EM302 YÖNEYLEM ARAŞTIRMASI 2. YARIYILİÇİ SINAVI Y.Doç.Dr. Özgür Kabak SORULAR VE CEVAPLAR

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "EM302 YÖNEYLEM ARAŞTIRMASI 2. YARIYILİÇİ SINAVI Y.Doç.Dr. Özgür Kabak SORULAR VE CEVAPLAR"

Transkript

1 EM302 YÖNEYLEM ARAŞTIRMASI 2. YARIYILİÇİ SINAVI Y.Doç.Dr. Özgür Kabak SORULAR VE LAR 1. Ayşe kırmızı başlığı ile şirin ve yardımsever bir kızdır. Her gün annesinin pişirdiği yemekleri babaannesine göürmekedir. Küçük kızın babaannesinin evine gimesi için ormanın içinden geçmesi gerekmekedir. Aşağıdaki şekilde A annesinin evini, B Babaannesinin evini ve aradaki yollar ise ormandaki paikaları göserir. Köü kalpli kur Ayşe nin her gün ormanın içinde geçiğini bilmeke ve kızın babaannesine göürdüğü yemekleri araklamak için ormandaki yollardan birinde pusu kurmakadır. Endüsri Mühendisli eğiimi alan Ayşe, kurdun hangi yolda pusu kurduğu ile ilgili veri oplamış ve her yol için pusu kurma olasılığını çıkarmışır (p ij : kurdun (i,j) bağlanısında pusu kurma olasılığı). Şekil üzerinde p ij değerleri verilmişir (Dikka! Kur her gün sadece bir yolda pusu kurmakadır, o yüzden yollardaki olasılıkların oplamı 1 dir). Küçük kızın kendi evinden babaannesinin evine kurda yakalanma olasılığını en küçükleyecek şekilde varması için izlemesi gereken roayı Dinamik Programlama ile bulunuz. Yapığınız hesaplamaları ayrınılı olarak göseriniz. % 6 1 % 8 2 % 21 p ij A % 7 % 19 % 8 B % 11 3 % 10 4 % 10 f i : i nokasından B nokasına en kısa mesayeyi gösermek üzere; f B = 0 f 4 = f B + 0,10 = 0,10 f 2 = Min { f B + 0,21 ; f 4 + 0,08 } = Min {0,21 ; 0,18} = 0,18 f 3 = Min { f 2 + 0,19 ; f 4 + 0,10 } = Min {0,37 ; 0,20} = 0,20 f 1 = Min { f 2 + 0,08 ; f 3 + 0,07 } = Min {0,26 ; 0,27} = 0,26 f A = Min { f 1 + 0,06 ; f 3 + 0,11 } = Min {0,32 ; 0,31} = 0,31 ( 4 üzerinden) ( 4 üzerinden) ( 2 üzerinden) ( 3 üzerinden) Ayşe nin izlemesi gereken roa: A-3-4-B, bu roada giderse yakalanma olasılığı %31 olacakır.

2 2. ATK-San küçük çaplı bir ersanede sandal üreimi yapan bir firmadır. Firmanın önümüzdeki dör sezondaki sandal alepleri abloda verilmişir. Sezonluk işçi bulunabilirliği ve hammadde maliyelerindeki değişimden öürü sezonluk üreim maliyeleri farklılık gösermekedir ve abloda her sezon için üreim maliyei verilmişir. Bir sezonda sabi üreim maliyeinin TL dir. Bir sandalı bir sezon soka bulundurma maliyei ise TL dir. ATK-San ın en küçük maliyele alepleri karşılayabilmesi için uygulaması gereken üreim planını Wagner-Whiin yönemi kullanarak bulunuz. Sezon Üreim maliyei Talep (ade) (1.000TL/ade) f =. sezonda üreim yapılması durumunda, +1, 4. sezonlardaki alebi karşılamanın en küçük maliyei f min c f c j j 0,1,2,... T K c ( d j d 1 j 1... d j ) h( d 1 2* d 2... j * d j ) f 5 = 0 f 4 = (2) + f 5 = 120 { sadece 4. Sezon için üre} f 3 = Min (3) + f 4 = 275 { sadece 3. sezon için üre } (3+2) + 10 (2) + f 5 = 225* { 3 ve 4. sezonlar için üre } ** (7) + f 3 = 515 { sadece 2. sezon için üre } f 2 = Min (7+3) + 10 (3) + f 4 = 530 { 2 ve 3. sezonlar için üre } (7+3+2) + 10 (3 + 2*2) + f 5 = 510* { 2,3 ve 4. sezonlar için üre } ** (4) + f 2 = 690 { sadece 1. sezon için üre } f 1 = Min (4+7) + 10 (7) + f 3 = 650* { 1 ve 2. sezonlar için üre }** (4+7+3) + 10 (7 + 2*3) + f 4 = 680 { 1,2 ve 3. sezonlar için üre } ( ) + 10 (7 + 2*3 + 3*2) + f 5 = 670 { 1,2,3 ve 4. sezonlar için üre } Sonuç: 1. sezonda 1 ve 2. sezonlar için 11 ade; 3. sezonda 3 ve 4. sezonlar için 5 ade üreim yapılmalıdır. 2. ve 4. Sezonlarda üreim yapılmamalıdır. Verilen üreim planının maliyei 650 bin TL dir.

