Yararlanılabilecek Bazı Kaynaklar

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yararlanılabilecek Bazı Kaynaklar"

Transkript

1

2 2 Yararlanılabilecek Bazı Kaynaklar 1. Yapı Statiği I-II Adnan ÇAKIROĞLU ve Enver ÇETMELİ 2. Çözümlü Örneklerle Yapı Statiği Hüsnü CAN 3. Taşıyıcı Sistemler ve Yapı Statiği İsmail İlhan SUNGUR 4. Yapı Statiği, Sonlu Elemanlar Metodu, Bilgisayar Destekli Sistem Analizi Azer Arastunoğlu KASUMOV 5. Yapı Statiği Yalçın AKÖZ 6. Yapı Statiği I-II Mustafa KARADUMAN ve Şanser DURAN 7. Matrix Structural Mechanics Lewis P. FELTON and Richard B. NELSON

3 3 Konu Başlıkları Giriş Yapı Mühendisliğinin Amacı Yapı Mühendisliğinde İzlenen Yol Yapı Statiğinde Yapılan Kabuller Yapı Sistemleri Dış Etkiler (Yükler) ve Sınıflandırılması Yapı Sistemleri İçin Bazı Tanımlar Denge Denklemleri Mesnet Tepkileri Kesit Tesirleri İzostatik, Hiperstatik ve Oynak (Labil) Sistemler Kesit Tesir Diyagramları Yük-Kesme Kuvveti-Eğilme Momenti Arasındaki Bağıntılar İzostatik Sistemlerin Sabit Yüklere Göre Hesabı - Basit Kirişler, Konsol Kirişler ve Konsollu kirişler - Gerber Kirişleri - Üç Mafsallı Çerçeve ve Kemerler - Kafes Sistemler İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı - Basit Kirişler, Konsol Kirişler ve Konsollu kirişler - Gerber Kirişleri - Üç Mafsallı Çerçeve ve Kemerler - Kafes Sistemler

4 4 Giriş İnşaat Mühendisinin görevleri: - Tasarım (projelendirme) Proje mühendisi - Yapım (inşaat) Şantiye mühendisi - Bakım ve işletme Şantiye mühendisi Yapı Statiği dersleri, yapıların tasarımı için gereken bilgilerin önemli bir kısmını içermektedir. Diğer bir değişle Yapı Statiği dersi mühendisin kendi alanında karşılaşacağı ve yapmakla yükümlü olduğu çeşitli yapı sistemlerinde uygulanmak üzere çözüm yöntemlerini öğretir. - Bir yapı sisteminin çözümlenmesi: a) Sistemin kesit tesirlerinin hesaplanması (Yapı Statiği dersi) b) Hesaplanan kesit tesirlerini emniyetle taşıyabilecek şekilde sistemin boyutlandırılması (Betonarme, Çelik Yapılar dersleri)

5 5 Yapı Mühendisliğinin Amacı Yapı, insanların belirli ihtiyaçlarını karşılamak üzere çeşitli yapım malzemelerini ve tekniklerini kullanarak meydana getirdikleri her türlü yer altı ve yer üstü tesislerine denilmektedir. Yapıların bir mühendislik ürünü olabilmeleri için yapıları - belirli bir güvenlikte - yeterli bir rijitlikte - ve en ekonomik olarak boyutlandırmak gerekmektedir.

6 6 Yapı Mühendisliğinin Amacı Güvenlik: Dış etkiler nedeniyle yapıda oluşan zorlanmalar, yapının taşıyabileceği (karşı koyabileceği) sınır değerlerden belirli bir güvenlik katsayısı kadar küçük olmalıdır. a) Emniyet gerilmeleri esasına göre boyutlandırma b) Taşıma gücü esasına göre boyutlandırma: daha güvenilir ve genellikle daha ekonomik sonuçlar veren bir boyutlandırma yöntemidir. Her iki boyutlandırma yönteminde de, ayrıca yapının stabilite (kararlılık) kontrolü yapılmalıdır. Ekonomi: Malzeme + işçilik + bakım masrafları minimum olmalıdır.

7 7 Yapı Mühendisliğinin Amacı Rijitlik: Dış etkiler nedeniyle yapıda meydana gelen yer değiştirmeler sınırlı olmalıdır. Bunun nedenleri kısaca: a) duvar, döşeme kaplaması vb. gevrek yapı elemanlarının hasar görmelerinin engellenmesi b) ikinci mertebe etkilerinin azaltılması c) titreşimlerin azaltılması d) göz güvenliği ve estetiğin sağlanmasıdır. (f/l) oranının sınır değeri genel olarak 0,001~0,005 arasında değişse de yapının, yapı elemanının özelliklerine ve kullanım amacına göre yönetmelikler tarafından belirlenir.

8 8 Yapı Mühendisliğinde İzlenen Yol 1) Amaç ve ihtiyaç belirlenir. Amaç ve ihtiyaçlar doğrultusunda mimari projeler hazırlanır. 2) Yapının formu (geometrisi) (çubuk sistem, plak, kabuk, dolu sistem, kafes sistem vb.) ve malzemesi (betonarme, çelik, ahşap vb.) seçilir. Örnek: Endüstri yapısı (fabrika, depo vs.) - Yerinde dökme betonarme sistem - Prefabrike betonarme sistem - Çelik çerçeve sistem - Çelik kafes sistem - Betonarme kolonlu çelik kiriş veya kafes sistem - Ön gerilmeli betonarme sistem vs. 3) Yapının formu (şekli), mesnetleri, birleşim noktaları vs. idealleştirilerek hesap modeli kurulur. hesap modeli = idealleştirilmiş sistem = yapı sistemi

9 9 Yapı Mühendisliğinde İzlenen Yol 4) İşletme yükleri (yapıya kullanım süresi içinde etkiyecek yükler) belirlenir. Bunun için Standartlar ve Yönetmeliklerden yararlanılır. - TS 498; T.C. Karayolları Fenni Şartnamesi - Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik (2007) - UBC; DIN 1055; DIN ) Malzemelerin mekanik özellikleri (E, υ, sınır gerilmeler σ s, ) belirlenir (yönetmelikler, malzeme deneyleri) 6) Yapı sisteminin en kesitleri tahmin edilir. İzostatik sistemlerde en kesit tahmini yapmak gerekli değildir.

10 10 Yapı Mühendisliğinde İzlenen Yol 7) Yapı sistemi, işletme yükleri veya bu yüklerin yük güvenlik katsayıları ile çarpılarak elde edilen hesap yükleri altında hesaplanarak kesit zorları ve yer değiştirmeler elde edilir (Yapı Statiği bilim dalı) 8) Kesit hesapları ve yer değiştirme kontrolleri yapılır (Mukavemet, Betonarme ve Çelik bilim dalları). 9) En ekonomik çözüm seçilir. Seçim yapılırken yapının estetiği de göz önünde bulundurulur. 6-8 adımları tekrarlanır. Çeşitli alternatif çözümler denenir. Gerekirse 2-8 adımları tekrarlanır.

11 11 Yapı Statiğinde Yapılan Kabuller 1) Yapı Statiğinde incelenen sistemler yüklemenin şekline ve şiddetine bağlı değildir. Yüklemenin şekline ve/veya büyüklüğüne göre hesap modeli değişmez. 2) Yer değiştirmelerin, denge denklemlerine ve geometrik uygunluk şartlarına etkisi dikkate alınmayacak kadar küçüktür. - Kesit zorlarının hesabında (δ) lar ihmal edilir. - Denge denklemleri şekil değiştirmemiş sistem üzerinde yazılır. 1. ve 2. varsayımların yapıldığı hesaplamaya 1. Mertebe Teorisi denir.

12 12 Yapı Statiğinde Yapılan Kabuller 3) Malzeme lineer elastiktir. E σ τ E = (Elastisite Modülü) G = G = ε γ 2 (1 +υ )

13 13 Beton: Yapı Statiğinde Yapılan Kabuller

14 14 Çelik: Yapı Statiğinde Yapılan Kabuller

15 15 Yapı Statiğinde Yapılan Kabuller Yukarıda yapılan üç varsayımın geçerli olduğu hesaplama yöntemlerinde Süperpozisyon Prensibi geçerlidir İzostatik Sistemlerde Süperpozisyon Hiperstatik Sistemlerde Süperpozisyon

16 16 Yapı Sistemleri Bir yapının tümünün veya bir bölümünün idealleştirilmesinden oluşan hesap modeline Yapı Sistemi adı verilmektedir. Yapı Yapı Sistemi Yapı sistemleri oluştukları yapı elemanlarının türlerine bağlı olarak; - Bir boyutlu sistemler (çubuk sistemler) - İki boyutlu sistemler (yüzeysel taşıyıcı sistemler) - Üç boyutlu sistemler olmak üzere sınıflandırılmaktadır.

17 17 Yapı Sistemleri Düzlem çubuk sistem Uzay çubuk sistem Düzlem yüzeysel taşıyıcı sistem Uzay yüzeysel taşıyıcı sistem

18 18 Yapı Sistemleri Yapı elemanlarının sınıflandırılması: a) Bir boyutlu elemanlar (çubuklar): İki boyutu, diğer boyutunun (uzunluğunun) yanında küçük olan elemanlardır. h ( h;b) << L L b - Sabit kesitli çubuk - Değişken kesitli çubuk - Doğru eksenli çubuk - Eğri eksenli çubuk

19 19 Yapı Sistemleri Yapı elemanlarının sınıflandırılması (devam): b) İki boyutlu elemanlar (yüzeysel taşıyıcı elemanlar): Bir boyutu (kalınlığı) diğer iki boyutunun yanında küçük olan elemanlardır. Plak, perde, kabuk, levha t b t a,b a - Plak : Düzlemine dik yükler etkisindeki elemanlardır. - Levha : Düzlemi içindeki yükler etkisindeki elemanlardır. - Perde : Düzlemi içinde ve düzlemine dik yükler etkisindeki elemanlardır. - Kabuk : Eğri yüzeyli elemanlardır.

20 20 Yapı Sistemleri Yapı elemanlarının sınıflandırılması (devam): c) Üç boyutlu elemanlar: Üç boyutu da aynı önemde olan elemanlardır (kalın plak, kalın levha, temel blokları, baraj gövdesi vb.). Bir yapıda, genel olarak bu yapı elemanlarından bir veya bir kaçı bir arada bulunmaktadır. (2) (1) (2) (3) (3) (1) Yapı Statiğin dersinin konusu çubuk sistemlerdir ve düzlem çubuk sistemlerine ağırlık verilecektir.

