Lineer Tek Serbestlik Dereceli (TSD) Sistemlerin Tepki Analizi. Deprem Mühendisliğine Giriş Doç. Dr. Özgür ÖZÇELİK

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Lineer Tek Serbestlik Dereceli (TSD) Sistemlerin Tepki Analizi. Deprem Mühendisliğine Giriş Doç. Dr. Özgür ÖZÇELİK"

Transkript

1 Lineer Tek Serbeslik Dereceli (TSD) Sisemlerin Tepki Analizi

2 Sunum Anaha Tek-serbeslik-dereceli (TSD) sisemlerin epki analizi, Hareke denklemi (Newon nun. yasası ve D Alember Prensibi) Gerçek deplasman, hız ve ivme epki değerleri, Pseudo-epki spekrumları ve gerçek epki değerleri ile ilişkileri, Tepki spekrumlarının fiziksel yorumu, Bir örnek: TSD bir sisemin spekrum analizi.

3 TSD Sisemlerin Tepki Analizi (Hareke Denklemi) Sabi Referans Ekseni u () u() m Hareke yönü Serbes Cisim Diyagramı m (+) k c k cu &() u () g k u () k u () Hareke Denklemi (Equaion of Moion): Newon un ikinci yasası kullanılarak i F = mu&& () i ku () cu &() = mu&& () mu&& () + cu &() + ku () = 0 u&& = u &&() + u&& () Yukarıda yerine konursa mu &&() + cu &() + ku () = mu&& () = p () g g eff

4 TSD Sisemlerin Tepki Analizi (Hareke Denklemi) - Devam Hareke Denklemi (Equaion of Moion): D Alember presibi kullanılarak hareke denklemi bulunabilir. Bu prensip şöyledir: Siseme harekein ersi yönünde fikif bir aale kuvvei ekiilirse, sisem her an dinamik denge alındadır (saik denge denklemlerine benzer bir şekilde). f () I (+) f () D f () S fi + fd+ fs = 0 burada f I mu() = && ( g ) m u&& () + u &&() + cu &() + ku () = 0 mu &&() + cu &() + ku () = mu&& () g

5 TSD Sisemlerin Tepki Analizi (Hareke Denklemi) - Devam Hareke denkleminin sandar formu (sandard form of equaion of moion): u && & && () + ξωu () + ω u () = ug() burada ω= k m : doğal açısal ireşim frekansı T π ω = : doğal ireşim periyodu c c ξ = = = c mω cr c km : sönüm oranı Hareke denkleminin çözümü 1. Gerçek relaif deplasmanepkisi (True relaive displacemen response): u( ) = u && ( ) h( τ) dτ 0 g burada 1 h τ e ω τ ( ) ξω( τ) ( ) = sin D( ) ωd ω ω ξ Genel olarak konvolüsyon inegrali veya ireşim alanında kullanıldığı adıyla Duhamel inegrali denir (başlangıç şarları: durağan a res condiions) D = 1 : sönümlü açısal ireşim frekansı (1) Birim iki (uni impulse) epki fonsiyonu veya Dirac-Dela eki fonsiyonuna karşılık gelen serbes ireşim fonksiyonu! Haırlama - 1

6 TSD Sisemlerin Tepki Analizi (İki Tepki Fonksiyonunun Bulunması) - Devam u &&() + ξωu &() + ω u () = δ() x(0 ) = 0 ve x& (0 ) = 0 m 1 u(0 + ) = 0 ve u& (0 + ) =? Lineer Momenum Değişimi = Ekiyen Dış Kuvve!!!! d( mu& ) d = d 0 0 δ() d d( mu& ) =δ() d + m u& = 1 u& = u(0 & ) = 1 m u () = u () + u () 0 + sonra yükleme olmadığı için u () = 0 h p p ξω u& (0) + ξωu(0) n u () = e u(0)cos D + sin D ωd n ( ω ) ( ω ) ξω 1 n h () = u () = e sin D mω ( ω ) D Başlangıç şarlarından

7 TSD Sisemlerin Tepki Analizi u(, ω, ξ) = u && g( ) h( τ) dτ 0 : Duhamel İnegrali Praike Duhamel inegrali nümerik quadraure yönemi ile bulunur.. Gerçek rölaif hız epkisi (True relaivevelociyresponse): ξ ξω( τ) ξω( τ) (,, ) = ( ) sin( ( )) ( ) cos( ( )) g D g D 1 ξ 0 0 u & ω ξ u && τ e ω τ dτ u && τ e ω τ dτ

8 TSD Sisemlerin Tepki Analizi 3. Gerçek mulak ivme epkisi (True absolueacceleraionresponse): () no luifadenin bir kez daha ürevini almak mümkün ancak farklı bir yoldan sonuca daha kolay ulaşmak mümkün, u&& & () + ξωu () + ω u () = 0 u&& & () = ξωu () ω u () (3) ( 1 ξ ) Biliniyor (1 ve nolu ifadeler yerine konup düzenlenir! ω u&& ω ξ = u&& τ e ω τ dτ + ξω( τ) (,, ) g( ) sin( D( )) 1 ξ 0 ξω( τ) && g( ) cos( D( )) 0 ξω u τ e ω τ dτ

