi e. iz arışılığa mahal vermeme için, iisine e ahil etmeyelim. enarını önce bir silelim. ir öşesi olan üçgenleri sayalım. an çıan ışınlaran ii tanesiyle en çıan bir ışını üşüneceğiz. (, ) (, ) = 8 tane böyle üçgen varır. Şimi bir öşesi olan üçgenleri sayalım. en çıan ii ışınla an çıan ört ışını üşüneceğiz. (, ) (, ) = tane e böyle üçgen varır. Etti 0 ve bu 0 üçgenin hiçbir enarı eğil. Şimi bunlara bir enarı olan üçgenleri e eleyeceğiz olaca bitece. ve notaları ışınai tüm esişim notaları tabanına tepe oluşturabilir. an çıan ışınla, en çıan ışın (, ) (, ) = = esim notası oluşturuğunan toplam olara 0 + = üçgen varır. oğru cevap:. Örne. ir üzgün altıgenin tüm öşegenleri çiziliğine ortaya çıan şeile aç farlı üçgen mevcuttur? ) 00 ) 0 ) 0 ) 0 E) Çözüm: u tarz sorulara, ayrı nota grupları belirleme aha avantajlıır. O 5 7 u niyetle altıgenin öşelerini,,,, öşegenlerin altıgen içinei esim notalarını,,,, altıgenin merezini e O iye alanıralım. i, j, {,,, } ve m, n, p {,,, } olma üzere F E 7

6 Mustafa YĞI Geometri Kombinasyon i j üçgenlerinin aei: = 0, i j m üçgenlerinin aei: = 8, i m n üçgenlerinin aei: = 8, m n p üçgenlerinin aei: 0, O i j üçgenlerinin aei: =, O i m üçgenlerinin aei: =, O m n üçgenlerinin aei: 0 oluğunan = 0 olara bulunur. oğru cevap:. Örne. ir üçgenin herhangi ii öşesine ait n şer esen, üçgeni aç parçaya ayırır? ) n ) n + ) (n + ) ) n E) n Çözüm: Önce herhangi bir öşeye ait n tane eseni çizelim. Üçgen n + üçgenciğe ayrılır. Sonra iğer bir öşeen çizilen il esen bu n + tane parçayı (n + ) parça yapar, iinci esen (n + ) parça yapar,, n ninci esen bunan olayı (n + ) (n + ) = (n + ) parçaya ayırmış olur. Eğer üçüncü öşeen e n tane esen çizilseyi ve en fazla esen te notaa esişmeseyi, üçgen (n + ) + n (n + ) parçaya ayrılırı. unu a siz anıtlayın oğru cevap:. Serar yüz hocamızın ço güzel bir sorusuyla örnelerimize evam eelim. Örne. Şeile, O, notaları oğrusal olup O O veriliyor. rışı oğrusal notalar arasınai uzalılar eşit oluğuna göre O şeilei gibi sabitlenmiş 7 nota aç i üçgen belirtir? ) 8 ) ) 0 ) E) 8 Çözüm: Notaları şeilei gibi alanıralım. O i ve j {,,, } olma üzere, il göze çarpan i üçgenler i O j üçgenleriir. farlı ve farlı notası oluğunan farlı i O j üçgeni çizilebilir. O O u aar ayan beyan görülmeyen i üçgenler e mevcuttur. Muhteşem üçlü gereği i i i ve j j j üçgenleri e itir. i ve j eğişenleri er farlı eğer alabiliğinen farlı i i i üçgeni ve farlı j j j üçgeni varır. Sonuç olara bu 7 nota + + = farlı üçgen belirtir. oğru cevap:. Örne. Herhangi iisi paralel olmayan ve üçü te notaa esişmeyen n tane oğru, üzerine bulunuları üzlemi aç bölgeye ayırır? ) n ) n + ) (n + ) ) nn+ ( ) E) nn+ ( ) + Çözüm: Önce te oğru aç bölgeye ayırıyor ona baalım, sonra iinci oğruyu çizelim, şimi baalım, sonra üçüncüyü Görülen o i; oğru bölgeye ayırıyor, oğru bölgeye ayırıyor, oğru 7 bölgeye ayırıyor, oğru bölgeye ayırıyor iat ettiyseniz, bölge sayısı önce arttı, sonra, sonra. O hale iinci ereceen bir ilişi var oğru ile bölge sayıları arasına. Sabit artsayı birinci ereceen eri.,, 7,, sayılarının özelliği birer esilerinin yani,,, 0, sayılarının en başlayan sayma sayılarının toplamlarının sonucu oluğuur. nn+ ( ) O hale n oğru üzlemi + bölgeye ayırır. oğru cevap: E. 77

7 Mustafa YĞI Geometri Kombinasyon ulmaca Tablosunai Kare Sayısı Önce satır sayısıyla sütun sayısı aynı olan bir bulmaca tablosuna sayalım. Sonra ullanığımız teniği her türlü tablo için genelleştireceğiz. Örne olara boyutuna bir tablo çizelim. E F E F Kare sayısını hesaplama, iörtgen sayısını hesaplamaya göre biraz çetrefilliir ama olayır. ir enarı birim olan areleri, birim olanları ayrı, birim olanı ayrı ayrı hesaplama lazımır. Hesaplayalım: ir enarı birim olan areler rahatlıla görüleceği üzere = taneir. ir enarı birim olan arelerse şöyle hesaplanır: E F E F Önce saece en üsttei ii satırla yani satırıyla başlayalım. satırına yuvarlala gösterilmiş 5 tane bir enarı birim olan are varır. E böyle,,, E, EF olma üzere 5 farlı iili satır oluğunan 5 5 = 5 tane bir enarı birim olan are varır. u işlemlere aynı şeile evam eilirse, bir enarı birim olan are sayısının =, bir enarı birim olan are sayısının = 9, bir enarı 5 birim olan are sayısının = ve son olara bir enarı birim olan are sayısının a = oluğu görülür. O hale toplam are sayısı T = = ( i ) = = 9 i= olara bulunur. Eğer bulmaca tablosu boyutuna eğil e n n boyutuna olursa toplam are sayısı n n ( n+ ) ( n+ ) ( i ) = i= formülüyle hesaplanabilir. Üsttei problemi nasıl çözüyse, aynısını ullanara anıtlayabilirsiniz. Eğer satır sayısıyla sütun sayısı farlıysa ne yapacağımızı a anlatalım: Örne olara, 5 satır ve sütunan oluşan bir bulmaca tablosu çizelim. E E F ir enarı birim olan areler rahatlıla görüleceği üzere 5 = 0 taneir. E E F ir enarı birim olan arelerse şöyle hesaplanır: Önce saece en üsttei ii satırla yani satırıyla başlayalım. satırına yuvarlala gösterilmiş 5 tane bir enarı birim olan are varır. E böyle,,, E olma üzere farlı iili satır oluğunan 5 = 0 tane bir enarı birim olan are varır. u işlemlere aynı şeile evam eilirse, bir enarı birim olan are sayısının =, bir enarı birim olan are sayısının = ve son olara bir enarı 5 birim olan are sayısının = tane oluğu görülür. O hale toplam are sayısı T = olara bulunur. 5 i= 5 (( i ) i) = + ( i i) = + i= 5 5 = + = 70 Eğer bulmaca tablosu 5 boyutuna eğil e m n boyutuna olursa (m > n) toplam are sayısı n i= 0 (( ) ( )) T = m i n i formülüyle hesaplanabilir. Üsttei problemi nasıl çözüyse, aynısını ullanara anıtlayabilirsiniz. slına hepsinin suyunu sıınca şu alıyor: Önce tablo boyutunu yazın, m n şeline. aha sonra hem m yi hem n yi er azalatara çarpmaya evam ein, taa i biri 0 olana aar. Sonra o çarpımları toplayın! 78