21 21 Dış Etkiler (Yükler) ve Sınıflandırılması Yapı sistemlerinde iç kuvvet (kesit zoru) ve/veya şekil değiştirme ve yer değiştirme meydana getiren dış etkilerin tümüne yük olarak adlandırılmaktadır. Başlıca yükler: - Dış yükler (yapı yükleri, ilave yükler, kar, rüzgar ve deprem yükleri) - Sıcaklık değişmesi (düzgün sıcaklık değişmesi, farklı sıcaklık değişmesi) - Rötre - Mesnet çökmeleri - İlkel kusurlar - Ön germe ve ard germe

22 22 Dış Etkiler (Yükler) ve Sınıflandırılması İzostatik ve hiperstatik sistemlerde başlıca yüklerden dolayı oluşan büyüklükler aşağıdaki tabloda özetlenmiştir: Yükler (Dış Etkiler) Kesit Zoru İzostatik Sistemler Şekil Değiştirme Yer Değiştirme Kesit Zoru Hiperstatik Sistemler Şekil Değiştirme Yer Değiştirme Dış yükler var var var var var var Sıcaklık değişmesi yok var var var var var Rötre yok var var var var var Mesnet çökmesi yok yok var var var var İlkel Kusurlar yok yok var var var var Ön ve Ard germe var var var var var var

23 23 Dış Etkiler (Yükler) ve Sınıflandırılması Yüklerle ilgili standart ve yönetmelikler: a) Ulusal yönetmelikler: TS 498 TDY (Deprem Yönetmeliği Karayolları Teknik Şartnamesi b) ABD yönetmelikleri: ASCE 7-98 UBC-97 (deprem) AASHTO (karayolları) AREA (demiryolları) c) Alman yönetmelikleri: DIN 1055 DIN 1072 (karayolları) BE (demiryolları) d) Avrupa Birliği yönetmelikleri: Eurocode 1 Eurocode 8 (deprem)

24 24 Dış Etkiler (Yükler) ve Sınıflandırılması DIŞ ETKİLER (YÜKLER) I. TÜR SINIFLANDIRMA II. TÜR SINIFLANDIRMA III. TÜR SINIFLANDIRMA IV. TÜR SINIFLANDIRMA V. TÜR SINIFLANDIRMA YAPI YÜKLERİ (Öz Yükler) (g veya G) SABİT YÜKLER (Yapı Yükleri, Kar) TEKİL YÜKLER DİREKT YÜKLER SICAKLIK DEĞİŞİMİ, MESNET ÇÖKMELERİ, RÖTRE İLAVE YÜKLER (İnsan, Araç, Kar vs.) (q veya Q) HAREKETLİ YÜKLER (Araç, Vinç vs.) YAYILI YÜKLER İNDİREKT YÜKLER TOPLAM YÜKLER (p=g+q veya P=G+Q)

25 25 Dış Etkiler (Yükler) ve Sınıflandırılması I. Tür Sınıflandırma: - Yapı Yükleri (Öz Yükler): Yapı üzerinde devamlı etkiyen yüklerdir. Yapının taşıyıcı olan veya olmayan kısımlarının ağırlıkları ile toprak itkisi gibi yüklerdir. - İlave Yükler: Yapı üzerinde devamlı olarak bulunmayan insan, kar, deprem, araç vs. gibi yüklerdir. - Toplam Yükler: Yapı yükleri ile ilave yüklerin toplamından oluşurlar. II. Tür Sınıflandırma: - Sabit Yükler: Yapı üzerinde hareket etmeyen yüklerdir. Bu yüklerin dinamik etkisi yoktur. - Hareketli Yükler: Yapı üzerinde hareket eden yüklerdir. Bu yüklerin dinamik etkisi vardır.

26 26 Dış Etkiler (Yükler) ve Sınıflandırılması III. Tür Sınıflandırma: - Tekil Yükler: Sonsuz küçük bir uzunluğa, alana veya hacme etkiyen yüklerdir. Birimi; N, kn. - Yayılı Yükler: Sonlu bir hacme, alana veya uzunluğa etkiyen yüklerdir. Birimi; N/m, kn/m, kn/m 2, N/m 2 Yayılı yükün şiddeti (p) ise p x x p p = lim x 0 x şeklinde tanımlanır. Yayılı yük diyagramında taramanın doğrultusu yükün etkidiği ve şiddetinin ölçüldüğü doğrultu olarak seçilir. Yük katarı: Şiddetleri ve ara uzaklıkları sabit kalarak sistem üzerinde hareket eden yük gruplarıdır.

27 27 Dış Etkiler (Yükler) ve Sınıflandırılması Özel Yayılı Yükler: - Düzgün yayılı yük: Şiddeti sabit olan yüklerdir. Yatayda yayılı yükün şiddeti p ise sistem üzerinde dx uzunluğuna gelen yük pdx kadardır. p Eğer yayılı yük eğri üzerinde şekildeki gibi yayılı ise, eğrinin birim uzunluğuna gelen yük ise p dx α pdx ds dx = pcos α ; = cosα ds ds

28 28 Dış Etkiler (Yükler) ve Sınıflandırılması Özel Yayılı Yükler (devam): - Yamuk yayılı yük: Şiddeti uzunluk boyunca doğrusal değişen yayılı yüktür. Yük diyagramının denklemi ise x a p a a x p x xb b p b p p xp xp C =, D= x x x x a b a a b b a b a b p(x) = Cx + D - Üçgen yayılı yük: a noktasındaki şiddeti sıfır olan özel bir yamuk yayılı yüktür. p x p b p a x a a x xb b

29 29 Dış Etkiler (Yükler) ve Sınıflandırılması Özel Yayılı Yükler (devam): - Parabol yayılı yük: Yük diyagramı 2 0 parabol olan yayılı yüktür. Bu parabolün denklemi ise x p x L 4p p(x) = x(l x) 2 L Yukarıdaki yayılı yük tiplerinden bir veya bir kaçı bir araya gelerek bileşik yayılı yükleri oluştururlar. Etkime doğrultuları, etkime genişlikleri ve başlıca noktalardaki şiddetleri aynı olan yükler eşdeğerdir.

30 30 Dış Etkiler (Yükler) ve Sınıflandırılması Bileşke: Belirli sayıdaki kuvvetlerin tümüne eşdeğer olan tek kuvvete bu kuvvetlerin bileşkesi adı verilir. Bileşkenin karakteristikleri - Doğrultusu - Yönü - Şiddeti - Uygulama noktası

31 31 Dış Etkiler (Yükler) ve Sınıflandırılması Yayılı Yüklerin Bileşkesi: a) Yayılı yükün bileşkesinin şiddeti yük diyagramının alanına eşittir. a p(x) R R b b b R R = lim x = p(x)dx x x 0 a x x a x b) Yayılı yükün bileşkesinin yeri ise yük diyagramının ağırlık merkezinden geçmektedir. x 0 Rx = = R p(x)xdx p(x)dx

32 32 Dış Etkiler (Yükler) ve Sınıflandırılması q R L x 1 R = ql 2 1 xr = L 3 q 2 0 parabol L x 1 R = ql 3 1 xr = L 4 x R 2 0 parabol q L x 2 R = ql 3 1 xr = L 2 q q 3 0 parabol L n 0 parabol L x x 1 R = ql 4 1 xr = L 5 1 R = ql n xr = L n + 2

33 33 Dış Etkiler (Yükler) ve Sınıflandırılması IV. Tür Sınıflandırma: - Direkt Yükler: Yapı sisteminin üzerine doğrudan doğruya etkiyen yüklerdir. - İndirekt Yükler: Yapı sisteminin üzerine dolaylı olarak etkiyen yüklerdir. V. Tür Sınıflandırma: Sıcaklık değişimi, rötre, mesnet çökmeleri gibi yüklerdir. Bu tür yükler izostatik sistemlerde şekil değiştirme meydana getirir, iç kuvvet meydana getirmezler. Hiperstatik sistemlerde ise şekil değiştirme ile birlikte iç kuvvet de meydana getirirler.

34 34 Yapı Sistemleri İçin Bazı Tanımlar Düzlem Sistemler: Eleman eksenleri ve yükleri aynı düzlem içinde olan sistemlere denir. Uzay Sistemler: Eleman eksenleri ve yükleri uzayda herhangi bir konumda olan sistemlere denir. Çubuk Ekseni: Çubuğun bütün en kesitlerindeki ağırlık merkezlerini birbirine birleştiren eğri veya doğruya denir. Çubuk ekseni eğrisel ise bu çubuklara eğri eksenli çubuklar, çubuk ekseni bir doğru ise bu tür çubuklara da doğru eksenli çubuklar adı verilir. Çubuk Ekseni Enkesit Ağırlık Merkezi G Çubuk Enkesiti

35 35 Yapı Sistemleri İçin Bazı Tanımlar Dik Kesit: Çubuk ekseni üzerindeki bir noktadan bu eksene çizilen dik düzlemin çubuk ile ara kesitine verilen isimdir. Çubuk Türleri: Doğru eksenli çubuk, eğri eksenli çubuk, sabit kesitli çubuk, değişken kesitli çubuk vb. Çubuk Ekseni Enkesit Ağırlık Merkezi G Çubuk Enkesiti

36 36 Yapı Sistemleri İçin Bazı Tanımlar Mafsal: Sistemde momentin sıfır olduğu yerlerdir. Düğüm Noktaları: Yapı çubuklarının birbirleri ile birleştikleri noktalardır. 1 2 M1 = 0,M2 = 0 a) Rijit Düğüm Noktası: Yapı çubuklarının rijit olarak birleştiği noktalardır. Bu düğüm noktalarına bağlanan çubuklarda dönmeler birbirine eşit, momentler sıfırdan farklıdır. b) Mafsallı Düğüm Noktası: Yapı çubuklarının birbiri ile bir mil etrafında serbestçe dönebilecek şekilde bağlandığı düğüm noktalarıdır. 1 2 ϕ ϕ M = M = 0 1 2

37 37 Yapı Sistemleri İçin Bazı Tanımlar Mesnetler: Yapıların dış ortamla birleştiği yerler mesnet olarak adlandırılır. - Ankastre Mesnet - Sabit Mesnet - Hareketli (Kayıcı) Mesnet - Pandül Ayak - Elastik Ankastre Mesnet a) Ankastre Mesnet: Ankastre mesnette çubuk, sonsuz rijit bir ortama yer değiştirme yapmayacak şekilde bağlanmıştır. Bu mesnet türünde u, v yer değiştirmeleri ile ϕ açısal yer değiştirme, yani dönme, sıfırdır.

38 38 Yapı Sistemleri İçin Bazı Tanımlar b) Sabit Mesnet: Sabit mesnetlerde çubuk, dış ortama serbestçe dönebilecek şekilde bağlanmıştır. Bu tip mesnetin u ve v yer değiştirmeleri sıfırdır. c) Hareketli (Kayıcı) Mesnet: Hareketli mesnetlerde çubuk, serbestçe dönebilecek ve bir doğrultuda serbestçe hareket edebilecek şekilde bağlanmıştır. Bu mesnetlerde sadece bir yer değiştirme sıfırdır.

39 39 Yapı Sistemleri İçin Bazı Tanımlar d) Pandül Ayak: Üzerine kuvvet etkimeyen iki ucu mafsallı doğru eksenli çubuklara pandül ayak adı verilmektedir. Bu çubuklarda çubuk ekseni boyunca olmak üzere sadece bir reaksiyon kuvveti vardır. d) Elastik Ankastre Mesnetler: - Dönmeye Karşı Elastik Ankastre Mesnet: Bu tip mesnetlerin u, v yer değiştirmeleri sıfırdır. Mesnete bir moment etkidiği zaman bu mesnet ϕ kadar döner. Bu dönme moment ile orantılıdır. - Çökmeye Karşı Elastik Ankastre Mesnet: Bu tip mesnetlere bir P kuvveti etki ettiğinde, mesnet kuvvetin büyüklüğü ile orantılı olarak bir miktar çöker.