9 TSD Sisemlerin Tepki Analizi (Tepki Spekrumu Tanımları) ω ve ξ Spekral Rölaif Deplasman: değerlerine sahip TSD bir sisemin deprem harekeinin belli bir bileşenine vermiş olduğu maksimum relaif deplasman değerine denir. S d ( ξ, ω) = max u () 0 d (1) no lu denklem d : yer harekeinin süresi (güçlü yer harekei -srong moion süresi de denir). Genellike 0.05g değerini ilk ve son kez aşığı nokalar arasındaki zaman veya %5 < I A < %95 arasında kalan süredir. I A π = ug() d g 0 && : Arias inensiy Spekral Rölaif Hız: ω veξdeğerlerine sahip TSD bir sisemin deprem harekeinin belli bir bileşenine vermiş olduğu maksimum relaif hız değerine denir. S v ( ξ, ω) = max u &() 0 d () no lu denklem

10 TSD Sisemlerin Tepki Analizi (Tepki Spekrumu Tanımları) ω ve ξ Spekral Mulak İvme: değerlerine sahip TSD bir sisemin deprem harekeinin belli bir bileşenine vermiş olduğu maksimum mulak ivme değerine denir. S a ( ξ, ω) = max u&& () 0 d (3) no lu denklem

11 TSD Sisemlerin Tepki Analizi (Tepki Spekrumu Özellikleri) 1. TSD bir sisemin yer ivmesine gösermiş olduğu maksimum epki değerlerini verir (S d, S v, S a ),. Bir yer harekeine maruz çok-serbeslik-dereceli sisemlerin her bir modunun maksimum epki değerini verir (örn: S ( T, ξ )), 3. Herhangi bir deprem yer ivmesi harekeinin sismik enerjisinin (seismic energy) frekans dağılımını göserir, a n n S (, ) a T ξ S ( ) a Tξ 1, S ( ) a T, ξ ξ =%5 T1 T Mulak ivme epki spekrumu (bir deprem harekeine ai) T u&& g() u () 1 h1() && 1, S ( ) a Tξ u&& g() u () h() &&, S ( ) a T ξ S ( Tξ) > S ( T ξ) a 1, a,

12 TSD Sisemlerin Tepki Analizi (Pseudo- Tepki Spekrumları) Pseudo-hız Tepki Spekrumu: İnşaa mühendisliği yapılarında sönüm oranı değerleri, genellikle küçükür ( ξ >0.10). Bu durumda, şu kabulü yapmak mümkündür: ve =0. Ayrıca küçük periyo değerleri için (T<= 0.8~1.0), cos( ω ( τ )) yerine sin( ω ( τ )) kullanılabilir. Gerçek hız ifadesini ekrar haırlarsak: D ξ ξ ξ ξω( τ) ξω( τ) (,, ) = ( ) sin( ( )) ( ) cos( ( )) g D g D 1 ξ 0 0 u & ω ξ u && τ e ω τ dτ u && τ e ω τ dτ D Yukarıdaki kabuller alında bu ifade aşağıdaki hale gelir: ξω( τ) (,, ) && g( ) sin( D( )) 0 u& ω ξ u τ e ω τ dτ Yukarıdaki ifade gerçek relaif deplasman formülü denklem (1) ile karşılaşırılırsa: u& (, ω, ξ) ωu(, ω, ξ) olduğu görülür, bu durumda pseudo-hız değeri aşağıdaki gibi hesaplanabilir: (4) S pv ( ξ, ω) ωs ( ξ, ω) d (5)

13 TSD Sisemlerin Tepki Analizi (Pseudo- Tepki Spekrumları) - Devam Pseudo-ivme Tepki Spekrumu: Yine aynı kabuller alında, gerçek mulak ivme epki spekrumu ξ ξ aşağıdaki hali alır ξ 0.10, ve =0. Gerçek ivme epkisi ifadesini haırlarsak: ( 1 ξ ) ω u&& ω ξ = u&& τ e ω τ dτ + ξω( τ) (,, ) g( ) sin( D( )) 1 ξ 0 ξω( τ) && g( ) cos( D( )) 0 ξω u τ e ω τ dτ ξω( τ) (,, ) = g( ) sin( D( )) 0 u&& ω ξ ω u&& τ e ω τ dτ (6) Denklem (6), denklem (4): pseudo-hız ifadesi ile karşılaşırılırsa aşağıdaki ilişki görülür: u&& (, ω, ξ) ωu& (, ω, ξ) olduğu görülür, bu durumda pseudo-ivme değeri aşağıdaki gibi hesaplanabilir: S pa ( ξ, ω) ωs ( ξ, ω) pv (7)

14 TSD Sisemlerin Tepki Analizi (Pseudo- Tepki Spekrumları) - Devam Denklem (5) ve (7) kullanılarak pseudo-hız ve pseudo-ivme arasındaki ilişki aşağıda verilmişir: S S S pa( ξ, ω) ω pv( ξ, ω) ω d( ξ, ω) pseudo- değerler gerçek değerler Tekbir Duhamel inegrasyonu hesabından pseudo-epki spekrumu değerleri bulunabilir: π π Spa( ξ, ω) Spv( ξ, ω) Sd( ξ, ω) T T

15 TSD Sisemlerin Tepki Analizi (Pseudo- ve Gerçek Tepki Spekrumlarının Karşılaşırılması) Deprem Mühendisliğine Giriş Doç. Dr. Özgür ÖZÇELİK

16 Response of a very Long Period SDOF

17 Response of a very Shor Period SDOF

18 TSD Sisemlerin Tepki Analizi (Triparie Tepki Spekrumu) Deprem Mühendisliğine Giriş Doç. Dr. Özgür ÖZÇELİK

19 Hwk 1 Newmark Hall Design Response Specrum Regions of Response Specrum

20 Dinamik Serbeslik Derecesi TSD Sisemlerin Tepki Analizi (Pseudo-hız ve Pseudo-ivmenin Fiziksel Yorumu) u () u() u () k c m k k m TSD Osilaör c u () g S ( ξ, T) = max u () d u () g Maksimum deformasyon Bir deprem anında, sisemde depolanan maksimum şekil değişirme enerjisi (srain energy) E () : s max E() s 1 1 = ks = mv 1 1 mω Sd = mv ω Sd = V = Spv d maks. hız max E() s 1 = ms pv Maksimum şekil değişirme enerjisi pseudo-hız değeri ile ilişkilidir.