3 3. Aşağıdaki doğrusal olmayan programlama modelini uç nokalarını analiz ederek çözünüz. DURUM 1. a < x < b içerisindeki f (x) = 0 olan nokalar: f (x) = ( ) olan nokalar x = 0 ve x = 2 dir. Bu nokaların yerel min veya maks olduğunu anlayabilmek için ikinci ürevine bakılır. f (x) = 6x-6 f (0)= -6 yerel maksimum f (2)= 6 yerel minimum Aday uç noka (x = 2) DURUM 2. f (x) in anımlı olmadığı nokalar: Verilen problemde f (x) in anımlı olmadığı noka yokur DURUM 3. [a,b] aralığının a ve b nokaları x = -2 ve x = 4 nokalarının yerel min veya maks olduğunu anlayabilmek için bu nokalardaki birinci ürevlere bakılır. f (x) = f (-2) = 24 yerel minimum aday uç noka (x = -2) f (4) = 24 yerel maksimum sonuç olarak (x = 2) ve (x = -2) olmak üzere iki yerel miminum belirlenmişir. f (2 ) = -5 ; f (-2 ) = -21 olduğu için çözüm x = -2, f = -21

4 4. Aşağıda bir projenin kriik yolunu bulabilmek için kurulmuş DP nin Lindo kodları ve çözüm raporu verilmişir. Buna göre soruları cevaplayınız. a) Proje ağını çiziniz ve faaliye sürelerini ağ üzerinde göseriniz. b) Proje faaliyelerini ve öncelik ilişkilerini bir abloda göseriniz. c) Proje kriik yolunu belirleyiniz. Proje en kısa ne kadar sürede biirilebilir? d) Tüm faaliyeler için en olası (m), en iyimser (a) ve en köümser (b) faaliye sürelerini; m = önceki aşamada bulunan faaliye süresi, a = 0,8m ve b = 1,2m kabul ederek projenin 30 günden önce biirilme olasılığını hesaplayınız. Lindo kodu min x8-x1 s A) x2-x1 > 3 B) x3-x2 > 3 C) x5-x2 > 4 D) x4-x2 > 2 E) x5-x4 > 3 F) x5-x3 > 4 G) x6-x3 > 5 H) x7-x6 > 6 I) x6-x5 > 5 J) x7-x5 > 4 K) x7-x4 > 2 L) x8-x7 > 6 End Sonuç Raporu LP OPTIMUM FOUND AT STEP 6 OBJECTIVE FUNCTION VALUE 1) VARIABLE VALUE REDUCED COST X8 X X X3 X X X6 X ROW SLACK OR SURPLUS DUAL PRICES A) B) C) D) E) F) G) H) I) J) K) L) NO. ITERATIONS= 6

5 a) b) Faaliye Öncül Faaliye Süre A - 3 B A 3 C A 4 D A 2 E D 3 F B 4 G B 5 H G, I 6 I C, E, F 5 J C, E, F 4 K D 2 L H, J, K 6 c) Projenin kriik yolunu Lindo çıkısında gölge fiyaı -1 olan kısılarla ilgili faaliyeler oluşurur: Kriik faaliyeler: A, B, F, H, I, L Kriik yol: Toplam süre: 27 d) Kriik faaliyelerin a, b ve m değerleri ile beklenen değerleri ve varyansları aşağıdaki ablodaki gibi hesaplanır: Faaliye a b m E(Tij) Var(Tij) A 2,4 3, ,04 B 2,4 3, ,04 F 3,2 4, , H 4,8 7, ,16 I , L 4,8 7, ,16 Proje 27 0, Projenin amamlanma süresi beklenen değeri 27, varyansı 0,58 (veya sandar sapması 0,76.) olan normal dağılıma uyar. P(CP 30) = P[(CP-27)/0,76 (30-27)/0,76)] = P(Z 3,93) =

EM302 Yöneylem Araştırması 2 Proje Yönetimi. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Proje Yönetimi. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Proje Yönetimi Dr. Özgür Kabak Proje yönetimi Organizasyonlar işlerini işlemler veya projeler olarak gerçekleştirirler. İşlemler ve projelerin ortak özellikleri: İnsanlar tarafından

Detaylı

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin DUYARLILIK ANALİZİ Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin değişmesinin problemin optimal çözümü üzerine etkisini incelemektedir. Oluşturulan modeldeki

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

Doğrusal Programlama ve Excel Çözücü Uygulamasıyla Optimum Rasyon Çözümü

Doğrusal Programlama ve Excel Çözücü Uygulamasıyla Optimum Rasyon Çözümü Doğrusal Programlama ve Excel Çözücü Uygulamasıyla Optimum Rasyon Çözümü MIN maliyet= $1X 1 + $2X 2 Subject to: 1X 1 + 1X 2 >=10 (Kalsiyum) 3X 1 +1X 2 >=15 (Protein) 1X 1 +6X 2 >=15 (Enerji) ve X 1 >=0,

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

Çift Üstel Düzeltme (Holt Metodu ile)

Çift Üstel Düzeltme (Holt Metodu ile) Tahmin Yönemleri Çif Üsel Düzelme (Hol Meodu ile) Hol meodu, zaman serilerinin, doğrusal rend ile izlenmesi için asarlanmış bir yönemdir. Yönem (seri için) ve (rend için) olmak üzere iki düzelme kasayısının

Detaylı

FİZİK-II DERSİ LABORATUVARI ( FL 2 4 )

FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) KURAM: Kondansaörün Dolma ve Boşalması Klasik olarak bildiğiniz gibi, iki ileken paralel plaka arasına dielekrik (yalıkan) bir madde konulursa kondansaör oluşur.