40 40 Denge Denklemleri Çeşitli dış etkiler altındaki bir sistem hareketsiz ise veya mevcut durumunu koruyor ise bu sistemin dengede olduğu düşünülür. Dengede olan bir cisim üzerine etkiyen kuvvetler, cisim üzerindeki her noktada ve her doğrultuda birbirini dengeler. y y x Denge, cismin hareketi ile ilgilidir. Cismin hareketi ise içinde olduğu ortamla sınırlıdır. Yani cismin uzayda yaptığı hareket ile düzlemde yaptığı hareketin bileşenleri ve dolayısı ile denge denklemleri farklıdır. z x

41 41 Denge Denklemleri Düzlem Sistemlerde Denge: Düzlemde, bir cismin yaptığı hareket, iki ötelenme ve bir dönme bileşeni olmak üzere üç tanedir. Eğer düzlemdeki bu cisim dengede ise üç tane denge şartını sağlaması gerekmektedir. y a) Sisteme etkiyen kuvvetlerin x-ekseni üzerindeki izdüşümlerinin toplamı sıfırdır (ΣF X =0). V A b) Sisteme etkiyen kuvvetlerin y-ekseni üzerindeki izdüşümlerinin toplamı sıfırdır (ΣF Y =0). θ Z A U A x c) Sisteme etkiyen kuvvetlerin düzlem içindeki herhangi bir noktaya göre statik momentlerin toplamı sıfırdır (ΣM=0). z

42 42 Denge Denklemleri Uzay Sistemlerde Denge: Uzayda, bir cismin yaptığı hareket, üç ötelenme ve üç dönme bileşeni olmak üzere toplam altı tanedir. Eğer uzaydaki bu cisim dengede ise altı tane denge şartını sağlaması gerekmektedir. y a) Sisteme etkiyen kuvvetlerin x, y, z eksenleri üzerindeki izdüşümlerinin toplamı sıfırdır. (ΣF X =0, ΣF Y =0, ΣF Z =0). b) Kuvvetlerin uzayda seçilen herhangi bir noktaya göre statik momentlerinin x, y, z eksenleri üzerindeki izdüşümlerinin toplamı sıfırdır. (ΣM X =0, ΣM Y =0, ΣM Z =0). θ Z z A W A θ y V A U A θ x x

43 43 Mesnet Tepkileri Bir yapıya etkiyen dış kuvvetler, mesnet tepkileriyle birlikte dengededir. Mesnet tepkileri belirlenirken, mesnetler kaldırılıp onun yerine mesnet türlerine göre bağ kuvvetleri yazılır. Denge denklemleri ile bu kuvvetler bulunur. y y A B A x x A y B y x Düzlemde mesnet reaksiyonları sayısı (r) ise; - r<3 ise sistem taşıyıcı değildir. - r=3 ise mesnet tepkileri denge denklemleri ile hesaplanabilir. - r>3 ise sistem hiperstatiktir.

44 44 Kesit Tesirleri Bir yapı sisteminde yüklerden (dış etkilerden) oluşan iç kuvvet bileşenlerine kesit zorları (kesit tesirleri, iç kuvvetler) adı verilmektedir. Diğer bir değişle taşıyıcı sistemlerde dış kuvvetlerden dolayı kesit içlerinde meydana gelen zorlanmalara kesit tesirleri denir. Yükler ve bunlardan oluşan mesnet tepkileri altında dengede olan bir sistem herhangi bir noktasından kesilerek iki parçaya ayrıldığında, parçaların dengesini bozmamak için her bir parçanın üzerine, diğer parça tarafından uygulanan etkileri de yerleştirmek gerekir. Bu durumda kesit ağırlık merkezine bir R kuvveti ile bir M momenti yerleştirmek gerekir. Etki-tepki prensibine göre, sol ve sağ parçalara etkiyen kesit zorları birbirlerine eşit şiddette ve ters yöndedir. R M M i G G R

45 45 Kesit Tesirleri Düzlemde Kesit Tesirleri: Yükleri ve çubukları aynı düzlem içinde olan sistemler olan düzlem sistemlerde R ve M kesit tesirleri aşağıdaki şekilde bileşenlere ayrılır ve adlandırılır. a) Normal Kuvvet: R vektörünün çubuk ekseni doğrultusundaki (kesit düzlemine dik) bileşenidir ve N harfi ile gösterilir. Normal kuvvet, σ normal gerilmelerinin toplamıdır. b) Kesme Kuvveti: R vektörünün çubuk eksenine dik (kesit düzlemine paralel) doğrultudaki bileşenidir ve V veya T harfi ile gösterilir. Kesme kuvveti, τ kayma gerilmelerinin toplamıdır. c) Eğilme Momenti: σ normal gerilmelerinin, kesitin ağırlık merkezinden geçen ve sistem düzlemine dik olan eksene göre statik momentlerin toplamına eşittir ve M harfi ile gösterilir.

46 46 Kesit Tesirleri Düzlemde Kesit Tesirleri (devam): Kesit tesirleri vektörel büyüklükler oldukları için doğrultu, yön ve şiddetlerinin belirtilmesi gerekir. Şiddetleri bir skaler büyüklükle belirtilirken, doğrultularının da isimleriyle belirtildiği hatıra getirilmelidir. Ancak yönlerinin anlatılabilmesi için bir işaret kabulünün yapılması gerekir. Bunun için bir bakış yönü seçilir. Şekilde sağ ve sol kesitler ile kesit tesirlerinin düzlemsel sistemlerde kabul edilen pozitif yönleri gösterilmiştir. M T M N Sol Kesit Sağ Kesit N Bakış Yönü T

47 47 Kesit Tesirleri Bakış Yönü: Kesit tesirlerinin pozitif yönlerinin tanımlanmasında bakış yönünden yararlanılır. Bu amaçla, a) Her çubuğun bir tarafı bakış yönü olarak işaretlenir. b) Bakış yönü statik hesapları yapan ve değerlendirenler arasındaki bir anlaşmadır. Hesapların sonuna kadar aynı bakış yönü kullanılır. M T M Bakış Yönü N Sol Kesit Sağ Kesit N Bakış Yönü T Bakış Yönleri N (Normal Kuvvet): Çubukta uzama meydana getirecek yönde pozitiftir. T (Kesme Kuvveti): Çubuğu saat yönünde döndürmesi halinde pozitiftir. M (Eğilme Momenti): Bakış yönü tarafındaki liflerde çekme (uzama) meydana getirmesi halinde pozitiftir.

48 48 Kesit Tesirleri Uzayda Kesit Tesirleri: Yükleri ve çubukları uzayda olan sistemler uzaysal sistemler olarak adlandırılırlar. Bu tür sistemlerde R ve M kesit tesirlerinin her birinin üç bileşeni vardır. a) Normal Kuvvet: R vektörünün çubuk ekseni doğrultusundaki (kesit düzlemine dik) bileşenidir b) Kesme Kuvveti: R vektörünün çubuk eksenine dik (kesit düzlemine paralel) doğrultudaki bileşenidir c) Eğilme Momenti: σ normal gerilmelerinin, kesitin ağırlık merkezinden geçen ve sistem düzlemine dik olan eksene göre statik momentlerin toplamına eşittir. M x x M z G V x Mz V z R N My y d) Burulma Momenti: kesitin ağırlık merkezinden geçen ve Y eksenine göre çubuğu burmaya çalışan momentlerin toplamıdır.

49 49 İzostatik, Hiperstatik ve Oynak (Labil) Sistemler İzostatik Sistemler: Bütün mesnet tepkileri ve kesit tesirleri yalnız denge denklemleri ile hesaplanabilen sistemlerdir. Hiperstatik Sistemler: Bütün mesnet tepkilerinin ve/veya kesit tesirlerinin hesabı için denge denklemlerinin yeterli olmadığı sistemlerdir.

50 50 İzostatik, Hiperstatik ve Oynak (Labil) Sistemler Hiperstatik sistemlerde çözümün elde edilebilmesi için, denge denklemlerinin yanında, geometrik süreklilik denklemleri adı verilen ek denklemlere gerek vardır. Oynak (Labil) Sistemler: Üzerine etkiyen tüm yükleri taşıyamayan sistemlerdir. Bu sistemlerde, çok küçük yüklerden dolayı çok büyük yer değiştirmeler meydana gelebilir. Oynak sistemlerde mesnet tepkileri için anlamlı çözümler bulunamaz. Sistemin labil olmaması için aşağıdaki konulara dikkat edilmelidir: a) Sistemdeki üç tepki birbirine paralel olmamalıdır. b) Sistemdeki üç tepki aynı noktada kesişmemelidir.

51 51 Kesit Tesir Diyagramları Dış etkilerden (yüklerden) oluşan kesit tesirlerinin sistem üzerindeki değişimini gösteren diyagramlara kesit tesir diyagramları adı verilmektedir. Düzlem çubuk sistemlerde M, N, T (V) diyagramları olmak üzere üç kesit tesiri diyagramı çizilir. Kesit tesir diyagramları sistemin şeması üzerine veya yatay eksende çizilirler. Bu diyagramların herhangi bir noktadaki ordinatı, sistemin o kesitindeki kesit tesiri (zoru) değerini verir.

52 52 Kesit Tesir Diyagramları Kesit Tesiri Diyagramlarının Çiziminde Dikkat Edilmesi Gerekenler: a) Kesit tesir diyagramları ölçekli (veya yaklaşık ölçekli) çizilmelidir. b) Kesit tesirlerinin ordinatları çubuk eksenlerine dik çizilir. c) Diyagramların üzerine başlıca noktalardaki değerler yazılır ve bölgelerin işaretleri konur. d) Kesme kuvveti diyagramında pozitif değerler bakış yönünün aksi tarafında, Moment diyagramında pozitif değerler bakış yönü tarafında gösterilir. Normal kuvvet için böyle bir ayırım yoktur.

53 53 Kesit Tesir Diyagramları Kesit Tesir Diyagramlarının Çizimi: a) Genel Yol: Sistemin yeter derecede sık kesitlerindeki kesit tesirleri hesaplanarak M, N ve T diyagramları çizilir. b) Fonksiyonlar Yöntemi: Sistem yeterli sayıda bölgeye ayrılarak her bölge için M(x), N(x) ve T(x) kesit zorlarının fonksiyonları belirlenir ve bunların fonksiyonları çizilir. c) Kritik Kesitler Yardımıyla Çözüm: Sistemin kritik kesit adı verilen sınırlı sayıdaki kesitlerinde kesit tesiri (zoru) hesaplanır ve bu değerlerden yararlanılarak M, N ve T diyagramları çizilir. Bu yol en uygun yoldur.