21 TSD Sisemlerin Tepki Analizi (Pseudo-hız ve Pseudo-ivmenin Fiziksel Yorumu) - Devam Maksimum aban kesme kuvvei veya maksimum yay kuvvei (osilaöre referansla) f () aşağıdaki gibi yazılabilir: max V() = max f () = ks = mω S = ms b s d d pa k ( ω= ) m s Spa Maksimum aban kesme kuvvei ile ilişkili Maksimum aban kesme kuvvei aşağıdaki gibi de yazılabilir: W max V() = ms = S g b pa pa max Vb() Spa W g Yapı ağırlığı Yer çekimi ivmesi : aban kesme kuvvei kasayısı = (laeral force coeff.) Yönemeliklerdebu değer, aban kesme kuvveini bulmak için yapı ağırlığıyla çarpılması gereken kasayıyı emsil eder. S Gerçek spekral değerler ve, maksimum deformasyon ve asarım kuvvelerinin bulunması v S a için gerekli değildir. Bunların bulunması için pseudo-ivmeve pseudo-hız(veya gerçek deplasman) epki spekrumlarının bilinmesi yeerlidir.

22 u() TSD Sisemlerin Tepki Analizi Örnek W = 500 lb (~360kg) 1 (3.7m) A A Çelik boru Di=4.06 in (10.3 cm) A-A Kesii Do=4.5 in (11.4 cm) I = 7.3 in4 (41.6 cm4) E = 9,000 ksi (00,000 MPa) Wboru = lb/f (157.4 N/m) u () g 1940 El Cenro depremi için bu yapının maksimum deplasman ve oluşan maksimum eğilme gerilmesi değerini bulunuz ξ =%. +x 1 u( L ) = 1.0 Euler-Bernoulli Kirişi Kabulü M( L ) = d u EI q( x) 0 4 dx = = Sabi kesili u (0) = 0.0 u (0) = 0.0 u ( x) = Ce h rx u( x) = C + Cx+ Cx + Cx (Sınır şarlarından bulunur, kasayılar bulunur)

23 TSD Sisemlerin Tepki Analizi Örnek - Devam u ( x ) = x 3 L L x : Elasik eğri 3 d u 3EI 3 V( x) = EI = V( L) = k = EI = 0.11 kip/in dx 3 L 3 3 L : Yanal rijilik (36,95 MN/m) Borunun ağırlığı = 10.79*1 = lb; 5,00 lb a göre ihmal edilebilir bir değer! W 5. m = = g 384 = kips s /in ω= k rad/s m = = T n π = = 1.59 s ω

24 TSD Sisemlerin Tepki Analizi Örnek - Devam ( ) S 1.59,0.0 = 5 in : Maksimum deformasyon d π pa( 1.59, 0.0) = d = ω d = 0. S S S g T

25 TSD Sisemlerin Tepki Analizi Örnek - Devam Gerilmeler: f so Spa = W =ksd = 0. 5.= 1.04 kips g M = = 1.48 kip-f so 1 (3.7m) Mso c σ so = = I 46.5 ksi Örnek : Bir önceki soruda bulunan gerilme değerleri, izin verilebilir gerilme değerlerinden büyük çıkığı için, asarımcı borunun çapını aşağıdaki gibi büyüüyor. Bu durumda boruda oluşan maksimum gerilmeleri bulunuz. Çelik boru A-A Kesii Di=7.981 in Do=8.65 in 3 3EI k = =.11kip/in Yanal rijilik 10 ka arı!!! L

26 TSD Sisemlerin Tepki Analizi Örnek -Devam k ω= = 1.59 rad/s m T n π = = 0.50 s ω Küçüldü!!! Tepki spekrumundan: ( ) S 0.50,0.0 =.7 in : Maksimum deformasyon d π Spa( 0.50, 0.0) = Sd = 1.1g T Küçüldü!!! Çok büyüdü!!! (5 ka arı) f so Spa = W =ksd = 5.7 kips M so = 1 5.7= kip-f g Mso σ so = c = 49 ksi 46.5 ksi I

27 TSD Sisemlerin Tepki Analizi Örnek -Devam Sonuç: 8.65 in çaplık borunun kullanılması ile deformasyonlarda düşüş gözlendi; ancak asarımcının öngörüşünün aksine, gerilmelerde arış oldu! Bu durum yapıların dinamik ve saik yükler alındaki davranışları arasındaki farkı gösermekedir. Tasarımcının öngörüşü, saik yükler için olumlu sonuçlar verecekken, dinamik yükler alında amamen ers bir sonuç vermişir. (1.59 sn 0.50 sn yeye düşmesi eşdeğer deprem yükünü arırmışır).