Detaylı

KARAR TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

KARAR TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü KARAR TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü Karar Ortamları Karar Analizi, alternatiflerin en iyisini seçmek için akılcı bir sürecin kullanılması ile ilgilenir. Seçilen

Detaylı

1) Çelik Çatı Taşıyıcı Sisteminin Geometrik Özelliklerinin Belirlenmesi

1) Çelik Çatı Taşıyıcı Sisteminin Geometrik Özelliklerinin Belirlenmesi 1) Çelik Çaı Taşıyıcı Siseminin Geomerik Özelliklerinin Belirlenmesi 1.1) Aralıklarının Çaı Örüsüne Bağlı Olarak Belirlenmesi Çaı örüsünü aşıyan aşıyıcı eleman aşık olarak isimlendirilir. Çaı sisemi oplam

Detaylı

Total Contribution. Reduced Cost. X1 37,82 480 18.153,85 0 basic 320 512. X2 22,82 320 7.302,56 0 basic 300 M. Slack or

Total Contribution. Reduced Cost. X1 37,82 480 18.153,85 0 basic 320 512. X2 22,82 320 7.302,56 0 basic 300 M. Slack or HRS şirketi BRN Endüstrileri ile bir anlaşma yapmış ve her ay BRN ye üretebildiği kadar A ürününden sağlamayı garanti etmiştir. HRS de vasıflı ustalar ve çıraklar çalışmaktadır. Bir usta, bir saatte 3

Detaylı

END331 YÖNEYLEM ARAŞTIRMASI I GEÇMİŞ SINAV SORULARI

END331 YÖNEYLEM ARAŞTIRMASI I GEÇMİŞ SINAV SORULARI END331 YÖNEYLEM ARAŞTIRMASI I GEÇMİŞ SINAV SORULARI 1. Aşağıda verilen modeli bir DP modeli olarak formüle ediniz. min x 4 + 2y 7 öyle ki 3x + 5y 25 2x + 10y 20 x, y 0 2. Bir banka çek işlemleri için iki

Detaylı

YÖNEYLEM ARAŞTIRMASI-II Hafta 14

YÖNEYLEM ARAŞTIRMASI-II Hafta 14 9.0.07 YÖNEYLEM ARAŞTIRMASI-II Hafta ERT ANALİZİ Olasılıksal roje Değerlendirme ve Gözden Geçirme Tekniği ERT (robabilistic Evaluation and Review Technique) Eğer projenin faaliyetlerinin tamamlanma süresi

Detaylı

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY 3 TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİCİLER

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY 3 TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİCİLER T.. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN ELEKTRONİK DEVRELER LABORATUVARI II DENEY TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİİLER Deneyi Yapanlar Grubu Numara

Detaylı

Dolar Kurundaki Günlük Hareketler Üzerine Bazı Gözlemler

Dolar Kurundaki Günlük Hareketler Üzerine Bazı Gözlemler Dolar Kurundaki Günlük Harekeler Üzerine Bazı Gözlemler Türkiye Bankalar Birliği Ekonomi Çalışma Grubu Toplanısı 28 Nisan 2008, İsanbul Doç. Dr. Cevde Akçay Koç Finansal Hizmeler Baş ekonomis cevde.akcay@yapikredi.com.r

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II T.. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN ELEKTRONİK DEVRELER LABORATUVARI II DENEY : TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİİLER DENEY GRUBU :... DENEYİ YAPANLAR

Detaylı

ÇELİK KAFES SİSTEM TASARIMI DERS NOTLARI

ÇELİK KAFES SİSTEM TASARIMI DERS NOTLARI BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÇELİK KAFES SİSTEM TASARIMI DERS PLANI KONULAR 1. Çelik Çaı Siseminin Geomerik Özelliklerinin Belirlenmesi 1.1 Aralıklarının

Detaylı

DİNAMİK PARTİ BÜYÜKLÜĞÜ PROBLEMLERİNİN ÇÖZÜMÜNDE YENİ BİR YAKLAŞIM: MİNİMUM MALİYET ALGORİTMASI. Cevriye GENCER *

DİNAMİK PARTİ BÜYÜKLÜĞÜ PROBLEMLERİNİN ÇÖZÜMÜNDE YENİ BİR YAKLAŞIM: MİNİMUM MALİYET ALGORİTMASI. Cevriye GENCER * C.Gencer, Kara Harp Okulu Dergii, 7(1997), 15-28 DİNAMİK PARTİ BÜYÜKLÜĞÜ PROBLEMLERİNİN ÇÖZÜMÜNDE YENİ BİR YAKLAŞIM: MİNİMUM MALİYET ALGORİTMASI Cevriye GENCER * Bu çalışmada, ek aşamalı, ek ürünlü kapaieiz,

Detaylı

YAPIM YÖNETİMİ 10 = 6 = 6 TEI

YAPIM YÖNETİMİ 10 = 6 = 6 TEI Performans Değerlendirme ve Gözden Geçirme Tekniği - PERT 1. Performans Değerlendirme ve Gözden Geçirme Tekniği (PERT) projelerinin planlaması, eylemlerin ve proje sürelerinin tahmini için olasılık kavramlarının

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak GAMS Giriş GAMS (The General Algebraic Modeling System) matematiksel proglamlama ve optimizasyon için tasarlanan yüksek seviyeli bir dildir. Giriş dosyası:

Detaylı

Tarımda Mühendislik Düşünce Sistemi. Prof. Dr. Ferit Kemal SÖNMEZ

Tarımda Mühendislik Düşünce Sistemi. Prof. Dr. Ferit Kemal SÖNMEZ Tarımda Mühendislik Düşünce Sistemi Prof. Dr. Ferit Kemal SÖNMEZ Sistem Aralarında ilişki veya bağımlılık bulunan elemanlardan oluşan bir yapı veya organik bütündür. Bir sistem alt sistemlerden oluşmuştur.