54 54 Kesit Tesir Diyagramları Kritik Kesitler: Kesit tesirleri (zorları) diyagramlarının çizilebilmesi için, kesit zorlarının hesaplanması gereken kesitlere kritik kesitler adı verilmektedir. - Mesnetlerin iki yan noktaları - Sistemin uç noktaları - Düğüm noktalarında birleşen çubukların uç noktaları - Tekil kuvvetlerin ve tekil momentlerin iki yan noktaları - Yayılı yüklerin başlangıç ve bitiş noktaları ile şekil ve değer değiştirdiği noktalar

55 55 Yük-Kesme Kuvveti-Eğilme Momenti Arasındaki Bağıntılar Kesit yöntemi geometri bakımından her türlü taşıyıcıya uygulanabilen çok güçlü bir yöntem olmasına karşın, süreksizliklerin sayısı arttığında işlemlerin sayısı da artar. İşlem hacmindeki artış hata riskini de artırır. Bundan kurtulmak için hesap kolaylığı olan bir yöntem kullanmak gerekir. Bu yöntemin temelinde kesme kuvveti (T) ile moment (M) arasındaki ilişki yatar. Bu ilişki de sonsuz küçük bir çubuk elemanın serbest cisim diyagramında yazılacak denge denklemleridir. A B N M T M+dM N+dN dx dx T+dT

56 Yük-Kesme Kuvveti-Eğilme Momenti Arasındaki Bağıntılar N M T M+dM N+dN dx T+dT Bu şekil üzerinde denge denklemleri yazılırsa; F = 0 N (N + dn) = 0 N = Sabit x dt Fy = 0 T (T + dt) qdx = 0 = q dx ( 1) 2 qdx dm M = 0 M (M + dm) + Tdx = 0 = T 2 dx ( 2) 56

57 57 Yük-Kesme Kuvveti-Eğilme Momenti Arasındaki Bağıntılar (1) numaralı denklem kesme kuvvetinin türevinin yayılı yükün negatif işaretlisini vermektedir. Ayrıca bu denklem aynı noktadaki kesme kuvveti diyagramının teğetinin eğimini vermektedir. (2) numaralı denklem ise eğilme momentinin türevinin kesme kuvvetini verdiğini göstermektedir. (1) ve (2). bağıntı kirişin herhangi iki A ve B noktası arasında integre edilip, ve sabitler dışarı alınırsa; B T = qdx + T T T = qdx B A B A A B A Herhangi iki nokta (A ve B) arasındaki kesme kuvveti farkı, o iki nokta arasındaki yük diyagramının alanına eşittir. B M = Tdx + M M M = Tdx B A B A A B A Herhangi iki nokta (A ve B) arasındaki moment farkı, o iki nokta arasındaki kesme diyagramının alanına eşittir.

58 58 Yük-Kesme Kuvveti-Eğilme Momenti Arasındaki Bağıntılar Teorem 1: Sistemin her hangi bir (n) kesitindeki kesit tesirleri belli iken, her hangi bir (n+1) kesitindeki kesit tesirlerinin hesabı için: (n+1) kesitinin solunda kalan bütün dış kuvvetler yerine, (n) kesitindeki kesit tesirleri ile (n)-(n+1) kesitleri arasındaki dış kuvvetler alınabilir. N = N n+ 1 n T = T Q q(x)dx n+ 1 n M = M + T a Q x q(x)xdx n+ 1 n n i i

59 59 Yük-Kesme Kuvveti-Eğilme Momenti Arasındaki Bağıntılar Teorem 2: Komşu iki kesitteki (n ve n+1) eğilme momentleri belirli iken bu iki kesit arasındaki M diyagramının çiziminde, (n) ve (n+1) kesitlerindeki eğilme momentlerini ordinat olarak almak suretiyle çizilen doğrusal diyagrama (çekirdek moment diyagramı) (n) ve (n+1) açıklıklı basit kirişte q(x) yükünden oluşan M 0 diyagramı cebrik olarak (işareti göz önüne tutularak) eklenir.

60 60 Yük-Kesme Kuvveti-Eğilme Momenti Arasındaki Bağıntılar Pratik Sonuçlar: 1) Kesme kuvvetinin sıfır olduğu kesitlerde moment maksimum yada minimumdur. 2) Kesme kuvvetinin pozitif olduğu yerlerde (x) arttıkça moment büyür. Negatif kesme kuvvetinde bunun tam tersi olur. 3) Kirişin belli bir parçasında M deki değişme miktarı eğer dıştan ayrıca bir moment etkimiyorsa kesme kuvvet diyagramının alanına eşittir. 4) İki kesit arasındaki kesme kuvveti farkı iki kesit arasındaki diyagramın alanına eşittir. 5) Kesme kuvvetinin integrali momenti verir. 6) Tekil yükün etkidiği noktada kesme kuvvetinin mutlak değeri o noktadaki tekil yükün değerine eşittir. 7) Tekil kuvvetlerin etki ettiği noktada kesme kuvveti ani olarak değişir. 8) Kesme kuvvetinin ani değiştiği yerlerde moment diyagramında köşeler oluşur. 9) Yük olmayan bölgelerde kesme kuvveti diyagramı yataydır. 10) Yayılı yüklerde kesme kuvveti diyagramı doğrusal, moment diyagramı paraboldur.

61 Yük-Kesme Kuvveti-Eğilme Momenti Arasındaki Bağıntılar 61

62 62 Yük-Kesme Kuvveti-Eğilme Momenti Arasındaki Bağıntılar A noktasında nokta 7 birim yukarı hareket ederek 1 noktasına ulaşır. Başka kuvvet olmadığı için 2. noktaya kadar yatay üzerinde sağa doğru hareket eder. X=2 m de 10 kn luk kuvvetle karşılaşılan nokta, 2 den itibaren 10 birim aşağı iner ve 3 e ulaşır. 3 den 4 e kadar, nokta yatay üzerinde sağa doğru hareket eder. 4 de 5 kn luk kuvvetle karşılaşan nokta 5 birim daha aşağı hareket ederek 5 noktasına ulaşır. 5 ten 6 ya yatay hareket eden nokta 6 da karşılaştığı 8 kn luk kuvvetle yukarı hareket ederek B ye ulaşır. Kesme kuvveti diyagramı alanından moment diyagramı elde edilir. Ax A A 10 kn 5 kn 2 m 2 m 1 m 10 kn 5 kn Ay=7 kn C - By=8 kn 4 5 D - B B 6 Kesme kuvveti ve moment diyagramı düşey denge ve moment denge koşulları nedeniyle B noktasında kapanmalıdır

63 63 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Basit Kiriş, Konsol Kiriş ve Konsollu Kiriş: Mesnetlerinden biri sabit mafsallı ve diğeri hareketli mafsallı olan tek açıklıklı kirişlere basit kiriş adı verilir. Ax A Ay B By M A Bir ucu ankastre diğer ucu boşta olan tek açıklıklı kirişlere konsol kiriş adı verilir. Ax A Ay Bir veya iki ucunda konsolu bulunan basit kirişlere konsollu kirişler adı verilir. Ax A Ay B By

64 64 Örnek-1 Verilen kirişin kesme, moment ve normal kuvvet diyagramlarının çizimi. Çözüm: 10 N luk kuvvetin yatay ve düşey bileşenleri bulunarak mesnet kuvvetleri hesaplanır.

65 T M N 65

66 66 Örnek 2 Verilen çıkmalı kirişin T,M ve N kuvvet alanlarının kesim metoduyla çizimi.

67 67

68 68

69 69

70 70

71 71

72 72 Örnek 3 Şekilde verilen çıkmalı kirişin T,N ve M diyagramlarının çizimi. [1000 N 45 o den etkiyor]

73 73

74 74 Örnek 4 Kirişin kesme kuvvet, moment ve normal kuvvet alanın belirlenmesi.

75 75 Örnek 5 Şekilde verilen çıkmalı kirişin T ve M diyagramlarının çizimi.

76 76 Örnek 6 Şekilde verilen çıkmalı kirişin T ve M diyagramlarının çizimi ve maksimum momentin hesaplanması.

77 77

78 78

79 79 Örnek 7 Verilen sistemin T, M ven diyagramları ile maksimum açıklık momentinin hesaplanması.

80 80

81 81

82 82

83 83

84 84

85 85 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Gerber Kirişleri: Basit kiriş, konsol kiriş ve konsollu kirişlerin birbirlerine mafsallı olarak birleşmelerinden oluşan taşıyıcı ve izostatik sistemlere gerber kirişleri adı verilmektedir. Çok açıklıklı sürekli kiriş olan bu sistemi ilk uygulayan Alman mühendis H. Gerber dir. Mafsal sayısı, kirişin hiperstatiklik derecesine eşittir.

86 86 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Gerber kirişleri pratikte (uygulamada) genellikle çatı aşıkları ve köprü kirişleri olarak kullanılırlar. Gerber kirişleri; - Kısa elemanlar olduğundan prefabrik olarak imal edilebilir ve taşınabilirler. - Meydana gelen her kuvvet izostatiktir. Mesnet çökmesinden, sıcaklık değişmesinden etkilenmez.

87 87 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Gerber kirişleri oluşturulurken, sistemin taşıyıcı olmasına (oynak olmamasına) dikkat edilmelidir. Hiperstatik parça Oynak parça Oynak parça Hiperstatik parça Gerber kirişlerinde oynak parçaların bulunmaması için bir takım mafsal yerleştirme kuralları bulunmaktadır.

88 88 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Gerber kirişlerinde mafsal yerleştirme kuralları: a) Kenar açıklıklara en fazla bir, orta açıklıklara en fazla iki mafsal konulabilir. b) İki mafsal konulan ara açıklıklara komşu açıklıklara mafsal konulmamalıdır. c) Yan yana komşu iki açıklık mafsalsız bırakılmamalıdır. d) Yan yana komşu iki açıklığa iki mafsal konulmamalıdır. e) Mafsallar nasıl yerleştirilirse yerleştirilsin bir açıklık mafsalsız bırakılmalıdır. - Bir ankastre mesnedi olan gerber kirişlerinde bu kurallarda bazı değişiklikler yapılabilir: a) Ankastre mesnetli kenar açıklığa iki mafsal konulabilir. b) Yukarıdaki maddelerden (e) maddesi uygulanmayabilir. c) Ankastre mesnetli açıklığa en az bir mafsal konulmalıdır.

89 89 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Bilinmeyen Reaksiyon Sayısı: 7 Denge Denklemleri Sayısı: 3 Gerekli Mafsal Sayısı: 4 Kısaca açıklık sayısının bir eksiği kadar mafsal gereklidir. Açıklık Sayısı: 5 Gerekli Mafsal Sayısı: 5-1=4

90 90 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Gerber Kirişlerinin Sabit Yüklere Göre Hesabında İzlenen Yol: 1) Sistem mafsallarından kesilerek parçalara ayrılırsa, bu parçalardan bazılarının tek başına taşıyıcı olmadıkları, diğerlerinin ise taşıyıcı oldukları görülür. Taşınan parçalar kendi üzerindeki yükleri, mafsallardaki kuvvetler ile taşıyan parçalara aktarırlar. Taşıyan parçalar ise hem üzerindeki yükleri hem de komşu parçalardan aktarılan mafsal kuvvetlerini taşırlar. Sistem üzerindeki parçaların yükleri nasıl taşıdığını gösteren bu şemaya taşıma şeması adı verilir. Dolaysıyla öncelikle sistemin taşıma şeması çizilir. Bu şemada, taşınan parçalar üstte, taşıyan parçalar ise onların altında gösterilir. 2) Önce taşıyıcı olmayan (taşınan) parçalar tek tek ele alınarak üzerindeki yüklere göre hesaplanarak mafsal kuvvetleri bulunur. 3) Sonra, taşıyıcı parçalar üzerindeki yüklere ve komşu parçalardan aktarılan mafsal kuvvetlerine göre hesaplanarak mesnet tepkileri hesaplanır. 4) Her parçaya ait kesit tesir diyagramları yan yana çizilerek tüm sistemin kesit tesir diyagramları elde edilir.