SPEKTRAL HESAP. Bir Serbestlik Dereceli Sistemler Bir serbestlik dereceli doğrusal elastik siteme ait diferansiyel hareket denklemi,

SPEKTRAL HESAP. Bir Serbestlik Dereceli Sistemler Bir serbestlik dereceli doğrusal elastik siteme ait diferansiyel hareket denklemi, Nuri ÖHENDEKCİ SPEKAL HESAP Yapıları ekileyen deprem dalgaları amamen belirli değildir; bu dalgaların özelliklerinde rasgelelik vardır. aman parameresine bağlı bu deprem dalgalarının farklı arilerde oluşmasıyla

Detaylı

C L A S S N O T E S SİNYALLER. Sinyaller & Sistemler Sinyaller Dr.Aşkın Demirkol

C L A S S N O T E S SİNYALLER. Sinyaller & Sistemler Sinyaller Dr.Aşkın Demirkol Sinyaller & Sisemler Sinyaller Dr.Aşkın Demirkol SİNYALLER Elekriki açıdan enerjisi ve frekansı olan dalga işare olarak anımlanır. Alernaif olarak kodlanmış sinyal/işare de uygun bir anım olabilir. s (

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bubölümdebirnoktayaetkiyen vebelli bir koordinat ekseni/düzlemi ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi/başka bir düzlem ile ilişkili

Detaylı

DAİRESEL HAREKET Katı Cisimlerin Dairesel Hareketi

DAİRESEL HAREKET Katı Cisimlerin Dairesel Hareketi BÖLÜM 1 DAİRESEL HAREKET 1. DAİRESEL HAREKET 1.1. Kaı Cisimlerin Dairesel Harekei Açısal Yer Değişim: Bir eksen erafında dönmeke olan bir cismin (eker ezgah mili, volan vb.) dönme ekisi ile bir iş yapılır.

Detaylı

( x) KİRİŞLERDE ÇÖKME EI PL. Px EI. dy dx. Elastik eğrinin diferansiyel denklemi. Küçük çökmeler için; Serbest uçta(a),

( x) KİRİŞLERDE ÇÖKME EI PL. Px EI. dy dx. Elastik eğrinin diferansiyel denklemi. Küçük çökmeler için; Serbest uçta(a), ifhehnis OF TERILS KİRİŞLERE ÇÖKE Beer Johnson ewolf azurek Elasik eğrinin diferansiyel denklemi ρ ( ) P Küçük çökmeler için; ρ + d d y dy d 3 d d y Serbes uça(), ρ ρ B 0, ρ 0, ρ B nkasre uça (B), PL ρ

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bu bölümde, bir noktaya etkiyen ve bir koordinat ekseni ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi ile ilişkili gerilme bileşenlerine dönüştürmek

Detaylı

Kirişlerde Kesme (Transverse Shear)

Kirişlerde Kesme (Transverse Shear) Kirişlerde Kesme (Transverse Shear) Bu bölümde, doğrusal, prizmatik, homojen ve lineer elastik davranan bir elemanın eksenine dik doğrultuda yüklerin etkimesi durumunda en kesitinde oluşan kesme gerilmeleri

Detaylı

ELASTİK DALGA YAYINIMI

ELASTİK DALGA YAYINIMI ELASTİK DALGA YAYINIMI 8. ders - 016 Prof.Dr. Eşref YALÇINKAYA Geçiğimiz ders; Elasisie eorisi Gerilme ve bileşenleri Deformasyon ve bileşenleri Bu derse; Gerilme-deformasyon bağınıları Elasik sabiler

Detaylı

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET Yrd. Doç. Dr. Emine AYDIN Yrd. Doç. Dr. Elif BORU 1 GENEL YÜKLEME DURUMUNDA GERİLME ANALİZİ Daha önce incelenen gerilme örnekleri eksenel yüklü yapı elemanları

Detaylı

BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ

BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ Kaynaklar: S.S. Rao, Mechanical Vibrations, Pearson, Zeki Kıral Ders notları Mekanik veya yapısal sistemlere dışarıdan bir

Detaylı

Burulma (Torsion) Amaçlar

Burulma (Torsion) Amaçlar (Torsion) Amaçlar Bu bölümde şaftlara etkiyen burulma kuvvetlerinin etkisi incelenecek. Analiz dairesel kesitli şaftlar için yapılacak. Eleman en kesitinde oluşan gerilme dağılımı ve elemanda oluşan burulma

Detaylı

MIT Açık Ders Malzemesi İstatistiksel Mekanik II: Alanların İstatistiksel Fiziği 2008 Bahar

MIT Açık Ders Malzemesi İstatistiksel Mekanik II: Alanların İstatistiksel Fiziği 2008 Bahar MIT Açık Ders Malzemesi hp://ocw.mi.edu 8.334 İsaisiksel Mekanik II: Alanların İsaisiksel Fiziği 8 Bahar Bu malzemeye aıfa bulunmak ve Kullanım Şarlarımızla ilgili bilgi almak için hp://ocw.mi.edu/erms

Detaylı

Deprem Mühendisliğine Giriş. Yer Hareketinin Karakterizasyonu ve Temel Kavramlar

Deprem Mühendisliğine Giriş. Yer Hareketinin Karakterizasyonu ve Temel Kavramlar Deprem Mühendisliğine Giriş Yer Hareketinin Karakterizasyonu ve Temel Kavramlar Yer Hareketindeki Belirsizlikler Yerel Zemin Durumu (Katmanlar) Yapı Altı bileşenli deprem yer hareketinin uzaysal ve zamansal

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

Bölüm 3. Tek Serbestlik Dereceli Sistemlerin Zorlanmamış Titreşimi

Bölüm 3. Tek Serbestlik Dereceli Sistemlerin Zorlanmamış Titreşimi Bölüm 3 Tek Serbestlik Dereceli Sistemlerin Zorlanmamış Titreşimi Sönümsüz Titreşim: Tek serbestlik dereceli örnek sistem: Kütle-Yay (Yatay konum) Bir önceki bölümde anlatılan yöntemlerden herhangi biri

Detaylı

Mohr Dairesi Düzlem Gerilme

Mohr Dairesi Düzlem Gerilme Mohr Dairesi Düzlem Gerilme Bu bölümde düzlem gerilme dönüşüm denklemlerinin grafiksel bir yöntem ile nasıl uygulanabildiğini göstereceğiz. Böylece dönüşüm denklemlerinin kullanılması daha kolay olacak.