8 Mustafa YĞI Geometri Kombinasyon TMOZ grubunan Yasin Temizan hocam, bu tip sorular için alternatif bir çözüm önermiş. izim önerimiz yuara anlatılanlarır ama farlı bir baış açısı olması masaıyla veriyoruz. Yuarai şeilleren e görülüğü üzere öşegeni [] olan te are varır. Yani her yatay [] oğru parçası bir areyi simgelemeteir. O hale problemi aç eğişi [] çizilebileceği üzerine uracağız. a b c a b c e e f a, b, c,, e, f oğrularının üstüne sırasıyla,,, 5,, 7 nota oluğunan bu oğrular üzerinei herhangi ii tane nota, eğişi bir [] belirtecetir. Yalnız a, b, c,, e oğrularınan iişer tane oluğunan, onları yle çarpacağız. O hale tabloai are sayısı = 9. Örne. birim areen oluşturulmuş yanai areei alanı br olan aç farlı iörtgen varır? ) ) ) ) E) 8 Çözüm: Eğer bir iörtgenin alanı br ise bu iörtgenin ebaı ya x ya a x olmalıır. Önce ebaı x olan iörtgenleri sayalım. Sağ şeilen e görülüğü üzere iey olara 5 tane, yatay olara a 5 tane olma üzere toplam 0 tane böyle iörtgen varır. Şimi e ebaı x olanları sayalım. En alt satıra böyle tane iörtgen olup satır satır yuarı çıarsa yatay pozisyona tane böyle iörtgen sayarız. tane e iey var. Etti tane. Ebaı x olan 0 taneyle birlite toplam tane iörtgen varır. oğru cevap:. Örne. birimareen oluşturulmuş yanai bulmaca tablosunun aresi, her satır ve sütuna saece tane are boyalı olaca şeile aç farlı şeile boyanabilir? ) ) 00 ) 0 ) 0 E) 70 Çözüm: İl sütunan başlayalım. İl sütunai areyi e boyayabiliriz. Herhangi birini boyaıtan sonra iinci sütun için 5 seçene alır. Üçüncü sütun için, örüncü sütun için, beşinci sütun için ve son sütun için seçeneğimiz oluğunan toplam 5 =! = 70 farlı şeile boyama gerçeleştirilebilir. oğru cevap: E. Örne. birim areen oluşturulmuş yanai areei iörtgen sayısı are sayısınan aç fazlaır? ) 50 ) 80 ) 0 ) 0 E) 50 Çözüm: Önce aç iörtgen oluğunu bulalım. 7 iey ve 7 yatay oğru oluğunan, iörtgen sayısı (7, ) (7, ) = =, are sayısı a 7 ( i ) = = 9 i= oluğunan cevap 9 = 50 olmalıır. oğru cevap: E. Meralısına ir Soru. ir öncei soruyu yazıtan sonra, bulmaca aresini biraz büyüteyim, bir e öyle çözeyim eim. Sonra a are büyüse e teni eğişmiyor i, bari her satır ve sütunai boyanaca are sayısını iiye çıarayım eim. emez olayım! en problemin altınan alamaım, beli siz bir şeyler bulabilirsiniz. 00 birimareen oluşturulmuş yanai bulmaca tablosunun 0 aresi, her satır ve sütuna saece tane are boyalı olaca biçime aç farlı şeile boyanabilir? 79

9 Mustafa YĞI Geometri Kombinasyon EVPLI TEST. Yanai şeile yatay olan oğru ve iey olan 7 oğru birbirlerine paralel oluğuna göre şeile aç farlı paralelenar var?. eşi oğrusunun, altısı a ye paralel olan oğrusunun üzerine bulunan farlı nota aç üçgen belirtir? ) 90 ) 05 ) 0 ) 5 E) 5 ) 5 ) 0 ) 08 ) E) 8. Yan şeile yatay olan oğru ve iey olan 7oğru birbirlerine paralelir. una göre şeile bir öşesi olan aç farlı paralelenar var? 7. eşi oğrusunun, altısı a ye paralel olan oğrusunun üzerine bulunan farlı nota aç örtgen belirtir? ) 50 ) 0 ) 5 ) 80 E) 0 ) 8 ) 0 ) ) 0 E). Yatay olan oğru birbirlerine paralel olup 5 farlı oğru bunları şeilei gibi esmeteir. Şeile aç farlı yamu varır? 8. notası başa notayla birlite oğrusunun üstüneir. u oğruya paralel bir oğrusu a ayrı notaya sahiptir. u nota, aç farlı bir öşesi olan üçgen belirtir? ) ) 9 ) 0 ) E) 5 ) 5 ) 0 ) ) 7 E) 90. Yanai şeil 0 üçü iörtgenen oluşmuştur. Şeile aç farlı iörtgen var? 9. eşi oğrusunun, altısı a ye paralel olan oğrusunun üzerine bulunan farlı nota en ço aç eğişi oğru parçası belirtir? ) 0 ) 5 ) 5 ) 8 E) 55 ) 0 ) 0 ) 0 ) 90 E) eşi oğrusunun, altısı a ye paralel bir oğrusunun üzerine bulunan farlı nota en ço aç oğru belirtir? 0. Şeile paralel olan üç oğru ile bu oğruları esen notaaş oğru görülmeteir. u 9 oğru bu onumlarıyla aç farlı üçgen belirtirler? ) 0 ) 5 ) 0 ) 5 E) 50 ) ) 0 ) ) E) 0 80