91 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı 91

92 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı 92

93 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı 93

94 94 Şekilde verilen çerçevenin N, T, M diyagramlarını çiziniz. (Yükler kn ve çizim için kullanılan kareli kağıtta her bir kare kenarı 1 m dir.)

95 95

96 N 96

97 T 97

98 M 98

99 99 Şekilde verilen çerçevenin N, T, M diyagramlarını çiziniz. (Yükler kn ve çizim için kullanılan kareli kağıtta her bir kare kenarı 1 m dir.)

100 100

101 N 101

102 T 102

103 M 103

104 104 Şekilde verilen çerçevenin N, T, M diyagramlarını çiziniz. (Yükler kn ve çizim için kullanılan kareli kağıtta her bir kare kenarı 1 m dir.)

105 105

106 N 106

107 T 107

108 M 108

109 109 Şekilde verilen çerçevenin N, T, M diyagramlarını çiziniz. (Yükler kn ve çizim için kullanılan kareli kağıtta her bir kare kenarı 1 m dir.)

110 110

111 N 111

112 T 112

113 M 113

114 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Üç Mafsallı Sistemler: İki mesnedi sabit olan ve üzerinde bir mafsal bulunan sistemlere üç mafsallı sistemler adı verilmektedir. Eksenleri eğri olan sistemlere üç mafsallı kemerler, çokgen olan sistemlere de üç mafsallı çerçeveler adı verilir. G Anahtar f B Özengi - A, B; Sabit mesnetler Özengi A - AB; Sabit mesnetleri birleştiren çizgi (özengi hattı) - G; Ara mafsalın bulunduğu kesit (anahtar noktası) - f; Ara mafsalın özengi hattına dik uzaklığı - L; Açıklık - f/l; Basıklık oranı Özengi çizgisi L Üç mafsallı kemer G f A B L Üç mafsallı çerçeve 114

115 115 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Üç mafsallı kemerlerde özengi çizgisi genellikle yatay ve eksen 2. derece parabol olmaktadır. İkinci derece parabole ait bazı geometrik özellikler aşağıda verilmiştir; x m 2 0 parabol y m y m ϕm f Denklemi : 4f y = x(l x) 2 L x L/2 L/2 L (m) kesitindeki teğetin eğimi: tgϕ = m 2(f y m) L x m 2

116 116 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Üç mafsallı sistemlerde öncelikle mesnet tepkileri hesaplanır, daha sonra kesit tesirleri hesaplanır ve diyagramları çizilir. a) Mesnet tepkilerinin hesabı; - Özengi çizgisi yatay ise: G MA = 0 By kontrol : F y = 0 MB 0 Ay = Ax A Ay B By Bx MG,sol = 0 Ax kontrol : F x = 0 MG,sağ 0 Bx = G Ax A B Bx Ay By

117 117 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı a) Mesnet tepkilerinin hesabı; (devam) - Özengi çizgisi yatay değil ise: MA = 0 Bx veby MG,sağ = 0 kontrol : M = 0 A vea M 0 B G,sol = x y F = 0 x F = 0 y G A Ax Ay G B By Bx B Bx Ax A Ay By

118 118 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı b) Kesit tesirlerinin hesabı; Kesit tesirleri bilinen şekilde hesaplanır. Her hangi bir m kesitindeki kesit tesirleri aranıyorsa - Sistem m kesitinden ikiye ayrılır. - Parçalardan birine etkiyen kuvvetlerden faydalanarak o noktadaki pozitif yön kabulüne göre kesit tesirleri hesaplanır. c) Kesit tesir diyagramlarının çizilmesi; - Üç mafsallı çerçevelerde: Kritik kesitlerdeki kesit zorları hesaplanarak M, N ve T (V, Q) diyagramları bilinen şekilde çizilir. - Üç mafsallı kemerlerde: Eğri eksenli sistemlerde kritik kesit kavramı geçerli olmadığından, yeterli sayıdaki kesitte kesit tesirleri hesaplanır ve M, N, T (V, Q) diyagramları nokta nokta çizilir.

119 119 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Üç mafsallı kemerlerde kesit tesirlerinin bulunması: P yi m G P xi Ax A B Bx P yi m N m ϕ m M m Ay By P xi T m Ax A Ay

120 120 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Üç mafsallı kemerlerde kesit tesirlerinin bulunması: - Normal kuvvet: F = 0 N + A Cosϕ + A Sinϕ + P Cosϕ P Sinϕ = 0 m x m y m xi m yi m N = A P Sinϕ A + P Cosϕ m y yi m x xi m Nm = T0Sinϕm HCosϕm - Kesme kuvveti: F = 0 T + A Sinϕ A Cosϕ + P Sinϕ + P Cosϕ = 0 m x m y m xi m yi m 0 y yi x P yi T = A P H= A + P m xi N m ϕ m M m T = A + P Cosϕ A + P Sin ϕ m y yi m x xi m P xi T m Tm = T0Cosϕm HSinϕm - Eğilme momenti: m kesitindeki M m kesit tesirinin değeri, dış yüklerin m kesitine göre momenti alınarak elde edilir. Ax A Ay

121 121 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Üç mafsallı sistemlerde yüklerin düşey olması durumu: Üç mafsallı sisteme etkiyen yüklerin yalnızca düşey olması özel halinde üç mafsallı sistemin mesnet tepkileri ve kesit zorları, aynı açıklıklı basit kirişe ait büyüklüklerden yararlanılarak hesaplanabilir. Bu kavram eksen eğrisinin seçilmesinde ve hareketli yüklere hesapta yardımcı olmaktadır. Ax A Ay P i m G f G B By a i b i A 0 B 0 L Bx F = 0 A B = 0 A = B = H x x x x x Pb i M = B 0 AyL Pb = i i 0 A = y L Pa i M = A 0 ByL Pa = i i 0 B = y L Pb i MB = 0 A0 = L Pa i MA = 0 B0 = L i i i i

122 122 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Üç mafsallı sistemlerde yüklerin düşey olması durumu (devam): P i m G f MG,sol = 0 AyxG Pi xi Hf = 0 sol A = A olduğundan bu ifade M ' ye eşittir G y 0 0G Ax A Ay B By Bx M Hf = 0 H = 0G M f 0G a i b i A 0 B 0 L G M 0G aynı açıklıklı basit kirişte G kesitindeki eğilme momentidir. Sonuç olarak, kemer basit kiriş gibi ele alınıp, sırayla mesnet reaksiyonlarını ve kesit tesirleri hesaplanıp, sinφ ve cosφ değerleriyle çarpılarak kemerin kesit tesirleri elde edilir. Nm = T0Sinϕm AxCosϕm Tm = T0Cosϕm AxSinϕm Mm = M0m Ay x m T0 = Ay Pyi H= A x

123 123 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Üç mafsallı sistemlerde eksen eğrisinin seçimi (en ekonomik kemer eğrisi): En ekonomik kemerler, kemerin her kesitinde eğilme momentinin sıfır olduğu veya çok küçük olduğu eğrilerden meydana gelen kemerlerdir. M(x) = M 0(x) Hy(x) H = M 0G f M f 0G M(x) = M 0(x) y(x) = 0 y(x) = f M 0G orantı katsayısı M (x) 0

124 124 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Görüldüğü gibi, kemerin y(x) eksen eğrisi, g(x) yükünden dolayı aynı açıklıklı basit kirişte meydana gelen M 0 (x) diyagramı ile orantılı olarak seçilirse bütün kesitlerde M(x) 0 olur. Bu eksen eğrisine g(x) yükünün finiküleri (ip eğrisi) adı verilir. f y(x) = M 0(x) M (Eksen eğrisi) 0G orantı katsayısı Eksen eğrisinin bu şekilde seçilmesi dm(x) M(x) 0 = T(x) = 0 dx olduğundan, yapının en ekonomik bir şekilde boyutlandırılmasını sağlar. Eksen eğrisinin bu şekilde seçilmesi halinde, her kesitte sadece normal kuvvet oluşacaktır. N H = = cosϕ M 0G f cosϕ

125 125 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Üç mafsallı gergili kemerler ve çerçeveler: Mesnetlerinden birisi sabit, diğeri kayıcı olan, üzerinde bir ara mafsal ve ara mafsalın iki tarafındaki parçaları birleştiren bir gergi bulunan sistemlere üç mafsallı gergili sistemler adı verilmektedir. Bu tür sistemler, zeminlerin çok çürük olduğu veya sistemin oturduğu kolon veya duvarların yatay itki kuvvetlerini taşıyamadığı veya çok zorlandığı durumlarda kullanılırlar. G G gergi A gergi B A B

126 126 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Üç mafsallı gergili kemerler ve çerçeveler (devam): Sabit yüklere göre hesap: Bilinmeyenler: a) Gergideki normal kuvvet (S gergi kuvveti) b) Mesnet tepkileri; A, B ve H A Denklemler: a) Tüm sistemin denge denklemlerinden yararlanarak mesnet tepkileri hesaplanır b) M G =0 mafsal şartından S gergi kuvveti hesaplanır. Mesnet tepkileri hesaplandıktan sonra kesit tesirleri bilinen şekilde hesaplandıktan sonra kesit tesir diyagramları çizilir.

127 127 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Kafes Sistemler: Doğru eksenli çubukların birbirlerine mafsallı olarak birleşmesinden oluşan taşıyıcı sistemler kafes sistemler olarak adlandırılmaktadır.

128 128 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Kafes sistemleri oluşturan doğru eksenli çubuklar sadece çekme kuvveti veya basınç kuvveti, yani sadece eksenel kuvvet etkisi altındadır. Kafes sistemler genellikle çelik veya ahşap malzemeden imal edilirler. Açıklıkları ise 9 m den 300 m ye kadar değişmektedir. Özellikle büyük açıklıklı yapılarda, öz ağırlıkların fazla olması nedeniyle, dolu gövdeli sistemler ekonomik olmamaktadır. Bu nedenle, büyük açıklıklı yapılarda (çatı sistemleri, köprüler vs.) kafes sistemlerinden faydalanılır.

129 129 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Kafes sistemlerde çubukların mafsallı olarak birbirlerine birleştikleri noktalara düğüm noktaları adı verilmektedir. Bir kafesin elemanları narindir, yani boyuna göre kesit boyutları küçük olduğundan ve büyük yanal zorlamaları taşımaya müsait olmadığından, yüklerin yalnızca düğüm noktalarına etki ettiği kabul edilmektedir.

130 130 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Yaygın Kafes Sistemler:

131 131 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Uygulamada düğüm noktaları tam mafsallı yapılamadığından, sistemde ikincil (sekonder) gerilmeler meydana gelir. Bu gerilmelerin olumsuz etkilerini azaltmak için düğüm noktalarının teşkilinde şu hususlara dikkat etmek gerekmektedir: a) Çubuk eksenleri ve yükler aynı düzlem (sistem düzlemi) içinde olmalıdır. b) Yükler düğüm noktalarına etkimelidir. c) Çubuk eksenleri düğüm noktalarında kesişmelidir. d) Çubuklar arasındaki açı küçük olmamalıdır (>26,30). e) Birleşim elemanlarının ağırlık ekseni, çubuk ekseni ile mümkün olduğunca çakışmalıdır.