Detaylı

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ Amaçlar 1. Kuvvet ve kuvvet çiftlerinin yaptığı işlerin tanımlanması, 2. Rijit cisme iş ve enerji prensiplerinin uygulanması. UYGULAMALAR Beton mikserinin iki motoru

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering Uygulama Sorusu-1 Şekildeki 40 mm çaplı şaft 0 kn eksenel çekme kuvveti ve 450 Nm burulma momentine maruzdur. Ayrıca milin her iki ucunda 360 Nm lik eğilme momenti etki etmektedir. Mil malzemesi için σ

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

1.1 Yapı Dinamiğine Giriş

1.1 Yapı Dinamiğine Giriş 1.1 Yapı Dinamiğine Giriş Yapı Dinamiği, dinamik yükler etkisindeki yapı sistemlerinin dinamik analizini konu almaktadır. Dinamik yük, genliği, doğrultusu ve etkime noktası zamana bağlı olarak değişen

Detaylı

= t. v ort. x = dx dt

= t. v ort. x = dx dt BÖLÜM.4 DOĞRUSAL HAREKET 4. Mekanik Mekanik konusu, kinemaik ve dinamik olarak ikiye ayırmak mümkündür. Kinemaik cisimlerin yalnızca harekei ile ilgilenir. Burada cismin hareke ederken izlediği yol önemlidir.

Detaylı

Mukavemet. Betonarme Yapılar. Giriş, Malzeme Mekanik Özellikleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği

Mukavemet. Betonarme Yapılar. Giriş, Malzeme Mekanik Özellikleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği Mukavemet Giriş, Malzeme Mekanik Özellikleri Betonarme Yapılar Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği GİRİŞ Referans kitaplar: Mechanics of Materials, SI Edition, 9/E Russell

Detaylı

DOĞRUSAL OLMAYAN TEK SERBESTLİK DERECELİ SİSTEME GİREN ENERJİNİN PERİYOT VE SÜNEKLİK ORANINA BAĞLI DEĞİŞİMİ

DOĞRUSAL OLMAYAN TEK SERBESTLİK DERECELİ SİSTEME GİREN ENERJİNİN PERİYOT VE SÜNEKLİK ORANINA BAĞLI DEĞİŞİMİ 11-13 Ekim 017 ANADOLU ÜNİVERSİTESİ ESKİŞEHİR DOĞRUSAL OLMAYAN TEK SERBESTLİK DERECELİ SİSTEME GİREN ENERJİNİN PERİYOT VE SÜNEKLİK ORANINA BAĞLI DEĞİŞİMİ ÖZET: T. Uçar 1 ve O. Merer 1 Yrd.Doç.Dr., Mimarlık

Detaylı

Yapı Sistemlerinin Hesabı İçin. Matris Metotları. Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL Bahar Yarıyılı

Yapı Sistemlerinin Hesabı İçin. Matris Metotları. Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL Bahar Yarıyılı Yapı Sistemlerinin Hesabı İçin Matris Metotları 2015-2016 Bahar Yarıyılı Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL 1 BÖLÜM VIII YAPI SİSTEMLERİNİN DİNAMİK DIŞ ETKİLERE GÖRE HESABI 2 Bu bölümün hazırlanmasında

Detaylı

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU Amaçlar: a) Korunumlu kuvvetlerin potansiyel enerjisinin hesabı. b) Enerjinin korunumu prensibinin uygulanması. ENERJİNİN KORUNUMU Enerjinin korunumu

Detaylı

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ Malzemelerde Elastisite ve Kayma Elastisite Modüllerinin Eğme ve Burulma Testleri ile Belirlenmesi 1/5 DENEY 4 MAZEMEERDE EASTĐSĐTE VE KAYMA EASTĐSĐTE MODÜERĐNĐN EĞME VE BURUMA TESTERĐ ĐE BEĐRENMESĐ 1.

Detaylı

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER MUKAEMET I ÇÖZÜMÜ ÖRNEKER ders notu Yard. Doç. Dr. Erdem DAMCI Şubat 15 Mukavemet I - Çözümlü Örnekler / 7 Örnek 1. Üzerinde yalnızca yayılı yük bulunan ve açıklığı olan bir basit kirişe ait eğilme momenti

Detaylı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN30 OTOMATİK KONTROL 00 Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı Sınav Süresi 90 dakikadır. Sınava Giren Öğrencinin AdıSoyadı :. Prof.Dr.

Detaylı

INSA 473 Çelik Tasarım Esasları Basınç Çubukları

INSA 473 Çelik Tasarım Esasları Basınç Çubukları INS 473 Çelik Tasarım Esasları asınç Çubukları Çubuk ekseni doğrultusunda basınç kuvveti aktaran çubuklara basınç çubuğu denir. Çubuk ekseni doğrultusunda basınç kuvveti aktaran çubuklara basınç çubuğu

Detaylı

Genel Bilgiler. Giriş Titreşimlerin Sebepleri Titreşimlerin Sonuçları Sistemlerin Titreşim Analizi Titreşim ve İnsan

Genel Bilgiler. Giriş Titreşimlerin Sebepleri Titreşimlerin Sonuçları Sistemlerin Titreşim Analizi Titreşim ve İnsan Kaynaklar: Makina Dinamiği Yıldız Teknik Üniversitesi Yayını, Prof.Necati Tahralı Prof.Dr.Faris Kaya Y.Doç.Dr.İsmail Yüksek Y.Doç.Dr.Rahmi Güçlü. Mekanik Titreşimler Ders Notları, Prof.Dr.Özgür Turhan.