10 Mustafa YĞI Geometri Kombinasyon EVPLI TEST. irer notaları orta ve oğruları şeilei gibi 0 nota taşımataırlar. Köşeleri bu notalar olan aç farlı üçgen çizilebilir?. 0 birimareen oluşturulmuş yanai iörtgene aç farlı are mevcuttur? ) 9 ) 85 ) 78 ) 75 E) 70 ) 0 ) 70 ) 80 ) 90 E) birimareen oluşturulmuş yanai aree, içine yılız işareti bulunmayan aç eğişi are varır?. ir üçgene bir öşeye ait, bir başa öşeye ait esen çizilirse, oluşaca yanai şeile aç farlı üçgen mevcuttur? ) 5 ) ) ) 0 E) 8. Yanai şeile aç farlı üçgen varır? ) 9 ) 70 ) 7 ) 7 E) birimareen oluşturulmuş yanai arenin 5 farlı birim aresi her satır ve sütuna saece tane boyalı birim are olaca şeile aç farlı şeile boyanabilir? ) 0 ) 50 ) 0 ) 08 E) 90 ) ) 8 ) ) E). İi notaları orta bir çember ile bir l oğrusu verilmiştir. Üzerlerinei bu 8 nota aç farlı üçgen belirtir? l 9. Yanai şeile aç farlı aire ilimi varır? ) 5 ) ) 75 ) 90 E) ) ) 8 ) 50 ) 5 E) 5 5. birim areen oluşturulmuş yanai aree aç farlı are varır? 0. Yanai şeile, L, oğruaş, L, oğruaş oluğuna göre şeile aç farlı üçgen varır? ) 0 ) 5 ) 0 ) 5 E) 0 L ) 7 ) 8 ) 9 ) 00 E) 09 8

11 Mustafa YĞI Geometri Kombinasyon. Farlı oğrular üzerinen alınan herhangi ii nota oğrusal olmaığına göre şeile verilen 9 notaan herhangi üçünü öşe abul een aç farlı üçgen çizilebilir? EVPLI TEST F E G H K. oğru en az aç tane esim notası oluşturur? ) 0 ) ) ) 5 E) 0 ) 5 ) ) 8 ) 70 E) 7 7. oğru en fazla aç tane esim notası oluşturur?. Şeile verilmiş olan notaları öşe abul een en ço aç farlı üçgen çizilebilir? K F L M N E ) 0 ) ) ) 5 E) 0 R Q P ) 7 ) 8 ) 9 ) E) 8. enarlı bir çogenin aç öşegeni varır? 8. ir üçgenin herhangi ii öşesine ait 7 şer esen, üçgeni aç parçaya ayırır? ) 5 ) ) 9 ) E) 8 ) 5 ) 0 ) 7 ) 7 E). Yirmi enarlı bir çogenin belli bir öşesinen aç farlı öşegen çizilebilir? 9. Herhangi iisi paralel olmayan ve üçü te notaa esişmeyen 5 tane oğru, üzerine bulunuları üzlemi aç bölgeye ayırır? ) 5 ) ) 8 ) 0 E) ) 0 ) 9 ) 8 ) 7 E) 5. Yirmi enarlı bir çogenin toplam aç öşegeni varır? 0. n tane nota en ço 0 tane üçgen belirtiyorsa, en ço aç tane beşgen belirtebilir? ) 5 ) ) ) 5 E) ) 70 ) 0 ) 50 ) 0 E) 0 8

12 Mustafa YĞI Geometri Kombinasyon EVPLI TEST. n tane üçgen en ço aç esişim notası oluşturabilir? ) ) ) ) E). Yanai yamu içine çizilen oğru parçaları tabanlara paralelir. una göre şeile aç farlı yamu varır? ) 0 ) 5 ) ) 8 E). n tane çember en ço esim notası oluşturabilir? ) ) ) ) E) 7. ir oğru bir çemberi ii notaa esiyor. oğrunun çemberi estiği notalar ve, çemberin üzerinei iğer farlı nota, ve E, oğrunun üzerinei iğer farlı nota ise F ve G ir. una göre bu notalar aç tane üçgen belirtir? ) ) 5 ) ) E) 8. n tane are en ço aç esim notası oluşturabilir? ) ) ) ) E) 8 8. Yan şeile işaretlenmiş 9 nota aç farlı üçgen belirtir?. Herhangi iisi paralel olmayan oğrunun ü bir notaa, başa notası a ayrı bir notaa esişmeteirler. u oğrular en ço aç esim notası oluştururlar? ) ) 7 ) 8 ) 9 E) 50 ) 75 ) 7 ) 79 ) 80 E) 8 9. tane farlı patlıcan özlenecetir. nca her ii patlıcan bir şişe taılacatır. una göre aç farlı şişleme işlemi yapılabilir? )!! )! )!! ) E) 5. ÖSS 000 üçü areen oluşan I. şelin her satır ve her sütununa bir ve yalnız bir üçü are aralanara II. şeilei gibi esenler ele eilmeteir. I.Şeil II.Şeil u urala göre, en ço aç farlı esen ele eilebilir? 0. 8 çemberin esişmeleri sonucuna oluşabilece en ço nota sayısı en az nota sayısınan ne aar fazlaır? ) 8 ) 7 ) ) 7 E) Sonsuz ) ) 0 ) ) E) 8

Cebir Notları. Kombinasyon. www.mustafayagci.com, 2005. Mustafa YAĞCI, yagcimustafa@yahoo.com

Cebir Notları. Kombinasyon. www.mustafayagci.com, 2005. Mustafa YAĞCI, yagcimustafa@yahoo.com ve ve n tane farlı elemanan oluşan bir ümenin altümelerine birer ombinasyon enir. n, r 0 r n olma üzere, n elemanlı A ümesinin r elemanlı altümelerinen her birine A ümesinin r li bir ombinasyonu enir ve

Detaylı

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º Geometri Çözmek ir yrıcal calıkt ktır ÇI I ve UZUNLUK 1? m()=, m()=, m()= 7º merkezli çemberde m()= 7º Verilenlere göre açısının ölçüsü kaç derecedir? ) 10 ) 1 ) 10 ) 1 ) 17 Verilenlere göre açısının ölçüsü

Detaylı

DERS 10. Kapalı Türev, Değişim Oranları

DERS 10. Kapalı Türev, Değişim Oranları DERS 0 Kapalı Türev, Değişim Oranları 0.. Kapalı Türev. Fonksiyon kavramının ele alınığı ikinci erste kapalı enklemlerin e fonksiyon tanımlayabileceğini görmüştük. F (, enklemi ile tanımlanan f fonksiyonu