132 132 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Bulonlu veya kaynaklı birleşimler, mafsal kabul edilirler. Bu durumda, eleman uçlarında tek kuvvet bulunur (moment oluşmaz).

133 133 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Kafes sistem çubuklarının isimlendirilmesi: Kafes Sistemlerin Sınıflandırılması: a) Oluşturulma şekline göre: - Basit kafes sistemler: En basit stabil kafes üçgendir (temel üçgen). Basit kafes sistemler temel üçgene yeni üçgenler eklemek suretiyle oluşan sistemlerdir.

134 134 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Kafes Sistemlerin Sınıflandırılması (devam): a) Oluşturulma şekline göre: - Bileşik kafes sistemler: Basit kafes sistemlerinin birbirlerine mafsallar ve/veya çubuklarla birleştirilmesinden oluşan sistemlerdir. - Karmaşık kafes sistemler: Basit ve bileşik sistemlerin dışında kalan sistemlerdir. Bu sistemlerin taşıyıcı olup olmadıkları kontrol edilmelidir.

135 135 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Kafes Sistemlerin Sınıflandırılması (devam): b) Başlıkların şekline göre: c) Dikme ve diyagonallerin şekline göre:

136 136 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Kafes Sistemlerin Sınıflandırılması (devam): c) Yolun konumuna göre: Dolaylı yükleme:

137 137 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Kafes sistemlerde izostatiklik şartı: Düzlem bir kafes sisteminin izostatik olabilmesi için: d ; düğüm noktası sayısı, r ; mesnet tepkilerinin sayısı, ç ; çubuk sayısı olmak üzere 2d=r + ç şartı sağlanmalı, ayrıca sistem taşıyıcı olmalıdır. 2d<r + ç 2d>r + ç kafes sistem statikçe belirsiz kafes sistem dengede değildir. Sistem mekanizma halindedir.

138 138 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Düğüm Noktaları Yöntemi: - Her düğüm noktasına etkiyen kuvvetler (dış yükler, mesnet tepkileri, çubuk kuvvetleri) denge denklemlerini sağladıklarından, bu denklemlerden yararlanılarak çubuk kuvvetleri hesaplanabilir. - Hesaba iki çubuğun birleştiği bir düğüm noktasından başlanır. Her adımda en çok iki bilinmeyen çubuk kuvvetinin bulunduğu düğüm noktaları sıra ile göz önüne alınır. Bu hesaplar yapılırken; a) Bilinmeyen çubuk kuvvetleri çekme yönünde (+) alınır. b) Bilinen çubuk kuvvetleri gerçek yönlerinde yazılır. Bu yöntem basit kafes sistemlere daima uygulanabilir.

139 139 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Pratik Sonuçlar: P S 1 S 1 S 2 S1 =S2 =0 S 2 S1 =0 S2 =-P P S 1 S 3 S 1 S 3 S 2 S1 =S3 S2 =0 S 2 S1 =S3 S2 =-P

140 140 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı ÇÖZÜM: Tüm sistemin serbest cisim diyagramından hareketle, denge denklemlerini kullanarak E ve C deki mesnet tepkileri hesaplanır. A düğümünde bilinmeyen iki çubuk kuvveti düğüm noktasının dengesinden hesaplanabilir. Düğüm noktaları yöntemi ile kafesteki tüm çubuk kuvvetlerini belirleyiniz. D, B ve E düğümlerindeki çubuk kuvvetleri de ardışık olarak düğümlerin denge denklemlerinden hesaplanabilir. Artık C düğümündeki tüm çubuk kuvvetleri ve mesnet tepkileri bilinmektedir. Ancak, C düğümünün dengesi, çözümün doğruluğu kontrol amacıyla kullanılabilir.

141 141 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı ÇÖZÜM: Tüm kafes için yazılan denge denklemlerinden E ve C mesnet tepkileri bulunur. M = 0 C (9,0kN)(7, 2m) (4,5kN)(3,6m) + E(1,8m) = 0 E = 45kN F x = 0 C x = 0 F = 0 9,0kN 4,5kN + 45kN + C = 0 y C y = 31,5kN y

142 142 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı A düğümünde bilinmeyen yalnızca iki çubuk kuvveti var. Bunlar düğüm noktasının dengesinden bulunur. Denge denklemleri yazılırsa; F AD =-11,25 kn F AB =6,75 kn D düğümünde şimdi bilinmeyen yalnızca iki çubuk kuvveti kaldı. Burada düğüm noktasının dengesi yazılırsa; F DB =11,25 kn F DE =-13,50 kn

143 143 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı B düğümünde bilinmeyen yalnızca iki çubuk kuvveti var. Bunlar düğüm noktasının dengesinden bulunur. Denge denklemleri yazılırsa; F BC =23,60 kn F BE =16,90 kn E düğümünde şimdi bilinmeyen yalnızca bir çubuk kuvveti kaldı. Burada düğüm noktasının dengesi yazılırsa; F EC =-39,40 kn

144 144 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı F F x y = = ( 39. 4) = 0 ( tamam) ( 39. 4) = 0 ( tamam) C düğümündeki tüm çubuk kuvvetleri ve mesnet tepkileri biliniyor. Yine de, bu düğümde yazılacak denge denklemlerinden yararlanılarak çözüm kontrol edilebilir.

145 145 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı Ritter (Kesim) Yöntemi: - Verilen dış yükler ve bunlardan oluşan mesnet tepkileri altında dengede olan bir kafes sistem, yapılan bir kesimle iki parçaya ayrılırsa, her bir parça kendine etkiyen dış yükler, mesnet tepkileri ve kesim yapılan çubuklardaki çubuk kuvvetlerinin etkisi altında dengededir. - Yapılan kesimlerin en fazla, bilinmeyen üç çubuk kuvveti olacak şekilde yapılmasına dikkat edilirse, bilinmeyen çubuklardaki çubuk kuvvetleri parçalardan birine ait denge denklemleri ile hesaplanabilir. - Denge denklemleri, her denklemde bir bilinmeyen bulunacak şekilde yazılabilirler. - Çubuk kuvvetlerinden bazıları hesaplandık tan sonra diğerleri onlara bağlı olarak denge denklemleri ile bulunabilirler.

146 146 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı ÇÖZÜM: Tüm sistemin serbest cisim diyagramından hareketle, denge denklemlerini kullanarak A ve L deki mesnet tepkileri hesaplanır. FH, GH, and GI elemanlarından geçen bir kesit alınır ve parçalardan birine ait serbest cisim diyagramı çizilir. FH, GH, and GI çubuk kuvvetlerini hesaplayınız. İstenen çubuk kuvvetleri statik denge denklemleri yazılarak hesaplanır.

147 147 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı ÇÖZÜM: Tüm kafes için yazılan denge denklemlerinden A ve L mesnet tepkileri bulunur. ( 5 m)( 6 kn) ( 10 m)( 6 kn) ( 15 m)( 6 kn) ( 20 m)( 1 kn) ( 25 m)( 1 kn) + ( 25 m) L M = 0 = A L = 7,50 kn F = 0 = 20 kn + L + A y A = 12,50 kn

148 148 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı FH, GH ve GI çubuklarından geçen bir kesit alıp sağda kalan parçayı serbest cisim olarak düşünelim. Statik denge koşullarını uygulayarak bilinmeyen çubuk kuvvetlerini bulalım. MH = 0 ( 7,50 kn)( 10 m) ( 1 kn)( 5 m ) F ( 5 3 m) F = 13,13 GI, 3 = 0 kn GI F = 13,13 GI kn

149 149 İzostatik Sistemlerin Sabit Yüklere Göre Hesabı FG 8 m tan α= = = 0,5333 α= 28,07 GL 15 m M = 0 G ( 7,5 kn)( 15 m) ( 1 kn)( 10 m) ( 1 kn)( 5 m) + ( F cos α)( 8 m) = 0 FH F = 13, 82 FH kn F = 13,82 FH kn GI 5 m tanβ= = = 0,9375 β= 43,15 HI 8 L M = ( m) ( 1 kn)( 10 m) ( 1 kn)( 5 m) ( F )( 10 m) F = 1,371 GH + + cos β = 0 kn GH F = 1,371 GH kn

150 150

151 151

152 152

153 153

154 154

155 155

156 156

157 157

158 158

159 159

160 160

161 161

162 162

163 163

164 164

165 165

166 166

167 167

168 168

169 169

170 170 İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı Hareketli Yük Çeşitleri: a) I. tip hareketli yük: Sistemin tümünü veya bir bölümünü kaplayan, boyu değişken düzgün yayılı hareketli yüklerdir (insan, eşya, hafif araç yükleri vb) b) II. Tip hareketli yük (yük katarı): Şiddetleri ve ara uzaklıkları sabit olan tekil yüklerden oluşan hareketli yüklerdir. (tekerlekli araç yükleri)

171 171 İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı Hareketli Yük Çeşitleri: c) III. tip hareketli yük: Şiddetleri ve ara uzaklıkları sabit olan tekil yükler ile boyu değişken düzgün yayılı yükten oluşan hareketli yüklerdir (büyük araç + bunların önünde veya arkasında küçük araç yükleri kombinasyonu). d) IV. Tip hareketli yük: Boyu sabit, düzgün yayılı hareketli yüklerdir (paletli araç yükleri).

172 172 İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı Hareketli Yüklere Göre Hesap: - Hareketli yüklerin sistem üzerindeki konumları değişkendir. - Hareketli yükler etkisindeki bir yapı sisteminin boyutlandırılması için, sistemin her kesitinde, hareketli yüklerden oluşan en elverişsiz (maksimum ve minimum) kesit tesirlerinin hesaplanması gerekmektedir. - Hareketli yüklerden oluşan en elverişsiz büyüklükler genel olarak araştırma ile bulunabilir. Bunun için hareketli yük sistemin üzerinde hareket ettirilerek yükün her konumu için aranan büyüklüğün değeri hesaplanır. Araştırmanın daha sistematik yapılabilmesi için tesir çizgilerinden yararlanılır. Bunun için 1 birimlik (1 N, 1 kn, 1 ton vb) düşey kuvvet sistem üzerinde hareket ettirilerek kuvvetin her konumu için aranan büyüklüğün değeri hesaplanır ve bu değerlerden yararlanılarak tesir çizgisi diyagramı çizilir. Sisteme ait herhangi bir büyüklüğün tesir çizgisi diyagramı çizildikten sonra, bu diyagramdan yararlanarak; a) Verilen bir yükleme için söz konusu büyüklüğün değeri b) Verilen bir hareketli yük için söz konusu büyüklüğün alacağı en elverişsiz değerler kolaylıkla hesaplanabilir.