Detaylı

ELASTİK DALGA YAYINIMI

ELASTİK DALGA YAYINIMI 18.0.016 ELASTİK DALGA YAYINIMI Prof.Dr. Eşref YALÇINKAYA (016-1. DERS 1 Zaman ve Yer Ders saati : 10:0 13:00 Ara : 11:15 11:30 Ders yeri : D-331 1 18.0.016 Sizden beklenen Derse devamın sağlanması çok

Detaylı

BAÜ Müh-Mim Fak. Geoteknik Deprem Mühendisliği Dersi, B. Yağcı Bölüm-5

BAÜ Müh-Mim Fak. Geoteknik Deprem Mühendisliği Dersi, B. Yağcı Bölüm-5 ZEMİN DAVRANIŞ ANALİZLERİ Geoteknik deprem mühendisliğindeki en önemli problemlerden biri, zemin davranışının değerlendirilmesidir. Zemin davranış analizleri; -Tasarım davranış spektrumlarının geliştirilmesi,

Detaylı

BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor

BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor 3 BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması 1.1.018 MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor 1 3. Burulma Genel Bilgiler Burulma (Torsion): Dairesel Kesitli Millerde Gerilme

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

Fizik 101: Ders 17 Ajanda

Fizik 101: Ders 17 Ajanda izik 101: Ders 17 Ajanda Dönme hareketi Yön ve sağ el kuralı Rotasyon dinamiği ve tork Örneklerle iş ve enerji Dönme ve Lineer Kinematik Karşılaştırma açısal α sabit 0 t 1 0 0t t lineer a sabit v v at

Detaylı

MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin

MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin MAK 308 MAKİNA DİNAMİĞİ 017-018 Bahar Dr. Nurdan Bilgin EŞDEĞER ATALET MOMENTİ Geçen ders, hız ve ivme etki katsayılarını elde ederek; mekanizmanın hareketinin sadece bir bağımsız değişkene bağlı olarak

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 7 İç Kuvvetler Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 7. İç Kuvvetler Bu bölümde, bir

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

Elastisite Teorisi Polinomlar ile Çözüm Örnek 2

Elastisite Teorisi Polinomlar ile Çözüm Örnek 2 Elastisite Teorisi Polinomlar ile Çözüm Örnek 2 Böylece aşağıdaki gerilme ifadelerine ulaşılır: Bu problem için yer değiştirme denklemleri aşağıdaki şekilde türetilir: Elastisite Teorisi Polinomlar ile

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir.

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. BÖLÜM POTANSİYEL VE KİNETİK ENERJİ. POTANSİYEL VE KİNETİK ENERJİ.1. CİSİMLERİN POTANSİYEL ENERJİSİ Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. Mesela Şekil.1 de görülen

Detaylı

GERİLME Cismin kesilmiş alanı üzerinde O

GERİLME Cismin kesilmiş alanı üzerinde O GERİLME Cismin kesilmiş alanı üzerinde O ile tanımlı noktasına etki eden kuvvet ve momentin kesit alana etki eden gerçek yayılı yüklerin bileşke etkisini temsil ettiği ifade edilmişti. Cisimlerin mukavemeti

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER. GİRİŞ - Konu, Hız ve İve - Newon Kanunları. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal Hareke

Detaylı

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir. A-36 malzemeden çelik çubuk, şekil a gösterildiği iki kademeli olarak üretilmiştir. AB ve BC kesitleri sırasıyla A = 600 mm ve A = 1200 mm dir. A serbest ucunun ve B nin C ye göre yer değiştirmesini belirleyiniz.

Detaylı

KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü (1. ve 2.Öğretim / B Şubesi) MMK208 Mukavemet II Dersi - 1. Çalışma Soruları 23 Şubat 2019

KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü (1. ve 2.Öğretim / B Şubesi) MMK208 Mukavemet II Dersi - 1. Çalışma Soruları 23 Şubat 2019 SORU-1) Aynı anda hem basit eğilme hem de burulma etkisi altında bulunan yarıçapı R veya çapı D = 2R olan dairesel kesitli millerde, oluşan (meydana gelen) en büyük normal gerilmenin ( ), eğilme momenti

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 4. Konu SABİT İVMELİ HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 4. Konu SABİT İVMELİ HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ . SINIF ONU ANLATIMLI. ÜNİTE: UVVET VE HAREET. onu SABİT İVMELİ HAREET ETİNLİ VE TEST ÇÖZÜMLERİ Sabi İmeli Hareke. Ünie. onu (Sabi İmeli Hareke). (m/s) A nın Çözümleri. İme- grafiklerinde doğru ile ekseni

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. kışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

YAYLAR. d r =, 2 FD T =, 2. 8FD τ = , C= d. C: yay indeksi, genel olarak 6 ile 12 arasında değişen bir değerdir. : Kayma gerilmesi düzeltme faktörü

YAYLAR. d r =, 2 FD T =, 2. 8FD τ = , C= d. C: yay indeksi, genel olarak 6 ile 12 arasında değişen bir değerdir. : Kayma gerilmesi düzeltme faktörü YAYLAR τ ± Tr F max J + A, FD T, r, J, A τ F + π, C D C: yay ineksi, genel olarak 6 ile 1 arasına eğişen bir eğerir. 0.5 τ 1+ ve C τ s yazılabilir. s C + 1 C s : ayma gerilmesi üzeltme faktörü higley s