Detaylı

Pegem Pegem. Pegem Pegem. Pegem. Pegem. Pegem

Pegem Pegem. Pegem Pegem. Pegem. Pegem. Pegem İ itörler: Kerem KÖKR - Kenan SMNĞLU Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem KPSS Geometri itörler: Kerem Köker / Kenan smanoğlu KPSS Geometri ISN 978-605-364-197-1

Detaylı

Tork ve Denge. Test 1 in Çözümleri

Tork ve Denge. Test 1 in Çözümleri 9 ork ve Denge est in Çözümleri M. Sistemlerin engee olması için toplam momentin (torkun) sıfır olması gerekir. Verilen üç şekil için enge koşulunu yazalım. F. br =. br F = Şekil II G =. +. +. =. 6 = 6

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS MTEMTĐK ĐM YILLR 00 003 00 005 006 007 008 009 00 0 ÖSS-YGS - - - HREKET PROLEMLERĐ Hız msaa verildiğinden süre de saa olmalıdır lınan yol : x Hız: Zaman : ir araç x yolunu hızıyla sürede alır Yol Hız

Detaylı

7. SINIF MATEMATİK A. 2. Aşağıdakilerden hangisi 2

7. SINIF MATEMATİK A. 2. Aşağıdakilerden hangisi 2 . Mee, şeilei gibi puanlanmış heef ahasına 2 aış yapıyor. Poziif am sayıların oluğu her bölgeye iişer o, negaif am sayıların oluğu her bölgeye üçer o isabe eiriyor. Mee isabe eiriği her o için o bölgeei

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

Açık kümeleri belirlemek ve tanımlamak birkaç yolla olabilir. Biz bu yolların birkaçını. + r) açık aralığıdır.

Açık kümeleri belirlemek ve tanımlamak birkaç yolla olabilir. Biz bu yolların birkaçını. + r) açık aralığıdır. . KÜMELERİN YAPILARI. Açık Kümeler-Kapalı Kümeler vereceğiz. Açık kümeleri belirlemek ve tanımlamak birkaç ylla labilir. Biz bu ylların birkaçını.. Tanım: (X, ) metrik uzay x0 (i) B(x, r) { x X : (x, x)

Detaylı

ÇOKGENLER DÖRTGENLER ve ÇEMBER

ÇOKGENLER DÖRTGENLER ve ÇEMBER MY GOMTRİ RS NOTLRI Türkiye Matematik Öğretmenleri Zümresi TMOZ un katkılarıyla ÇOKGNLR ÖRTGNLR ve ÇMR Mustafa YĞI LTIN NOKT YYINVİ N 01 İÇİNKİLR ölüm Knu Sayfa ölüm Knu Sayfa 1 Çkgenler 007-015 19 Karede

Detaylı

ÖN SÖZ. Değerli Adaylar,

ÖN SÖZ. Değerli Adaylar, ÖN SÖZ eğerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme Sınavı(KPSS) na hazırlanmaktasınız ve buradaki başarınız gelecekteki iş yaşamınızı ciddi şekilde etkileyecek.

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Geometride Kombinatorik 11. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Köşegenlerin Arakesiti Geometride Kombinatorik

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

(pi) GÜNÜ 1. MATEMATİK ve AKIL OYUNLARI YARIŞMASI TOBB ETÜ MATEMATİK BÖLÜMÜ ÇALIŞMA DOSYASI

(pi) GÜNÜ 1. MATEMATİK ve AKIL OYUNLARI YARIŞMASI TOBB ETÜ MATEMATİK BÖLÜMÜ ÇALIŞMA DOSYASI (pi) GÜNÜ. MTEMTİK ve KIL OYUNLRI YRIŞMSI TO ETÜ MTEMTİK ÖLÜMÜ ÇLIŞM DOSYSI www.akiloyunlari.com KIL OYUNLRI TÜRLERİ 0 Hazine vı miral attı Sihirli Piramit ağlamaca Patika Patika Oluşturma Farklı Komşular

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu Ei Aralı Seviyesinde Denee Sınavı. Uzunluğu R/ olan bir zincirin ucu yarıçapı R olan pürüzsüz bir ürenin tepe notasına bağlıdır (şeildei ibi). Bilinen bir anda bu uç serbest bıraılıyor. )Uç serbest bıraıldığı

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

Küresel Aynalar. Test 1 in Çözümleri

Küresel Aynalar. Test 1 in Çözümleri 0 üresel Aynalar Test in Çözümleri 4.. L T T 4 Cismin L noktası merkeze e birim yükseklikte oluğu için görüntüsü yine merkeze, ters e birim yükseklikte olur. Cismin noktası an uzaklıkta e birim yükseklikte

Detaylı

4. BÖLÜM GEOMETRİK ÇİZİMLER

4. BÖLÜM GEOMETRİK ÇİZİMLER 4. ÖLÜM GEOMETRİK ÇİZİMLER MHN 113 Teknik Resim ve Tasarı Geometri 2 4. GEOMETRİK ÇİZİMLER 4.1. ir doğruyu istenilen sayıda eşit parçalara bölmek 1. - doğrusunun bir ucundan herhangi bir açıda yardımcı

Detaylı

STAD. Balans vanası ENGINEERING ADVANTAGE

STAD. Balans vanası ENGINEERING ADVANTAGE Balans vanaları STAD Balans vanası Basınçlanırma & Su kalitesi Balanslama & Kontrol Termostatik kontrol ENGINEERING ADVANTAGE STAD balans vanaları geniş bir uygulama alanına hassas hironik performans sağlar.

Detaylı

( ) MATEMATİK 1 TESTİ (Mat 1) 2009 - ÖSS / MAT-1. 1. Bu testte 30 soru vardır.

( ) MATEMATİK 1 TESTİ (Mat 1) 2009 - ÖSS / MAT-1. 1. Bu testte 30 soru vardır. 009 - ÖSS / MT- MTEMTİK TESTİ (Mat ). u testte 0 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. ( )( ) + 4. m = olduğuna göre, m + ifadesinin değeri işleminin

Detaylı

(m) sürekli k.u. (m) toplam k.u. (m) knet

(m) sürekli k.u. (m) toplam k.u. (m) knet 1. HFT DÖŞEME KLINLIKLRININ HESPLNMSI Döşemelerin bir oğrultua mı yoksa iki oğrultua mı çalıştıkları belirlenir. 11..1. Düzgün yük taşıyan ve uzun kenarının kısa kenarına oranı en büyük olan (l u / l k

Detaylı

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD LYS 1 / OMTRİ OMTRİ TSTİ 1. u testte 0 soru vardır. 2. u testin cevaplanması için tavsiye olunan süre 60 dakikadır. 1.. bir eşkenar üçgen 1 4 2 5, üçgeninin ağırlık merkezi = x irim karelere bölünmüş düzlemde