Detaylı

= t. v ort. x = dx dt

= t. v ort. x = dx dt BÖLÜM.4 DOĞRUSAL HAREKET 4. Mekanik Mekanik konusu, kinemaik ve dinamik olarak ikiye ayırmak mümkündür. Kinemaik cisimlerin yalnızca harekei ile ilgilenir. Burada cismin hareke ederken izlediği yol önemlidir.

Detaylı

BELİRSİZ FİYAT VE TALEP KOŞULLARI ALTINDA SATINALMA POLİTİKALARI. Ercan ŞENYİĞİT*

BELİRSİZ FİYAT VE TALEP KOŞULLARI ALTINDA SATINALMA POLİTİKALARI. Ercan ŞENYİĞİT* Erciyes Üniversiesi Fen Bilimleri Ensiüsü Dergisi 24 (1-2) 165-176 (2008) hp://fbe.erciyes.edu.r/ ISSN 1012-2354 BELİRSİZ FİYAT VE TALEP KOŞULLARI ALTINDA SATINALMA POLİTİKALARI ÖZET Ercan ŞENYİĞİT* Erciyes

Detaylı

Konu 5. Bölüm 2 : Proje Değerlendirme ve Gözden Geçirme Tekniği (PERT) Üç zamanlı tahmin yaklaşımı. a : Faaliyetin iyimser gerçekleşme süresi

Konu 5. Bölüm 2 : Proje Değerlendirme ve Gözden Geçirme Tekniği (PERT) Üç zamanlı tahmin yaklaşımı. a : Faaliyetin iyimser gerçekleşme süresi Proje Yönetimi ölüm : Proje eğerlendirme ve özden eçirme Tekniği (PRT) Konu PRT Proje Planlamasında Olasılıksal Yaklaşım Üç zamanlı tahmin yaklaşımı a : aaliyetin iyimser gerçekleşme süresi m : aaliyetin

Detaylı

Teknolojik bir değişiklik veya üretim arttırıcı bir yatırımın sonucunda ihracatta, üretim miktarında vs. önemli artışlar olabilir.

Teknolojik bir değişiklik veya üretim arttırıcı bir yatırımın sonucunda ihracatta, üretim miktarında vs. önemli artışlar olabilir. YAPISAL DEĞİŞİKLİK Zaman serileri bazı nedenler veya bazı fakörler arafından ekilenerek zaman içinde değişikliklere uğrayabilirler. Bu değişim ikisadi kriz, ikisa poliikalarında yapılan değişiklik, eknolojik

Detaylı

COBB-DOUGLAS ÜRETİM FONKSİYONU ÜZERİNE BİR GENELLEME

COBB-DOUGLAS ÜRETİM FONKSİYONU ÜZERİNE BİR GENELLEME V. Ulusal Üreim Araşırmaları Sempozyumu, İsanul Ticare Üniversiesi, 5-7 asım 005 OBB-DOUGAS ÜRETİM FONSİYONU ÜZERİNE BİR GENEEME Necmein TANRIÖVER Başken Üniversiesi Yiği oray GENÇ Başken Üniversiesi Öze

Detaylı

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006 ĐST 49 Doğrusal Programlama ARA SINAV I 15 Kasım 006 Adı Soyadı:KEY No: 1. Aşağıdaki problemi grafik yöntemle çözünüz. Đkinci kısıt için marjinal değeri belirleyiniz. Maximize Z X 1 + 4 X subject to: X

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

4.1. Gölge Fiyat Kavramı

4.1. Gölge Fiyat Kavramı 4. Gölge Fiyat Kavramı 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler. Şimdi bir örnek üzerinde

Detaylı

Bölüm 9 FET li Yükselteçler

Bölüm 9 FET li Yükselteçler Bölüm 9 FET li Yükseleçler DENEY 9-1 Orak-Kaynaklı (CS) JFET Yükseleç DENEYİN AMACI 1. Orak kaynaklı JFET yükselecin öngerilim düzenlemesini anlamak. 2. Orak kaynaklı JFET yükselecin saik ve dinamik karakerisiklerini

Detaylı

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI Prof. Dr. Nezir KÖSE 30.12.2013 S-1) Ankara ilinde satın alınan televizyonların %40 ı A-firması tarafından üretilmektedir.

Detaylı

BİR OTOMOTİV FİRMASI İÇİN ARAÇ SEVKİYATI VE DAĞITIM MERKEZİ YER SEÇİMİ PROBLEMİ

BİR OTOMOTİV FİRMASI İÇİN ARAÇ SEVKİYATI VE DAĞITIM MERKEZİ YER SEÇİMİ PROBLEMİ Endüsri Mühendisliði Dergisi Cil: 21 Sayý: 1 Sayfa: (4-16) Makale BİR OTOMOTİV FİRMASI İÇİN ARAÇ SEVKİYATI VE DAĞITIM MERKEZİ YER SEÇİMİ PROBLEMİ Aras BARUTÇUOĞLU *, Derya DEMİRTAŞ, Beül DİLAN, Ruken DÜZGÜN

Detaylı

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama Uygulamalar 1. İhtiyaç Hesaplama 2. Sipariş ve Parti Büyüklüğü Hesaplama 3. Dolaşım Akış Çizelgeleme/Terminleme

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

Çevreye Duyarlı Kapalı Çevrim Tedarik Zinciri Ağı Tasarımı İçin Karma Tamsayılı Bir Doğrusal Programlama Modeli. Kazım KARABOĞA DOÇ. DR.