Yararlanılabilecek Bazı Kaynaklar

Yararlanılabilecek Bazı Kaynaklar 2 Yararlanılabilecek Bazı Kaynaklar 1. Yapı Statiği I-II Adnan ÇAKIROĞLU ve Enver ÇETMELİ 2. Çözümlü Örneklerle Yapı Statiği Hüsnü CAN 3. Taşıyıcı Sistemler ve Yapı Statiği İsmail İlhan SUNGUR 4. Yapı

Detaylı

Yararlanılabilecek Bazı Kaynaklar

Yararlanılabilecek Bazı Kaynaklar 2 Yararlanılabilecek Bazı Kaynaklar 1. Yapı Statiği I-II Adnan ÇAKIROĞLU ve Enver ÇETMELİ 2. Çözümlü Örneklerle Yapı Statiği Hüsnü CAN 3. Taşıyıcı Sistemler ve Yapı Statiği İsmail İlhan SUNGUR 4. Yapı

Detaylı

İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı

İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı İzostatik Sistemlerin Hareketli Yüklere Göre Hesabı Hareketli Yük Çeşitleri: a) I. tip hareketli yük: Sistemin tümünü veya bir bölümünü kaplayan, boyu değişken düzgün yayılı hareketli yüklerdir (insan,

Detaylı

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN Yapı Sistemleri: İzostatik (Statikçe Belirli) Sistemler : Bir sistemin tüm kesit tesirlerini (iç kuvvetlerini) ve mesnet reaksiyonlarını

Detaylı

Yapı Sistemlerinde Elverişsiz Yüklemeler:

Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapılara etkiyen yükler ile ilgili çeşitli sınıflama tipleri vardır. Bu sınıflamalarda biri de yapı yükleri ve ilave yükler olarak yapılan sınıflamadır. Bu sınıflama;

Detaylı

Kafes Sistemler. Doğru eksenli çubukların birbirlerine mafsallı olarak birleşmesinden meydana gelen taşıyıcı sistemlere Kafes Sistemler denir.

Kafes Sistemler. Doğru eksenli çubukların birbirlerine mafsallı olarak birleşmesinden meydana gelen taşıyıcı sistemlere Kafes Sistemler denir. KAFES SİSTEMLER Doğru eksenli çubukların birbirlerine mafsallı olarak birleşmesinden meydana gelen taşıyıcı sistemlere Kafes Sistemler denir. Özellikle büyük açıklıklı dolu gövdeli sistemler öz ağırlıklarının

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 5 Eğilmede Kirişlerin Analizi ve Tasarımı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta) KAFES SİSTEMLER STATİK (4. Hafta) Düz eksenden oluşan çubukların birbiriyle birleştirilmesiyle elde edilen sistemlere kafes sistemler denir. Çubukların birleştiği noktalara düğüm noktaları adı verilir.

Detaylı

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 212 YAPI STATİĞİ I STABİLİTE STATİKÇE BELİRSİZLİK KİNEMATİK BELİRSİZLİK Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr

Detaylı

Kesit Tesirleri Tekil Kuvvetler

Kesit Tesirleri Tekil Kuvvetler Statik ve Mukavemet Kesit Tesirleri Tekil Kuvvetler B ÖĞR.GÖR.GÜLTEKİN BÜYÜKŞENGÜR Çevre Mühendisliği Mukavemet Şekil Değiştirebilen Cisimler Mekaniği Kesit Tesiri ve İşaret Kabulleri Kesit Tesiri Diyagramları

Detaylı

Elemanlardaki İç Kuvvetler

Elemanlardaki İç Kuvvetler Elemanlardaki İç Kuvvetler Bölüm Öğrenme Çıktıları Yapı elemanlarında oluşan iç kuvvetler. Eksenel kuvvet, Kesme kuvvet ve Eğilme Momenti Denklemleri ve Diyagramları. Bölüm Öğrenme Çıktıları Elemanlarda

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

YAPI STATİĞİ MESNETLER

YAPI STATİĞİ MESNETLER YAPI STATİĞİ MESNETLER Öğr.Gör. Gültekin BÜYÜKŞENGÜR STATİK Kirişler Yük Ve Mesnet Çeşitleri Mesnetler Ve Mesnet Reaksiyonları 1. Kayıcı Mesnetler 2. Sabit Mesnetler 3. Ankastre (Konsol) Mesnetler 4. Üç

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

STATİK KUVVET ANALİZİ (2.HAFTA)

STATİK KUVVET ANALİZİ (2.HAFTA) STATİK KUVVET ANALİZİ (2.HAFTA) Mekanik sistemler üzerindeki kuvvetler denge halindeyse sistem hareket etmeyecektir. Sistemin denge hali için gerekli kuvvetlerin hesaplanması statik hesaplamalarla yapılır.

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

29. Düzlem çerçeve örnek çözümleri

29. Düzlem çerçeve örnek çözümleri 9. Düzlem çerçeve örnek çözümleri 9. Düzlem çerçeve örnek çözümleri Örnek 9.: NPI00 profili ile imal edilecek olan sağdaki düzlem çerçeveni normal, kesme ve moment diyagramları çizilecektir. Yapı çeliği

Detaylı

Kirişlerde Kesme (Transverse Shear)

Kirişlerde Kesme (Transverse Shear) Kirişlerde Kesme (Transverse Shear) Bu bölümde, doğrusal, prizmatik, homojen ve lineer elastik davranan bir elemanın eksenine dik doğrultuda yüklerin etkimesi durumunda en kesitinde oluşan kesme gerilmeleri

Detaylı

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir. A-36 malzemeden çelik çubuk, şekil a gösterildiği iki kademeli olarak üretilmiştir. AB ve BC kesitleri sırasıyla A = 600 mm ve A = 1200 mm dir. A serbest ucunun ve B nin C ye göre yer değiştirmesini belirleyiniz.

Detaylı

6.12 Örnekler PROBLEMLER

6.12 Örnekler PROBLEMLER 6.1 6. 6.3 6.4 6.5 6.6 6.7 Çok Parçalı Taşıyıcı Sistemler Kafes Sistemler Kafes Köprüler Kafes Çatılar Tam, Eksik ve Fazla Bağlı Kafes Sistemler Kafes Sistemler İçin Çözüm Yöntemleri Kafes Sistemlerde

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta) TAŞIYICI SİSTEMLER VE MESNET TEPKİLERİ STATİK (3. Hafta) Taşıyıcı Sistemler Bir yapıya etki eden çeşitli kuvvetleri güvenlik sınırları içinde taşıyan ve bu kuvvetleri zemine aktaran sistemlere taşıyıcı

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVETLER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

Yararlanılabilecek Bazı Kaynaklar

Yararlanılabilecek Bazı Kaynaklar 2 Abdulkadir Cüneyt AYDIN Yararlanılabilecek Bazı Kaynaklar 1. Yapı Statiği II Adnan ÇAKIROĞLU ve Enver ÇETMELİ 2. Yapı Statiği II İbrahim EKİZ 3. Yapı Statiği-Hiperstatik Sistemler Konuralp GİRGİN, M.

Detaylı

İZOSTATİK (STATİKÇE BELİRLİ) SİSTEMLER

İZOSTATİK (STATİKÇE BELİRLİ) SİSTEMLER İZOSTATİK (STATİKÇE BELİRLİ) SİSTEMLER Yapı Elemanları İnşaat Mühendisliği ile ilgili yapı sistemleri üç ayrı tipteki yapı elemanlarının birleşiminden oluşur. 1)Çubuk Elemanlar: İki boyutu üçüncü boyutuna

Detaylı

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.1 7.2 Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.4 Örnekler Kendi Ağırlığını Taşıyan Kablolar (Zincir Eğrisi)

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Mühendislikte en önemli yapı ve makine elemanları mil ve kirişlerdir. Bu bölümde, mil ve kirişlerde

Detaylı

ÇATI MAKASINA GELEN YÜKLER

ÇATI MAKASINA GELEN YÜKLER ÇATI MAKASINA GELEN YÜKLER Bir yapıyı dış etkilere karşı koruyan taşıyıcı sisteme çatı denir. Belirli aralıklarla yerleştirilen çatı makaslarının, yatay taşıyıcı eleman olan aşıklarla birleştirilmesi ile

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVELER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 6.Düzlem ve Uzay kafes Sistemler Doç. Dr. NURHAYAT DEĞİRMENCİ Birbirlerine bağlı birden fazla parçadan yapılmış sistemlerin dengesi için dıs kuvvetlere ilaveten iç kuvvetler de düşünülmelidir.

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun Dolu Gövdeli Kirişler TAŞIYICI SİSTEM TASARIMI 1 Prof Dr Görün Arun 072 ÇELİK YAPILAR Kirişler, Çerçeve Dolu gövdeli kirişler: Hadde mamulü profiller Levhalı yapma en-kesitler Profil ve levhalarla oluşturulmuş

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi 1 Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

GERİLME Cismin kesilmiş alanı üzerinde O

GERİLME Cismin kesilmiş alanı üzerinde O GERİLME Cismin kesilmiş alanı üzerinde O ile tanımlı noktasına etki eden kuvvet ve momentin kesit alana etki eden gerçek yayılı yüklerin bileşke etkisini temsil ettiği ifade edilmişti. Cisimlerin mukavemeti

Detaylı

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8-

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8- 1 STATİK Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -8- Giriş 2 Denge denklemlerini, mafsala bağlı elemanlarda oluşan yapıları analiz etmek için kullanacağız. Bu analiz, dengede olan bir yapının

Detaylı

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları

Detaylı

Doç. Dr. Bilge DORAN

Doç. Dr. Bilge DORAN Doç. Dr. Bilge DORAN Bilgisayar teknolojisinin ilerlemesi doğal olarak Yapı Mühendisliğinin bir bölümü olarak tanımlanabilecek sistem analizi (hesabı) kısmına yansımıştır. Mühendislik biliminde bilindiği

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER MUKAEMET I ÇÖZÜMÜ ÖRNEKER ders notu Yard. Doç. Dr. Erdem DAMCI Şubat 15 Mukavemet I - Çözümlü Örnekler / 7 Örnek 1. Üzerinde yalnızca yayılı yük bulunan ve açıklığı olan bir basit kirişe ait eğilme momenti

Detaylı

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir.

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. BASINÇ ÇUBUKLARI Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. Basınç çubukları, sadece eksenel basınç kuvvetine maruz kalırlar. Bu çubuklar üzerinde Eğilme ve

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ TEKNOLOJİNİN BİLİMSEL İLKELERİ Öğr. Gör. Fatih KURTULUŞ 4.BÖLÜM: STATİK MOMENT - MOMENT (TORK) Moment (Tork): Kuvvetin döndürücü etkisidir. F 3 M ile gösterilir. Vektörel büyüklüktür. F 4 F 3. O. O F 4

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

3B Kuvvet Momenti. Üç Boyutlu Kuvvet Sistemi

3B Kuvvet Momenti. Üç Boyutlu Kuvvet Sistemi 3B Kuvvet Momenti Üç Boyutlu Kuvvet Sistemi M = r (vektör) X F (vektör) Her F kuvvetinin uzunluk r vektörünü bul Eğer verilmemişse, F kuvvetini de vektörel ifade et. Uzunluk vektörünü r bulmak için: Uzunlık

Detaylı

HAFTA YAPI STATİĞİ ÖĞR.GÖR. GÜLTEKİN BÜYÜKŞENGÜR

HAFTA YAPI STATİĞİ ÖĞR.GÖR. GÜLTEKİN BÜYÜKŞENGÜR HAFTA 01 YAPI STATİĞİ ÖĞR.GÖR. GÜLTEKİN BÜYÜKŞENGÜR YAPI STATİĞİ Hafta 01 1 İçindekiler GİRİŞ... 2 YAPI SİSTEMLERİ... 3 YÜKLER... 6 1- ETKİME DURUMLARINA GÖRE YÜKLER... 6 2- ETKİME BİÇİMLERİNE GÖRE YÜKLER...