Detaylı

3. TABAKA KAVRAMI ve V-KURALI

3. TABAKA KAVRAMI ve V-KURALI 1 3. T VRMI ve V-URLI Tabaka nedir? lt ve üst sınırlarıyla bir diğerinden ayrılan, kendine has özellikleri olan, sabit hidrodinamik koşullar altında çökelmiş, 1 cm den daha kalın, en küçük litostratigrafi

Detaylı

4. SINIF MATEMATİK 1. KİTAP

4. SINIF MATEMATİK 1. KİTAP 4. SINIF MTEMTİK 1. KİTP u kitabın bütün hakları Hacer KÜÇÜKYDIN a aittir. Yazarın yazılı izni olmaksızın kısmen veya tamamen alıntı yapılamaz ve çoğaltılamaz. Copyright 2015 YZR hmet KÜÇÜKYDIN KPK TSRIMI

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

MATEMATİK TESTİ. 26 kesri 13 ile sadeleştirilince : 2 = _ = 5 ise _ = 2. 1 = 5 ise = 5. 2 = kesri elde edilir.

MATEMATİK TESTİ. 26 kesri 13 ile sadeleştirilince : 2 = _ = 5 ise _ = 2. 1 = 5 ise = 5. 2 = kesri elde edilir. TETİ TESTİ 1. 6 kesri 1 ile sadeleştirilince 9 6 = kesri elde edilir. 9 5. 10 : = 5 + _ = 5 ise _ =. 1 = 5 ise = 5 _ + = + 5 =. 9 büyük harf 9 = T 6. +8 küçük harf = 14 T + 14 = 41 T + ( + 8) = 88 +8.

Detaylı

1. BÖLÜM ELEKTROSTATİK. Yazar: Dr. Tayfun Demirtürk E-posta: tdemirturk@pau.edu.tr

1. BÖLÜM ELEKTROSTATİK. Yazar: Dr. Tayfun Demirtürk E-posta: tdemirturk@pau.edu.tr 1. BÖLÜM ELEKTROSTATİK Yazar: Dr. Tayfun Demirtürk Eposta: temirturk@pau.eu.tr 1 ELEKTROSTATİK: Durgun yüklerin etkilerini ve aralarınaki etkileşmeleri inceler. Doğaa iki çeşit elektrik yükü bulunur: ()

Detaylı

3. TABAKA KAVRAMI ve V-KURALI

3. TABAKA KAVRAMI ve V-KURALI 1 3. T VRMI ve V-URLI Tabaka nedir? lt ve üst sınırlarıyla bir diğerinden ayrılan, kendine has özellikleri olan, sabit hidrodinamik koşullar altında çökelmiş, 1 cm den daha kalın, en küçük litostratigrafi

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün ÜZGÜN TIGN ( ÜZGÜN TIGN TNIMI, ÖZİİ V NI ĞNİM ) ÜZGÜN TIGN Örnek...2 : TNIM V ÖZİİ enr syısı 6 oln çok - gene lt ıgen denir. ltıgeni için [], [] ve [] köşegenlerinin kesim noktsı oln noktsı dü zgün ltıge

Detaylı

İnşaat Mühendisliği Bölümü UYGULAMA 1- BOYUT ANALİZİ

İnşaat Mühendisliği Bölümü UYGULAMA 1- BOYUT ANALİZİ UYGULAMA - BOYUT ANALİZİ INS 36 HİDROLİK 03-GÜZ (Buckingham) teoremini tanımlayınız. Temel (esas) büyüklük ve temel (esas) boyut ne emektir? Açıklayınız. Bir akışkanlar mekaniği problemine teoremi uygulanığına

Detaylı

MATEMATİK SINAVI GEOMETRİ TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 GEOMETRİ TESTİ SORULARINI İÇERMEKTEDİR.

MATEMATİK SINAVI GEOMETRİ TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 GEOMETRİ TESTİ SORULARINI İÇERMEKTEDİR. Ö S Y M T.. YÜKSKÖĞRTİM KURULU ÖĞRNİ SÇM V YRLŞTİRM MRKZİ LİSNS YRLŞTİRM SINVI MTMTİK SINVI GOMTRİ TSTİ SORU KİTPÇIĞI 9 HZİRN 00 U SORU KİTPÇIĞI 9 HZİRN 00 LYS GOMTRİ TSTİ SORULRINI İÇRMKTİR. u testlerin

Detaylı

5.2. 5.2.1. Üçgenin Alanı. Neler Öğreneceğiz? Başlarken

5.2. 5.2.1. Üçgenin Alanı. Neler Öğreneceğiz? Başlarken ölüm 5. Üçgende lan Neler Öğreneceğiz? Üçgenin alanını veren bağıntılar ve üçgenin alanıyla ilgili uygulamaları nahtar Terimler 5... Üçgenin lanı aşlarken İnşaat sektöründe ustalar, çatı, duvar ya da zemini

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ ALES Sonahar 007 SAY DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ Sınavın u ölümünden alacağınız standart puan, Sayısal Ağırlıklı

Detaylı

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI. Sayfa1 9. Ulusal serimya İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI 2011 Sayfa2 1. Bir ABCD konveks dörtgeninde AD 10 cm ise AB CB? m( Dˆ ) 90, ( ˆ) 150 0 0 m C ve m Aˆ m Bˆ ( ) ( ) olarak

Detaylı

PİRAMİT, KONİ VE KÜRENİN ALANLARI

PİRAMİT, KONİ VE KÜRENİN ALANLARI PİRAMİT, KNİ VE KÜRENİN ALANLARI KAZANIMLAR Piramit kavramı Piramitin yüzey alanı Kesik piramitin yüzey alanı Düzgün dörtyüzlü kavramı Piramitin dönme simetri açısı Koni kavramı Koninin yüzey alanı Kesik

Detaylı

X. Ulusal İlköğretim Matematik Olimpiyatı

X. Ulusal İlköğretim Matematik Olimpiyatı X. Ulusal İlköğretim Matematik Olimpiyatı B 1. Bir kentten diğerine giden bir otobüs, yolun ilk yarısını 40 km/saat, ikinci yarısını ise 60 km/saat hızla gittiyse, otobüsün ortalama hızı kaç km/saat olmuştur?