Çevreye Duyarlı Kapalı Çevrim Tedarik Zinciri Ağı Tasarımı İçin Karma Tamsayılı Bir Doğrusal Programlama Modeli. Kazım KARABOĞA DOÇ. DR. Çevreye Duyarlı Kapalı Çevrim Tedarik Zinciri Ağı Tasarımı İçin Karma Tamsayılı Bir Doğrusal Programlama Modeli Kazım KARABOĞA DOÇ. DR. TURAN PAKSOY Geri Dönüşüm Merkezi (2) Maliye (TL/ Ton) 0 0,5 1 1,5

Detaylı

DOGRUSALPROG~~A BIR MAMUL KARISIM VAK'ASI: BARIS PETROL -47- Dr. Mehpare TIMoR

DOGRUSALPROG~~A BIR MAMUL KARISIM VAK'ASI: BARIS PETROL -47- Dr. Mehpare TIMoR Yönetim, Yil 5, Sayi 19, Ekim 1994, s. 47-51 "" DOGRUSALPROG~~A BIR MAMUL KARISIM VAK'ASI BARIS PETROL Faruk Sezer Baris Petrol'ün Aliaga'daki rafinerisinde yönetici olarak çalismaktadir. Baris Petrol

Detaylı

ELEKTRİK DAĞITIM BÖLGELERİNDE UYGULANACAK FİYAT EŞİTLEME MEKANİZMASI HAKKINDA TEBLİĞ

ELEKTRİK DAĞITIM BÖLGELERİNDE UYGULANACAK FİYAT EŞİTLEME MEKANİZMASI HAKKINDA TEBLİĞ ELEKTRİK DAĞITIM BÖLGELERİNDE UYGULANACAK FİYAT EŞİTLEME MEKANİZMASI HAKKINDA TEBLİĞ BİRİNCİ BÖLÜM Amaç, Kapsam, Hukuki Dayanak, Tanımlar ve Kısalmalar Amaç ve kapsam MADDE 1- (1Bu Tebliğ, 4628 sayılı

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3519

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3519 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: YÖNEYLEM ARAŞTIRMASI I Dersin Orjinal Adı: YÖNEYLEM ARAŞTIRMASI I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu:

Detaylı

BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI

BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI Arş. Gör. Furkan EMİRMAHMUTOĞLU Yrd. Doç. Dr. Nezir KÖSE Arş. Gör. Yeliz YALÇIN

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLER

TRANSİSTÖRLÜ YÜKSELTEÇLER Karadeniz Teknik Üniversiesi Mühendislik Fakülesi * Elekrik-Elekronik Mühendisliği Bölümü Elekronik Anabilim Dalı * Elekronik Laborauarı I 1. Deneyin Amacı TRANSİSTÖRLÜ YÜKSELTEÇLER Transisörlerin yükseleç

Detaylı

SIVILAŞTIRILMIŞ DOĞAL GAZ DEPOLAMA ŞİRKETLERİ İÇİN TARİFE HESAPLAMA USUL VE ESASLARI

SIVILAŞTIRILMIŞ DOĞAL GAZ DEPOLAMA ŞİRKETLERİ İÇİN TARİFE HESAPLAMA USUL VE ESASLARI SIVILAŞTIRILMIŞ DOĞAL GAZ DEPOLAMA ŞİRKETLERİ İÇİN TARİFE HESAPLAMA USUL VE ESASLARI BİRİNCİ KISIM Amaç, Kapsam, Dayanak, Tanımlar ve İsenecek Veriler BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç

Detaylı

( ) ( ) m = DERS 10. Türevin Uygulamaları: Kapalı Türev, Değişim Oranları Kapalı Türev(İmplicit Differentiation).

( ) ( ) m = DERS 10. Türevin Uygulamaları: Kapalı Türev, Değişim Oranları Kapalı Türev(İmplicit Differentiation). DERS Türevin Ugulamaları: Kapalı Türev, Değişim Oranları.. Kapalı Türev(İmplici Differeniaion). Eğer f (), denkleminde olduğu gibi kapalı(implici olarak verilmişse, ü bulmak için zincir kuralı kullanılabilir:

Detaylı

13 Hareket. Test 1 in Çözümleri. 4. Konum-zaman grafiklerinde eğim hızı verir. v1 t

13 Hareket. Test 1 in Çözümleri. 4. Konum-zaman grafiklerinde eğim hızı verir. v1 t 3 Hareke Tes in Çözümleri X Y. cisminin siseme er- diği döndürme ekisi 3mgr olup yönü saa ibresinin ersinedir. cisminin siseme erdiği döndürme ekisi mgr olup yönü saa ibresi yönündedir. 3mgr daha büyük

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/71 İçerik n Bulunması Kuzey-Batı Köşe Yöntemi En Küçük Maliyetli Göze Yöntemi Sıra / Sütun En Küçüğü Yöntemi Vogel Yaklaşım Metodu (VAM) Optimum Çözümün Bulunması Atlama Taşı

Detaylı

BOBĐNLER. Bobinler. Sayfa 1 / 18 MANYETĐK ALANIN TEMEL POSTULATLARI. Birim yüke elektrik alan içerisinde uygulanan kuvveti daha önce;

BOBĐNLER. Bobinler. Sayfa 1 / 18 MANYETĐK ALANIN TEMEL POSTULATLARI. Birim yüke elektrik alan içerisinde uygulanan kuvveti daha önce; BOBĐER MAYETĐK AAI TEME POSTUATARI Birim yüke elekrik alan içerisinde uygulanan kuvvei daha önce; F e = qe formülüyle vermişik. Manyeik alan içerisinde ise bununla bağlanılı olarak hareke halindeki bir

Detaylı

EM302 Yöneylem Araştırması 2 Dinamik Programlama. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Dinamik Programlama. Dr. Özgür Kabak EM0 Yöneylem Araştırması Dinamik Programlama Dr. Özgür Kabak Kibrit Çöpü Oyunu Masa üzerinde 0 kibrit çöpü vardır İki kişi (ben ve rakibim) oynuyor: Sırası gelen 1, veya kibrit çöpü çekiyor. Ben başlıyorum,