Detaylı

34. Dörtgen plak örnek çözümleri

34. Dörtgen plak örnek çözümleri 34. Dörtgen plak örnek çözümleri Örnek 34.1: Teorik çözümü Timoshenko 1 tarafından verilen dört tarafından ankastre ve merkezinde P=100 kn tekil yükü olan kare plağın(şekil 34.1) çözümü 4 farklı model

Detaylı

KESİT TESİR DİYAGRAMLARI YAPI STATİĞİ 1

KESİT TESİR DİYAGRAMLARI YAPI STATİĞİ 1 KESİT TESİR DİYAGRAMLARI YAPI STATİĞİ 1 GİRİŞ Sabit yu klerden meydana gelen kesit tesiri fonksiyonlarından elde edilen grafiklere Kesit Tesir Diyagramları denir. Du zlem c ubuk sistemlerde M, N, T (V)

Detaylı

Mukavemet. Betonarme Yapılar. Giriş, Malzeme Mekanik Özellikleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği

Mukavemet. Betonarme Yapılar. Giriş, Malzeme Mekanik Özellikleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği Mukavemet Giriş, Malzeme Mekanik Özellikleri Betonarme Yapılar Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği GİRİŞ Referans kitaplar: Mechanics of Materials, SI Edition, 9/E Russell

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

İNŞ 320- Betonarme 2 Ders Notları / Prof Dr. Cengiz DÜNDAR Arş. Gör. Duygu BAŞLI

İNŞ 320- Betonarme 2 Ders Notları / Prof Dr. Cengiz DÜNDAR Arş. Gör. Duygu BAŞLI a) Denge Burulması: Yapı sistemi veya elemanında dengeyi sağlayabilmek için burulma momentine gereksinme varsa, burulma denge burulmasıdır. Sözü edilen gereksinme, elastik aşamada değil taşıma gücü aşamasındaki

Detaylı

AÇI YÖNTEMİ Slope-deflection Method

AÇI YÖNTEMİ Slope-deflection Method SAKARYA ÜNİVERSİTESİ İNŞAAT ÜHENDİSLİĞİ BÖLÜÜ Department of Civil Engineering İN 303 YAPI STATIĞI II AÇI YÖNTEİ Slope-deflection ethod Y.DOÇ.DR. USTAA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

Eksenel Yükleme Amaçlar

Eksenel Yükleme Amaçlar Eksenel Yükleme Amaçlar Geçtiğimiz bölümlerde eksenel yüklü elemanlarda oluşan normal gerilme ve normal şekil değiştirme konularını gördük, Bu bölümde ise deformasyonların bulunması ile ilgili bir metot

Detaylı

R d N 1 N 2 N 3 N 4 /2 /2

R d N 1 N 2 N 3 N 4 /2 /2 . SÜREKLİ TEELLER. Giriş Kolon yüklerinin büyük ve iki kolonun birbirine yakın olmasından dolayı yapılacak tekil temellerin çakışması halinde veya arsa sınırındaki kolon için eksantrik yüklü tekil temel

Detaylı

Mukavemet. Betonarme Yapılar. İç Kuvvet Diyagramları. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği

Mukavemet. Betonarme Yapılar. İç Kuvvet Diyagramları. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği Betonarme Yapılar Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği KİRİŞ MESNETLENME TİPLERİ VE YÜKLER KİRİŞ MESNETLENME TİPLERİ VE YÜKLER (a) Basit kiriş (b) Sürekli kiriş (c) Konsol

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

Açı Yöntemi. 1 ql 8. Açı yöntemi olarak adlandırılan denklemlerin oluşturulmasında aşağıda gösterilen işaret kabulü yapılmaktadır.

Açı Yöntemi. 1 ql 8. Açı yöntemi olarak adlandırılan denklemlerin oluşturulmasında aşağıda gösterilen işaret kabulü yapılmaktadır. çı Yöntemi Kuvvet ve -oment yöntemlerinde, ilave denklemleri zorlamaların sistem üzerinde oluşturduğu deformasyonların sistemde oluşturulan suni serbestliklerden dolayı oluşan deformasyonlardan ne kadar

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve leri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boyutlu Kuvvet

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun . Döşemeler TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun 07.3 ÇELİK YAPILAR Döşeme, Stabilite Kiriş ve kolonların düktilitesi tümüyle yada kısmi basınç etkisi altındaki elemanlarının genişlik/kalınlık

Detaylı

YAPISAL ANALİZ DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

YAPISAL ANALİZ DOÇ.DR. KAMİLE TOSUN FELEKOĞLU YAPISAL ANALİZ DOÇ.DR. KAMİLE TOSUN FELEKOĞLU 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 KAFES KÖPRÜLER

TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 KAFES KÖPRÜLER TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 DR. MUSTAFA KUTANİS SLIDE 1 KAFES KÖPRÜLER DR. MUSTAFA KUTANİS SAÜ İNŞ.MÜH. BÖLÜMÜ

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T E CHAPTER 2 Eksenel MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Yükleme Fatih Alibeyoğlu Eksenel Yükleme Bir önceki bölümde, uygulanan yükler neticesinde ortaya çıkan

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50 YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50 Toplam 100 1 Mukavemet ve Statiğin Önemi 2 Statiğin

Detaylı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı 1 STATİK AĞIRLIK MERKEZİ 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler 3.4 Integrasyon ile ağırlık merkezi hesabı 3.5 Pappus-Guldinus Teoremi 3.6 Yayılı Yüke Eşdeğer Tekil Yük 3.7 Sıvı

Detaylı

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ Malzemelerde Elastisite ve Kayma Elastisite Modüllerinin Eğme ve Burulma Testleri ile Belirlenmesi 1/5 DENEY 4 MAZEMEERDE EASTĐSĐTE VE KAYMA EASTĐSĐTE MODÜERĐNĐN EĞME VE BURUMA TESTERĐ ĐE BEĐRENMESĐ 1.

Detaylı

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 4 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

SEM2015 programı kullanımı

SEM2015 programı kullanımı SEM2015 programı kullanımı Basit Kuvvet metodu kullanılarak yazılmış, öğretim amaçlı, basit bir sonlu elemanlar statik analiz programdır. Çözebileceği sistemler: Düzlem/uzay kafes: Evet Düzlem/uzay çerçeve:

Detaylı

BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor

BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor 3 BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması 1.1.018 MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor 1 3. Burulma Genel Bilgiler Burulma (Torsion): Dairesel Kesitli Millerde Gerilme

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

KONU 3. STATİK DENGE

KONU 3. STATİK DENGE KONU 3. STATİK DENGE 3.1 Giriş Bir cisme etki eden dış kuvvet ve momentlerin toplamı 0 ise cisim statik dengededir denir. Kuvvet ve moment toplamlarının 0 olması sırasıyla; ötelenme ve dönme denge şartlarıdır.

Detaylı

Ç E R Ç E V E L E R. L y2. L y1

Ç E R Ç E V E L E R. L y2. L y1 ADİL ALTUDAL Mart 2011 Ç E R Ç E V E L E R Betonarme yapıların özelliklerinden bir tanesi de monolitik olmasıdır. Bu özellik sayesinde, kirişlerin birleştiği kolonlarla birleşme noktaları olan düğüm noktalarının

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PROF.DR. MURAT DEMİR AYDIN ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. Ders Notları (pdf), Sınav soruları cevapları, diğer kaynaklar için Öğretim

Detaylı

Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri

Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri belirlenmesi 1. katta döşemelerin çözümü ve çizimi Döşeme

Detaylı

Kafes Sistemler. Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir.

Kafes Sistemler. Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Kafes Sistemler Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Kafes Sistemler Birçok uygulama alanları vardır. Çatı sistemlerinde, Köprülerde, Kulelerde, Ve benzeri

Detaylı

Çatı katında tüm çevrede 1m saçak olduğu kabul edilebilir.

Çatı katında tüm çevrede 1m saçak olduğu kabul edilebilir. Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri belirlenmesi 1. katta döşemelerin çözümü ve çizimi Döşeme

Detaylı

Mekanik. Mühendislik Matematik

Mekanik. Mühendislik Matematik Mekanik Kuvvetlerin etkisi altında cisimlerin denge ve hareket şartlarını anlatan ve inceleyen bir bilim dalıdır. Amacı fiziksel olayları açıklamak, önceden tahmin etmek ve böylece mühendislik uygulamalarına

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 4 Skaler: Fiziki büyüklükler SKALER BÜYÜKLÜK SEMBOLÜ BİRİMİ Kütle m Kilogram Hacim V m 3 Zaman t Saniye Sıcaklık T Kelvin Sadece sayısal değer ve birim verilerek ifade edilen

Detaylı

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş Mukavemet-II Yrd.Doç.Dr. Akın Ataş Bölüm 9 Kirişlerin Yer Değiştirmesi Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9.1 Giriş

Detaylı

BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II

BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II GENEL BİLGİLER Yapısal sistemler düşey yüklerin haricinde aşağıda sayılan yatay yüklerin etkisine maruz kalmaktadırlar. 1. Deprem 2. Rüzgar 3. Toprak itkisi 4.

Detaylı

Temel bilgiler-flipped Classroom Akslar ve Miller

Temel bilgiler-flipped Classroom Akslar ve Miller Makine Elemanları I Prof. Dr. İrfan KAYMAZ Temel bilgiler-flipped Classroom Akslar ve Miller İçerik Aks ve milin tanımı Akslar ve millerin mukavemet hesabı Millerde titreşim hesabı Mil tasarımı için tavsiyeler

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI AKSLAR VE MİLLER P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L İ HOĞ LU Dönen parça veya elemanlar taşıyan

Detaylı

Taşıyıcı Sistem İlkeleri

Taşıyıcı Sistem İlkeleri İTÜ Mimarlık Fakültesi Mimarlık Bölümü Yapı ve Deprem Mühendisliği Çalışma Grubu BETONARME YAPILAR MIM 232 Taşıyıcı Sistem İlkeleri 2015 Bir yapı taşıyıcı sisteminin işlevi, kendisine uygulanan yükleri

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet II Final Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet II Final Sınavı (2A) KOCELİ ÜNİVERSİTESİ ühendislik ültesi ina ühendisliği ölümü ukavemet II inal Sınavı () dı Soyadı : 5 Haziran 01 Sınıfı : No : SORU 1: Şekilde sistemde boru anahtarına 00 N luk b ir kuvvet etki etmektedir.

Detaylı

MUKAVEMET TEMEL İLKELER

MUKAVEMET TEMEL İLKELER MUKAVEMET TEMEL İLKELER Temel İlkeler Mukavemet, yük etkisi altındaki cisimlerin gerilme ve şekil değiştirme durumlarının, iç davranışlarının incelendiği uygulamalı mekaniğin bir dalıdır. Buradaki cisim

Detaylı