Detaylı

ÜN TE II UZAYDA DO RULARIN VE DÜZLEMLER N D KL

ÜN TE II UZAYDA DO RULARIN VE DÜZLEMLER N D KL ÜN TE II UZAYDA DO RULARIN VE DÜZLEMLER N D KL 1. DO RULARIN D KL 2. B R DO RUNUN B R DÜZLEME D KL a. Tan m b. Düzlemde Bir Do ru Parças n n Orta Dikme Do rusu c. Bir Do runun Bir Düzleme Dikli ine Ait

Detaylı

TEMEL MATEMATİK TESTİ

TEMEL MATEMATİK TESTİ TEMEL MTEMTİK TESTİ 1. u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 010 YGS / MT 1. 0, 0,0 0,. + 1 ) 1 7 0 ) 1 + 1 1.. ( a+ 1) ( a )

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

Kapasitans (Sığa) Paralel-Plaka Kondansatör, Örnek. Paralel-Plaka Kondansatör. Kondansatör uygulamaları Kamera flaşı BÖLÜM 26 SIĞA VE DİELEKTRİKLER

Kapasitans (Sığa) Paralel-Plaka Kondansatör, Örnek. Paralel-Plaka Kondansatör. Kondansatör uygulamaları Kamera flaşı BÖLÜM 26 SIĞA VE DİELEKTRİKLER BÖLÜM 6 SIĞ VE DİELEKTRİKLER Sığa nın tanımı Sığa nın hesaplanması Konansatörlerin bağlanması Yüklü konansatörlere epolanan enerji Dielektrikli konansatörler Problemler Kapasitans (Sığa) Konansatör çitli

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır? Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994 Matematik Soruları ve Çözümleri 4.10 +.10 1. 4 10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 = 4 4 (40+

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

ÜÇ BOYUTLU CİSİMLER-1

ÜÇ BOYUTLU CİSİMLER-1 ÜÇ BOYUTLU CİSİMLER-1 PRİZMA 1. Bir dikdörtgenler prizmasının boyutları 3,5,7 ile orantılıdır. Bu prizmanın tüm alanı 568 cm 2 olduğuna göre hacmi kaç cm 3 dür? A) 440 B) 540 C) 840 D) 740 E) 640 6. Bir

Detaylı

noktaları alınıyor. ABC üçgeninin alanı S ise, A1 B1C 1 5) Dışbükey ABCD dörtgeninde [DA], [AB], [BC], [CD] kenarlarının uzantıları üzerinden

noktaları alınıyor. ABC üçgeninin alanı S ise, A1 B1C 1 5) Dışbükey ABCD dörtgeninde [DA], [AB], [BC], [CD] kenarlarının uzantıları üzerinden ALAN PROBLEMLERĐ Viktor Prasolov un büyük eseri Plane Geometry kitabının alan bölümünün özgün bir tercümesini matematik severlerin hizmetine sunuyoruz. Geomania organizasyonu olarak çalışmalarınızda kolaylıklar

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º ğlence başlıyor yor 1 º 0º üçgeninin alanı kaç birim karedir? ) ) 9 LN SI 1 LN SI 1 )1 ) üçgeninin alanı kaç birim karedir? üçgeninin alanı kaç birim karedir? ) ) ) ) ) ) üçgen, = birim, = birim, m() =

Detaylı

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak MAT 1 Hata 73 1 C 135 8 A 137 7 D şıkkına parantez konacak 143 Sol üst örnek Sıkça yapılan yanlış ün son cümlesi O halde. 144 Son örnek tam yerine doğal 208 9 18 yerine 18 8 5 225 2 A 246 6 Doğru cevap:

Detaylı

Düzlemsel, silindirik ve küresel yüzeyler için taşınım direnci

Düzlemsel, silindirik ve küresel yüzeyler için taşınım direnci FORMÜ KĞIDI Fourier ısı iletim yasası T Newton soğuma yasası T Yüzeyin ışınım yayma gücü 4 T Düzlemsel yüzeyler için iletim irenci R i Düzlemsel, siliniri ve üresel yüzeyler için taşınım irenci R i Düzlemsel

Detaylı

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Teknik resimde bir şekli çizmek için çizim takımlarından faydalanılır. Çizilecek şekil üzerinde eşit bölüntüler, paralel doğrular, teğet birleşmeler,

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25 Yükseköğretime Geçiş Sınavı (Ygs) / Nisan 00 Matematik Soruları ve Çözümleri. 0, 0,0 0, işleminin sonucu kaçtır? A) B) 4 7 C) 0 8 D) E) Çözüm 0, 0,0 0, = 0,00 0,0 0, = 0,7 0, 000 7 7. = = 000 00 0... işleminin

Detaylı

THE ENGLISH SCHOOL GİRİŞ SINAVI 2015. Süre: 1 saat ve 30 dakika

THE ENGLISH SCHOOL GİRİŞ SINAVI 2015. Süre: 1 saat ve 30 dakika THE ENGLISH SCHOOL GİRİŞ SINAVI 2015 MATEMATİK BİRİNCİ SINIF Süre: 1 saat ve 30 dakika Tüm soruları cevaplayınız. Tüm işlemlerinizi gösteriniz ve cevaplarınızı soru kâğıdında ılan uygun yerlere yazınız.

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

KAZANIMLAR. Kombinasyon kavramı n elemanlı bir kümenin, 0 elemanlı alt kümelerinin sayısı

KAZANIMLAR. Kombinasyon kavramı n elemanlı bir kümenin, 0 elemanlı alt kümelerinin sayısı KOMİNSYON KZNIMLR Kombinasyon kavramı n elemanlı bir kümenin, n elemanlı alt kümelerinin sayısı n elemanlı bir kümenin, elemanlı alt kümelerinin sayısı n elemanlı bir kümenin, 0 elemanlı alt kümelerinin

Detaylı

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR.

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. 28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. Enerji Piyasası Düzenleme Kurumundan: ELEKTRĠK PĠYASASI DENGELEME VE UZLAġTIRMA YÖNETMELĠĞĠ

Detaylı

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır?

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır? Ö.S.S. 1994 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ 4.10 1. 4 10 +.10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 4 4 (40+ ).10 10 4 4 4 (98² 98²) 00.9.