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

Ege University Working Papers in Economics 2006 http://www.iibf.ege.edu.tr/economics/tartisma

Ege University Working Papers in Economics 2006 http://www.iibf.ege.edu.tr/economics/tartisma Ege Universiy Working Papers in Economics 2006 hp://www.iibf.ege.edu.r/economics/arisma İZMİR KÜÇÜK, ORTA VE BÜYÜK ÖLÇEKLİ İMALAT SANAYİNDE ÜRETİM ETKİNLİĞİ VE TOPLAM FAKTÖR VERİMLİLİĞİ ANALİZİ Eruğrul

Detaylı

GEFRAN PID KONTROL CİHAZLARI

GEFRAN PID KONTROL CİHAZLARI GEFRAN PID KONTROL CİHAZLARI GENEL KONTROL YÖNTEMLERİ: ON - OFF (AÇIK-KAPALI) KONTROL SİSTEMLERİ: Bu eknik en basi konrol ekniğidir. Ölçülen değer (), se değerinin () üzerinde olduğunda çıkış sinyali açılır,

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıtılmış Gecikme ve Otoregresiv Modeller

DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıtılmış Gecikme ve Otoregresiv Modeller DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıılmış Gecikme ve Ooregresiv Modeller 1 Zaman serisi modellerinde, bağımlı değişken Y nin zamanındaki değerleri, bağımsız X değişkenlerinin zamanındaki cari

Detaylı

KARAR AĞAÇLARI. Prof.Dr.Aydın ULUCAN

KARAR AĞAÇLARI. Prof.Dr.Aydın ULUCAN KARAR AĞAÇLARI Prof.Dr.Aydın ULUCAN Karar Ağaçları Karar problemleri şebeke yapısı altında görsel olarak da ifade edilip çözülebilir. Karar analizinde bu yaklaşım karar ağaçları olarak adlandırılmaktadır.

Detaylı

: HOŞNUDĐYE MH.ŞAHĐN CD.NO:84 ESKĐŞEHĐR b ) Telefon ve Faks Numarası :222 2114000-222 3204920 c ) Elektronik Posta Adresi

: HOŞNUDĐYE MH.ŞAHĐN CD.NO:84 ESKĐŞEHĐR b ) Telefon ve Faks Numarası :222 2114000-222 3204920 c ) Elektronik Posta Adresi ESKĐŞEHĐR TEPEBAŞI BELEDĐYE BAŞKANLIĞI Tepebaşı Bölgesindeki Park ve Rekreasyon Alanları Bakım, Onarım ve Temizliği ile Zincirlikuyu Şaniyesindeki Sera, Fidanlık ve Aölyelerde Üreim Đçin Hizme Alımı işihizme

Detaylı

II DP Model Kurma (Derste Çözülecek Örnekler)

II DP Model Kurma (Derste Çözülecek Örnekler) 1. Bir ayakkabı üretim firması 2 tür (kadın ve erkek) ayakkabı üretmektedir. Her bir ayakkabının üretim maliyeti sırasıyla 10 pb. ve 7 pb. dir. Firmanın Türkiye çapındaki bayileri; toplam olarak haftada

Detaylı

Yenilenebilir Enerji Kaynaklarına Geçiş Sürecinin Planlanmasında Doğrusal En İyileme Tekniğinin Kullanılması

Yenilenebilir Enerji Kaynaklarına Geçiş Sürecinin Planlanmasında Doğrusal En İyileme Tekniğinin Kullanılması Yenilenebilir Enerji Kaynaklarına Geçiş Sürecinin Planlanmasında Doğrusal En İyileme Tekniğinin Kullanılması Ahu Soylu, Mein Türkay* Koç Üniversiesi Endüsri Mühendisliği Bölümü Sarıyer, İsanbul ahusoylu@ku.edu.r,

Detaylı

BÖLÜM-7 YÜZEYSEL AKIŞ (SURFACE RUNOFF)

BÖLÜM-7 YÜZEYSEL AKIŞ (SURFACE RUNOFF) BÖÜM-7 YÜZEYSE KIŞ (SURFCE RUNOFF) 7.1 GİRİŞ Yağışan (kar, yağmur) sızma, yüzeysel birikirme ve yüzeyalı akışı çıkıkan sonra ara kalan kısma yüzeysel akış denir. Kısaca yüzeysel akışa yağış fazlası denilebilir.

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

İSG PROJE YÖNETİMİ ve ACİL DURUM PLÂNI

İSG PROJE YÖNETİMİ ve ACİL DURUM PLÂNI 29 İSG011 1/7 İSG PROJE YÖNETİMİ İSG PROJE YÖNETİMİ ve ACİL DURUM PLÂNI AMAÇ: İSG de Proje yönetimi ile tehlike araştırma yöntemleri hakkında bilgilendirme Slayt III BÖLÜM CPM GANT PERT YÖNTEMİLERİ VE

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

Öğr. Gör. Selçuk ŞİMŞEK İlköğretim Bölümü Sınıf Öğretmenliği Ana Bilim Dalı Eğitim Fakültesi.Pamukkale Üniversitesi

Öğr. Gör. Selçuk ŞİMŞEK İlköğretim Bölümü Sınıf Öğretmenliği Ana Bilim Dalı Eğitim Fakültesi.Pamukkale Üniversitesi PAMUKKALE ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ SINIF ÖĞRETMENLİĞİ BÖLÜMÜ 2. SINIF ÖĞRENCİLERİNİN BEDEN EĞİTİMİ ve OYUN DERSİNİ SAĞLIK ve SAĞLANAN OLANAKLAR AÇISINDAN DEĞERLENDİRMELERİ Öğr. Gör. Selçuk ŞİMŞEK