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Fiz Ders 10 Katı Cismin Sabit Bir Eksen Etrafında Dönmesi

Fiz Ders 10 Katı Cismin Sabit Bir Eksen Etrafında Dönmesi Fiz 1011 - Ders 10 Katı Cismin Sabit Bir Eksen Etrafında Dönmesi Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği: Sabit Açısal İvmeli Dönme Hareketi Açısal ve Doğrusal Nicelikler Dönme Enerjisi Eylemsizlik

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Transformasyonlar (İleri Yapı Statiği)

Transformasyonlar (İleri Yapı Statiği) (İleri Yapı Statiği) Doç. Dr. Özgür Özçelik Dokuz Eylül Üniversitesi, Müh. Fak., İnşaat Müh. Böl. Sunum Ana Hattı Transformasyonlar Rijit uç bölgesi transformasyonu Global Lokal eksen transformasyonu Temel

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

1) Bir sarkacın hareketini deneysel olarak incelemek ve teori ile karşılaştırmak. 2) Basit sarkaç yardımıyla yerçekimi ivmesini belirlemek.

1) Bir sarkacın hareketini deneysel olarak incelemek ve teori ile karşılaştırmak. 2) Basit sarkaç yardımıyla yerçekimi ivmesini belirlemek. DENEY 4. BASİT SARKAÇ Amaç: 1) Bir sarkacın hareketini deneysel olarak incelemek ve teori ile karşılaştırmak. ) Basit sarkaç yardımıyla yerçekimi ivmesini belirlemek. Kuramsal Bili: Kendini belirli zaman

Detaylı

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Mühendislikte en önemli yapı ve makine elemanları mil ve kirişlerdir. Bu bölümde, mil ve kirişlerde

Detaylı

Aşağıdaki Web sitesinden dersle ilgili bilgi alınabilir. Ders, uygulama ve ödevlerle ilgili bilgiler yeri geldiğinde yayınlanacaktır.

Aşağıdaki Web sitesinden dersle ilgili bilgi alınabilir. Ders, uygulama ve ödevlerle ilgili bilgiler yeri geldiğinde yayınlanacaktır. MK 04: MUKVEMET Öğr.Gör.Dr. hmet Taşkesen MUKVEMET GİRİŞ DERS STLERİ Öğr.Gör.Dr. hmet Taşkesen, Makina Bölümü, Tel: 1680/1844, e-posta: taskesen@gazi.edu.tr Teorik Ders (3 saat) + Ödevler + Quizler Uygulama

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. Akışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 5 Eğilmede Kirişlerin Analizi ve Tasarımı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Fizik 101: Ders 4 Ajanda

Fizik 101: Ders 4 Ajanda Fizik 101: Ders 4 Ajanda Tekrar ve devam: Düzgün Dairesel Hareket Newton un hareket yasaları Cisimler neden ve nasıl hareket ederler? Düzgün Dairesel Hareket Ne demektir? Nasıl tanımlarız? Düzgün Dairesel

Detaylı

1.Seviye ITAP 17 Aralık_2012 Sınavı Dinamik VIII-Dönme_Sorular

1.Seviye ITAP 17 Aralık_2012 Sınavı Dinamik VIII-Dönme_Sorular 1.Seviye ITAP 17 Aralık_01 Sınavı Dinamik VIII-Dönme_Sorular 3.1.Dünyanın kendi dönme eksenine göre eylemsiz momentini ve açısal momentumunu bulunuz. 37 33 A) I = 9.7 10 kg m ; L = 7 10 kg m / s 35 31

Detaylı

Geometriden kaynaklanan etkileri en aza indirmek için yük ve uzama, sırasıyla mühendislik gerilmesi ve mühendislik birim şekil değişimi parametreleri elde etmek üzere normalize edilir. Mühendislik gerilmesi

Detaylı

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖLÜMÜ HABERLEŞME TEORİSİ FİNAL SINAVI SORU-CEVAPLARI

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖLÜMÜ HABERLEŞME TEORİSİ FİNAL SINAVI SORU-CEVAPLARI NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖLÜMÜ HABERLEŞME TEORİSİ FİNAL SINAVI SORU-CEVAPLARI Tarih: 4-0-008 Adı Soyadı : No : Soru 3 4 TOPLAM Puan 38 30 30 30 8 Soru

Detaylı

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş Mukavemet-II Yrd.Doç.Dr. Akın Ataş Bölüm 11 Enerji Yöntemleri Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 11.1 Giriş Önceki bölümlerde

Detaylı

Elemanlardaki İç Kuvvetler

Elemanlardaki İç Kuvvetler Elemanlardaki İç Kuvvetler Bölüm Öğrenme Çıktıları Yapı elemanlarında oluşan iç kuvvetler. Eksenel kuvvet, Kesme kuvvet ve Eğilme Momenti Denklemleri ve Diyagramları. Bölüm Öğrenme Çıktıları Elemanlarda

Detaylı

Şekil 1. DEÜ Test Asansörü kuyusu.