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Geometrik Çizimler-1

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Geometrik Çizimler-1 TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi Geometrik Çizimler-1 2/32 Geometrik Çizimler - 1 Geometrik Çizimler-1 T-cetveli ve Gönye kullanımı Bir doğrunun orta noktasını bulma

Detaylı

EXCEL DE ARİTMETİKSEL İŞLEMLER

EXCEL DE ARİTMETİKSEL İŞLEMLER EXCEL DE ARİTMETİKSEL İŞLEMLER Toplama İşlemi. Bu İşlemleri yapmadan önce ( toplama- Çıkarma Çarpma-Bölme ve formüllerde) İlk önce hücre İçerisine = (Eşittir) işareti koyman gerekir. KDV HESAPLARI ÖRNEK;

Detaylı

+. = (12 - ).12 = 12.12 -.12 = 144 1 = 143. b a b. a - = 3 ab 1 = 3b. b - = 12 ab 1 = 12a. Đşleminin sonucu kaçtır? + = 230 23 + = 10 + 23 = 33 : 3

+. = (12 - ).12 = 12.12 -.12 = 144 1 = 143. b a b. a - = 3 ab 1 = 3b. b - = 12 ab 1 = 12a. Đşleminin sonucu kaçtır? + = 230 23 + = 10 + 23 = 33 : 3 Ö.S.S. 000 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ., 0,, + Đşleminin sonucu kaçtır? 0, A) B) C) D) E) Çözüm, 0,, + 0, 0 + 0 +. + : Đşleminin sonucu kaçtır? A) B) C) D) E) Çözüm + : ( ) +. ( - ).. -. b a. a - ve

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

Yoksulun Kazanabildiği Bir Oyun Ali Nesin

Yoksulun Kazanabildiği Bir Oyun Ali Nesin Yosulun Kazanabildiği Bir Oyun Ali Nesin B u yazıda yosulu azandıracağız. Küçü bir olasılıla da olsa, yosul azanabilece. Oyunu açılamadan önce, Sonlu Oyunlar adlı yazımızdai oyunu anımsayalım: İi oyuncu

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN

KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN KESİN PROJE RAPORU PROJENİN ADI HANGİ ADAYI SEÇELİM? PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ ÖZEL KÜLTÜR FEN LİSESİ ATAKÖY 9.-10. KISIM, 34156 BAKIRKÖY - İSTANBUL DANIŞMAN ÖĞRETMEN

Detaylı

TEMEL SORU KİTAPÇIĞI ÖSYM

TEMEL SORU KİTAPÇIĞI ÖSYM 1-16062012-1-1161-1-00000000 TEMEL SORU KİTAPÇIĞI AÇIKLAMA 1. Bu kitapçıkta Lisans Yerleştirme Sınavı-1 Geometri Testi bulunmaktadır. 2. Bu test için verilen cevaplama süresi 45 dakikadır. 3. Bu testte

Detaylı

BRİNELL SERTLİK YÖNTEMİ

BRİNELL SERTLİK YÖNTEMİ www.muhenisiz.net 1 BRİNELL SERTLİK YÖNTEMİ Belli çaptaki sert bir bilya malzeme yüzeyine belli bir yükü uygulanarak 30 saniye süre ile bastırılır. Deneye uygulanan yükün meyana gelen izin alana bölünmesiyle

Detaylı

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI -2014

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI -2014 ÖZEL DÜŞŞFK LİSESİ SLİH ZEKİ V. MTEMTİK ŞTIM PJELEİ YIŞMSI -0 PJENİN DI PTLEMY TEEMİ VE UYGULMLI PJEYİ HZILYNL HLİL İHİM YZII MUHMMED ENİS ŞEN PJE DNIŞMNI DULGFU TŞKIN ÖZEL MÜÜVVET EVYP KLEJİ VE FEN LİSESİ

Detaylı

DGS SAYISAL BÖLÜM. 1) 6,20 sayısı hangi sayının % 31 idir? A) 10 B) 15 C) 20 D) 25 E) 30. olduğuna göre, y kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

DGS SAYISAL BÖLÜM. 1) 6,20 sayısı hangi sayının % 31 idir? A) 10 B) 15 C) 20 D) 25 E) 30. olduğuna göre, y kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 DGS SAYISAL BÖLÜM Sınavın bu bölümünden alacağınız standart puan, Sayısal DGS Puanınızın (DGS-SAY) hesaplanmasında 3; Eşit Ağırlıklı DGS Puanınızın (DGS-E hesaplanmasında,8; Sözel DGS Puanınızın (DGS-SÖZ)

Detaylı

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim.

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim. Önsöz Değerli Öğrenciler, u fasikül ortaöğretimde başarınızı yükseltmeye, üniversite giriş sınavlarında yüksek puan almanıza yardımcı olmak için özenle hazırlanmıştır. Konular anlamlı bir bütün oluşturacak

Detaylı

ÖZEL SAMANYOLU LİSELERİ

ÖZEL SAMANYOLU LİSELERİ ÖZEL SMNYOLU LİSELERİ 5. İLKÖĞRETİM MTEMTİK YRIŞMSI 2009 / NİSN KİTPÇIĞI BİRİNCİ BÖLÜM Çoktan seçmeli 30 Test sorusundan oluşan ün süresi 90 dakikadır. Bu bölümün bitiminde kısa bir ara verilecektir. Elinizdeki

Detaylı

KÜRESEL AYNALAR ÇUKUR AYNA. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir.

KÜRESEL AYNALAR ÇUKUR AYNA. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir. KÜRESEL AYNALAR Yansıtıcı yüzeyi küre parçası olan aynalara denir. Küresel aynalar iki şekilde incelenir. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir.eğer

Detaylı

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi KAĞIT KATLAMA YOLUYLA KESİRLERİN BELİRLENMESİ Onur NURTAN Danışman Öğretmen: Mustafa YAZAGAN Özel Atacan Anadolu Lisesi Özet: Kare biçimindeki kağıdı tam iki eş parçaya ayıran kırışığına kağıdımızı katlayarak

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

ÜÇGENLERDE EŞLİK VE BENZERLİK

ÜÇGENLERDE EŞLİK VE BENZERLİK Ünite 4 ÜÇNLR ŞLİ V NZRLİ ölüm 4.3. u ölümde Neler Öğreneceğiz? çıortay ve üçgenin açıortaylarının özelliklerini Üçgenin kenarortaylarının özelliklerini Orta dikme ve üçgenin kenar orta dikmelerinin özelliklerini

Detaylı

EXCEL 2007 ELEKTRONİK ÇİZELGE

EXCEL 2007 ELEKTRONİK ÇİZELGE EXCEL 2007 ELEKTRONİK ÇİZELGE Excel, Microsoft Office paketinde yer alan ve iş hayatında en sık kullanılan programlardandır. Bir hesap tablosu programıdır. Excel, her türlü veriyi (özellikle sayısal verileri)

Detaylı

7. a,b,c,d pozitif tamsayılardır.