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

Makine Öğrenmesi 11. hafta

Makine Öğrenmesi 11. hafta Makine Öğrenmesi 11. hafta Özellik Çıkartma-Seçme Boyut Azaltma PCA LDA 1 Özellik Çıkartma Herhangi bir problemin makine öğrenmesi yöntemleriyle çözülebilmesi için sistemin uygun şekilde temsil edilmesi

Detaylı

24.05.2010. Birim Kök Testleri. Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri

24.05.2010. Birim Kök Testleri. Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri Yıldız Teknik Üniversiesi İkisa Bölümü Ekonomeri II Ders Noları Ders Kiabı: J.M. Wooldridge, Inroducory Economerics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Zaman Serisi Modelleri: Birim Kök

Detaylı

Erkan Özata 1. Econometric Investigation of the Relationships Between Energy Consumption and Economic Growth in Turkey

Erkan Özata 1. Econometric Investigation of the Relationships Between Energy Consumption and Economic Growth in Turkey 1 Öze: Ülkelerin ekonomik ve sosyal gelişmelerinin sürükleyici unsuru ve en emel gereksinimlerinden biri enerjidir. Đş yapma kapasiesi olarak anımlanan enerjiye gelişmiş ülkelerle birlike, gelişmek iseyen

Detaylı

PERT Yöntemi: 1 t ( t 4 t t ) e 6 a m b

PERT Yöntemi: 1 t ( t 4 t t ) e 6 a m b PERT PERT metodu, süreleri tam bilinemeyen işlemlerin programda göz önüne alınmasını sağladığından kapsamı, kritik yörünge metoduna nazaran daha geniştir. Kritik yörünge (CPM), PERT metodunun özel hallerinden

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

PROJE YÖNETİMİ / PROJE ÇİZELGELEME (CPM / PERT)

PROJE YÖNETİMİ / PROJE ÇİZELGELEME (CPM / PERT) 1 PROE YÖNETİMİ / PROE ÇİZELELEME (PM / PERT) * Projeleri başarıyla tamamlamak için, yönetilebilir alt işlere ayırmak gerekir. u işlerin her birine FLİYET denir. Öncelikleri : * Faaliyetler oranı öncelik

Detaylı

İŞARETLER ve SİSTEMLER (SIGNALS and SYSTEMS)

İŞARETLER ve SİSTEMLER (SIGNALS and SYSTEMS) İŞARETLER ve SİSTEMLER (SIGNALS and SYSTEMS) Yrd. Doç. Dr. Musafa Zahid YILDIZ musafayildiz@sakarya.edu.r oda no: 469 Kaynaklar: 1. Signals and Sysems, Oppenheim. (Türkçe versiyonu: Akademi Yayıncılık)

Detaylı

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri:

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler.

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/19 İçerik Yöneylem Araştırmasının Dalları Kullanım Alanları Yöneylem Araştırmasında Bazı Yöntemler Doğrusal (Lineer) Programlama, Oyun Teorisi, Dinamik Programlama, Tam Sayılı

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

SE Engineering Sciences 30 Mayıs 2011, Pazartesi 13:00 M1-2 İNG 152 -İngilizce II 31 Mayıs 2011, Salı 14:00 Yabancı Diller Binası

SE Engineering Sciences 30 Mayıs 2011, Pazartesi 13:00 M1-2 İNG 152 -İngilizce II 31 Mayıs 2011, Salı 14:00 Yabancı Diller Binası MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ FİNAL TARİHLERİ 2010-2011 BAHAR DÖNEMİ 1. SINIF Dersin Adı Sınav Tarihi Saat Sınav Yeri TRD 158 / 99 - Türk Dili II 30 Mayıs 2011, 10:00 Mühendislik Amfi SE 104

Detaylı

T C İSTANBUL KÜLTÜR ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ ÇELİK KAPI SEKTÖRÜNDE AHŞAP BÖLÜMÜ İÇİN ÜRETİM - DAĞITIM PLANLAMA MODELİ

T C İSTANBUL KÜLTÜR ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ ÇELİK KAPI SEKTÖRÜNDE AHŞAP BÖLÜMÜ İÇİN ÜRETİM - DAĞITIM PLANLAMA MODELİ T C İSTANBUL KÜLTÜR ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ ÇELİK KAPI SEKTÖRÜNDE AHŞAP BÖLÜMÜ İÇİN ÜRETİM - DAĞITIM PLANLAMA MODELİ YÜKSEK LİSANS TEZİ Ümi KAVİ Anabilim Dalı : Sosyal Bilimler Ensiüsü Programı

Detaylı

Kazein Yüzeyine Metil Violetin Biyosorpsiyonu

Kazein Yüzeyine Metil Violetin Biyosorpsiyonu BAÜ Fen Bil. Ens. Dergisi Cil 14(1) 93-102 (2012) Kazein Yüzeyine Meil Violein Biyosorpsiyonu Özkan DEMĠRBAġ 1,, Adem KARADAĞ 2, Veli DALKIRAN 1,Cihan YILDIZ 1 1 BalıkesirÜniversiesi Fen Edebiya Fakülesi

Detaylı

Birim Kök Testleri. Random Walk. Bir stokastiksürecin birim kök içerip içermediğini nasıl anlarız? Hatırlarsak aşağıdaki AR(1) sürecinde