7. a,b,c,d pozitif tamsayılardır. . 3.3 işleminin sonucu kaçtır? A) 4 ) C) ) 0 E) 4 5. işleminin sonucu kaçtır? 4 5 A) ) C) ) E) 3 3 3 3. 30!+5! sayısı, 30! 5! sayısından kaç fazladır? A) 5! ).5! C) 0! ) 30! E).30! 6. x ve y ardışık iki

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması www.mustafaagci.com.tr, 11 Cebir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Parabol Denkleminin Yazılması B ir doğru kaç noktasıla bellidi? İki, değil mi Çünkü tek bir noktadan geçen istediğimiz kadar

Detaylı

Usta Aritmetik Bayi Kontrol Programı Kullanım Kılavuzu (V.1.3.0)

Usta Aritmetik Bayi Kontrol Programı Kullanım Kılavuzu (V.1.3.0) Usta Aritmetik Bayi Kontrol Programı Kullanım Kılavuzu (V.1.3.0) A. Öğretmen Girişi a b c d B. Ana Menü a. Kullanıcı bilgisi : Bu alana yazılacak bilgiyi size Usta Aritmetik firması sağlamaktadır. b. Şifre

Detaylı

ACCESS DERS 2. 1. Tablolarda Düzenleme

ACCESS DERS 2. 1. Tablolarda Düzenleme ACCESS DERS 2 1. Tablolarda Düzenleme Geçen notlarda en durumda Musteri, iller ve ilçeler isminde 3 tane tablomuz olmuştu. Şimdi bu tablolar üzerinde düzenlemeler yapacağız. İlk düzenlemeyi tablo ve tablo

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

KÜMELER. Kümeler YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 MATEMATĐK ĐM /LYS. UYARI: {φ} ifadesi boş kümeyi göstermez.

KÜMELER. Kümeler YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 MATEMATĐK ĐM /LYS. UYARI: {φ} ifadesi boş kümeyi göstermez. MTEMTĐK ĐM YILLR 00 00 004 005 006 007 008 009 010 011 ÖSS-YGS - 1 - - - - - 1 1 1/1 /LYS KÜMELER TNIM: in tam bir tanımı yoksa da matematikçiler kümeyi; iyi tanımlanmış nesneler topluluğu olarak kabul

Detaylı

A SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00

A SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 12. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2007 Birinci Bölüm Soru kitapçığı türü A SINAV TARİHİ

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM Sınavın bu bölümünden alacağınız standart puan, Sayısal DGS Puanınızın (DGS-SAY) hesaplanmasında ; Eşit

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

Mikroişlemcilerde Aritmetik

Mikroişlemcilerde Aritmetik Mikroişlemcilerde Aritmetik Mikroişlemcide Matematiksel Modelleme Mikroişlemcilerde aritmetik işlemler (toplama, çıkarma, çarpma ve bölme) bu iş için tasarlanmış bütünleşik devrelerle yapılır. Bilindiği

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ 14. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ 14. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI EGE ÖLGESİ 4. OKULLR RSI MTEMTİK YRIŞMSI 8. SINIF ELEME SINVI TEST SORULRI. n bir tamsayı olmak üzere, n n 0 ( 4.( ) +.( ) + 7 + 8 ) işleminin sonucu kaçtır? ) 0 ) 5 ) 6 ). ir kitapçıda rastgele seçilen

Detaylı

Ö. Ç. BİLFEN ANAOKULU 6 YAŞ GRUBU GÜNLÜK EĞİTİM PROGRAMI

Ö. Ç. BİLFEN ANAOKULU 6 YAŞ GRUBU GÜNLÜK EĞİTİM PROGRAMI 03.11.2014 PAZARTESİ Ö. Ç. BİLFEN ANAOKULU 6 YAŞ GRUBU GÜNLÜK EĞİTİM PROGRAMI SERBEST ZAMAN ETKİNLİĞİ: Çocuklarla selamlaşıldı. Müzik eşliğinde öğretmenin yönergelerine uygun ısınma hareketleri yapıldı.

Detaylı

Microsoft Excel. Çalışma Alanı. Hızlı Erişim Çubuğu Sekmeler Başlık Formül Çubuğu. Ad Kutusu. Sütunlar. Satırlar. Hücre. Kaydırma Çubukları

Microsoft Excel. Çalışma Alanı. Hızlı Erişim Çubuğu Sekmeler Başlık Formül Çubuğu. Ad Kutusu. Sütunlar. Satırlar. Hücre. Kaydırma Çubukları Microsoft Excel Microsoft Excel yazılımı bir hesap tablosu programıdır. Excel, her türlü veriyi (özellikle sayısal verileri) tablolar ya da listeler halinde tutma ve bu verilerle ilgili ihtiyaç duyacağınız

Detaylı

Ali 8 yaşındadır. Ali den 1 yaş büyük olan Oya. Can ın 5 kalemi vardır. Ayla nın kalemleri Can ın kalemlerinden 3 fazladır. Ayla nın kalemi vardır.

Ali 8 yaşındadır. Ali den 1 yaş büyük olan Oya. Can ın 5 kalemi vardır. Ayla nın kalemleri Can ın kalemlerinden 3 fazladır. Ayla nın kalemi vardır. Zihinden toplayalım. 1. artı 8 eder.. 3 ten büyük olan sayı 5 tir. 3. 5 e eklersek olur. 4. 5.. 5 e 1 ilave edersek olur. 7 den sonra gelen sayı 5, 3 daha eder. olur. 7. yi 1 artırırsak olur. 8. 9. 9 ile

Detaylı

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte

Detaylı

LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 16 HAZİRAN 2013 PAZAR

LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 16 HAZİRAN 2013 PAZAR T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 16 HAZİRAN 2013 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

ELEKTRONİK ÇİZELGE. Hücreleri Biçimlendirme. Formülleri Kullanma. Verileri Sıralama. Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME

ELEKTRONİK ÇİZELGE. Hücreleri Biçimlendirme. Formülleri Kullanma. Verileri Sıralama. Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME Hücreleri Biçimlendirme ELEKTRONİK ÇİZELGE Formülleri Kullanma Verileri Sıralama Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME Elektronik Çizelge de sayıları; bin ayracı, yüzde oranı, tarih/saat ve para

Detaylı

Geometri Çalýþma Kitabý

Geometri Çalýþma Kitabý YGS GMTRÝ ÇLIÞM ÝTI YGS Geometri Çalýþma itabý opyright Sürat asým Reklamcýlýk ve ðitim raçlarý San. Tic. Þ u kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin önceden izni olmaksýzýn elektronik,

Detaylı

ÖZEL SAMANYOLU LİSELERİ

ÖZEL SAMANYOLU LİSELERİ ÖZEL SAMANYOLU LİSELERİ 8. İLKÖĞRETİM MATEMATİK YARIŞMASI 31 MART 2012 A KİTAPÇIĞI Bu sınav çoktan seçmeli 40 Test sorusundan oluşmaktadır. Süresi 150 dakikadır. Sınavla İlgili Uyarılar Cevap kağıdınıza,

Detaylı