Birim Kök Testleri. Random Walk. Bir stokastiksürecin birim kök içerip içermediğini nasıl anlarız? Hatırlarsak aşağıdaki AR(1) sürecinde Yıldız Teknik Üniversiesi İkisa Bölümü Ekonomeri II Ders Noları Ders Kiabı: J.M. Wooldridge, Inroducory Economerics A Modern Approach, 2nd. ed., 02, Thomson Learning. Zaman Serisi Modelleri: Birim Kök

Detaylı

Birim Kök Testleri 3/24/2016. Bir stokastik sürecin birim kök içerip içermediğini nasıl anlarız? Hatırlarsak aşağıdaki AR(1) sürecinde

Birim Kök Testleri 3/24/2016. Bir stokastik sürecin birim kök içerip içermediğini nasıl anlarız? Hatırlarsak aşağıdaki AR(1) sürecinde Yıldız Teknik Üniversiesi İkisa Bölümü Ekonomeri II Ders Noları Ders Kiabı: J.M. Wooldridge, Inroducory Economerics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Zaman Serisi Modelleri: Birim Kök

Detaylı

PETROL FİYATLARININ BORSA İSTANBUL SANAYİ FİYAT ENDEKSİ ÜZERİNDEKİ ETKİSİ

PETROL FİYATLARININ BORSA İSTANBUL SANAYİ FİYAT ENDEKSİ ÜZERİNDEKİ ETKİSİ PETROL FİYATLARININ BORSA İSTANBUL SANAYİ FİYAT ENDEKSİ ÜZERİNDEKİ ETKİSİ Yrd.Doç.Dr. Cüney KILIÇ Çanakkale Onsekiz Mar Üniversiesi Biga İ.İ.B.F., İkisa Bölümü Yrd.Doç.Dr. Yılmaz BAYAR Karabük Üniversiesi

Detaylı

Maksimizasyon s.t. İşçilik, saat) (Kil, kg)

Maksimizasyon s.t. İşçilik, saat) (Kil, kg) Simplex ile Çözüm Yöntemi Doç. Dr. Fazıl GÖKGÖZ 1 Doğrusal Programlama Modeli Maksimizasyon s.t. İşçilik, saat) (Kil, kg) 2 Doç. Dr. Fazıl GÖKGÖZ Yrd.Doç. Dr. Fazıl GÖKGÖZ 1 Modelin Standard Hali Maksimizasyon

Detaylı

Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri

Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri Yıldız Teknik Üniversiesi İkisa Bölümü Ekonomeri II Ders Noları Ders Kiabı: J.M. Wooldridge, InroducoryEconomericsA Modern Approach, 2nd. ed., 2002, Thomson Learning. Zaman Serisi Modelleri: Birim Kök

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

Reel ve Nominal Şokların Reel ve Nominal Döviz Kurları Üzerindeki Etkileri: Türkiye Örneği

Reel ve Nominal Şokların Reel ve Nominal Döviz Kurları Üzerindeki Etkileri: Türkiye Örneği Reel ve Nominal Şokların Reel ve Nominal Döviz Kurları Üzerindeki Ekileri: Türkiye Örneği Öze Ahme Mura ALPER Bu çalışma Türkiye deki reel döviz kuru dalgalanmalarının kaynaklarını açıklamayı amaçlamakadır.

Detaylı

9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.8. TAM REKABET PİYASALARI A.8.1. Temel Varsayımları Atomisite Koşulu: Piyasada alıcı ve satıcılar,

Detaylı

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*)

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*) D.E.Ü.İ.İ.B.F. Dergisi Cilt:14, Sayı:1, Yıl:1999, ss:27-36 BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA Ayşe KURUÜZÜM (*) ÖZET Çalışmada bulanık ( fuzzy ) katsayılı amaç fonksiyonuna sahip doğrusal programlama

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

İSTATİSTİK ANABİLİM DALI

İSTATİSTİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Adnan KARAİBRAHİMOĞLU İNDEKS SAYILARIN KULLANIMI İSTATİSTİK ANABİLİM DALI ADANA, 27 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNDEKS

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

PNÖMATİK TAŞIMA SİSTEMLERİ VE OPTİMUM TAŞIMA HIZININ BELİRLENMESİNDE KULLANILAN EŞİTLİKLER

PNÖMATİK TAŞIMA SİSTEMLERİ VE OPTİMUM TAŞIMA HIZININ BELİRLENMESİNDE KULLANILAN EŞİTLİKLER 105 PNÖMATİK TAŞIMA SİSTEMLERİ VE OPTİMM TAŞIMA HIZININ BELİRLENMESİNDE KLLANILAN EŞİTLİKLER Faih YILMAZ ÖZET Kaı akışkanların (oz,küçük aneli) aşınmasında kullanılan sisemlerden biriside Pnömaik Tasıma

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

DOĞRUSAL PROGRAMLAMA

DOĞRUSAL PROGRAMLAMA DOĞRUSAL PROGRAMLAMA Doğrusal Programlama Two Mines örneği incelenirse, bir matematiksel modelin bir "Doğrusal Program" (DP; linear program - LP) olması için aşağıdaki koşulları sağlaması gerektiği görülür:

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

Öğrenci No: İmza Program Adı Soyadı: NÖ İÖ

Öğrenci No: İmza Program Adı Soyadı: NÖ İÖ SORU 1. Arz-talep grafiğini çizerek; a) Arz ve talepteki değişmenin fiyatı nasıl etkilediğini yazınız. b) Arz ve talebin hangi faktörlerden ve nasıl etkilendiğini yazınız. c) Arz ve talep ile istihdam

Detaylı

Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama

Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama Kocaeli Üniversiesi Sosyal Bilimler Ensiüsü Dergisi (6) 2003 / 2 : 49-62 Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama Hüdaverdi Bircan * Yalçın Karagöz ** Öze: Bu çalışmada geleceği

Detaylı