Şekil 1. DEÜ Test Asansörü kuyusu. DOKUZ EYLÜL ÜNĐVERSĐTESĐ TEST ASANSÖRÜ KUYUSUNUN DEPREM YÜKLERĐ ETKĐSĐ ALTINDAKĐ DĐNAMĐK DAVRANIŞININ ĐNCELENMESĐ Zeki Kıral ve Binnur Gören Kıral Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Makine

Detaylı

Yapı Sistemlerinin Hesabı İçin. Matris Metotları. Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL Bahar Yarıyılı

Yapı Sistemlerinin Hesabı İçin. Matris Metotları. Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL Bahar Yarıyılı Yapı Sistemlerinin Hesabı İçin Matris Metotları 05-06 Bahar Yarıyılı Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL BÖLÜM VIII HAREKET DENKLEMİ ZORLANMIŞ TİTREŞİMLER SERBEST TİTREŞİMLER Bu bölümün hazırlanmasında

Detaylı

Kafes Kiriş yük idealleştirmesinin perspektif üzerinde gösterimi. Aşık. P m

Kafes Kiriş yük idealleştirmesinin perspektif üzerinde gösterimi. Aşık. P m 3. KAFES KİRİŞİN TASARIMI 3.1 Kafes Kiriş Yüklerinin İdealleşirilmesi Kafes kirişler (makaslar), aşıkları, çaı örüsünü ve çaı örüsü üzerine ekiyen dış yükleri (rüzgar, kar) aşırlar ve bu yükleri aşıklar

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

SÜLEYMAN DEMİ REL ÜNİ VERSİ TESİ MÜHENDİ SLİ K-Mİ MARLIK FAKÜLTESİ MAKİ NA MÜHENDİ SLİĞİ BÖLÜMÜ MEKANİK LABORATUARI DENEY RAPORU

SÜLEYMAN DEMİ REL ÜNİ VERSİ TESİ MÜHENDİ SLİ K-Mİ MARLIK FAKÜLTESİ MAKİ NA MÜHENDİ SLİĞİ BÖLÜMÜ MEKANİK LABORATUARI DENEY RAPORU SÜLEYMAN DEMİ REL ÜNİ VERSİ TESİ MÜHENDİ SLİ K-Mİ MARLIK FAKÜLTESİ MAKİ NA MÜHENDİ SLİĞİ BÖLÜMÜ MEKANİK LABORATUARI DENEY RAPORU DENEY ADI KİRİŞLERDE SEHİM DERSİN ÖĞRETİM ÜYESİ YRD.DOÇ.DR. ÜMRAN ESENDEMİR

Detaylı

DİNAMİK - 1. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 1. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 1 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü http://acikders.ankara.edu.tr/course/view.php?id=190 1. HAFTA Kapsam:

Detaylı

Noktasal Cismin Dengesi

Noktasal Cismin Dengesi Noktasal Cismin Dengesi Bu bölümde; Kuvvetleri bieşenlerine ayırma ve kartezyen vektör şeklinde ifade etme yöntemleri noktasal cismin dengesini içeren problemleri çözmede kullanılacaktır. Bölüm 3 DOÇ.DR.

Detaylı

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ BURSA - 2016 1. GİRİŞ Eğilme deneyi malzemenin mukavemeti hakkında tasarım

Detaylı

Eksenel Yükleme Amaçlar

Eksenel Yükleme Amaçlar Eksenel Yükleme Amaçlar Geçtiğimiz bölümlerde eksenel yüklü elemanlarda oluşan normal gerilme ve normal şekil değiştirme konularını gördük, Bu bölümde ise deformasyonların bulunması ile ilgili bir metot

Detaylı

Dalgalar. Matematiksel olarak bir dalga, hem zamanın hem de konumun bir fonksiyonudur: İlerleyen bir dalganın genel bağıntısı (1- boyut ): y f ( x t)

Dalgalar. Matematiksel olarak bir dalga, hem zamanın hem de konumun bir fonksiyonudur: İlerleyen bir dalganın genel bağıntısı (1- boyut ): y f ( x t) Dalgalar Tireşimlerin bir uyarının veya bir sarsınının uzay içinde zamanla ilerlemesine dalga denir. Maemaiksel olarak bir dalga, hem zamanın hem de konumun bir fonksiyonudur: İlerleyen bir dalganın genel

Detaylı

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ MUKAVEMET DERSİ (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ Ders Planı HAFTA KONU 1 Giriş, Mukavemetin tanımı ve genel ilkeleri 2 Mukavemetin temel kavramları 3-4 Normal kuvvet 5-6 Gerilme analizi 7 Şekil

Detaylı

ÖNSÖZ. Kitabın kapak tasarımında katkılarından dolayı A-Ztech Ltd. den Sn Ali ÖGE ye teşekkür ederim.

ÖNSÖZ. Kitabın kapak tasarımında katkılarından dolayı A-Ztech Ltd. den Sn Ali ÖGE ye teşekkür ederim. ÖNSÖZ Katıların mekaniği kendi içinde Katı Cisimlerin Mekaniği (veya kısaca Mekanik) ve Şekil Değiştiren Cisimlerin Mekaniği (veya kısaca Mukavemet) olmak üzere iki alt gruba ayrılmıştır. Bunlardan mekaniğin

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

MAK 305 MAKİNE ELEMANLARI-1

MAK 305 MAKİNE ELEMANLARI-1 MAK 305 MAKİNE ELEMANLARI-1 BÖLÜM 1- MAKİNE ELEMANLARINDA MUKAVEMET HESABI Doç. Dr. Ali Rıza YILDIZ 1 BU DERS SUNUMDAN EDİNİLMESİ BEKLENEN BİLGİLER Makine Elemanlarında mukavemet hesabına neden ihtiyaç

Detaylı

1.Seviye ITAP 24_30_Aralık_2012 Deneme Sınavı Dinamik IX Dönme Dinamiği _Sorular

1.Seviye ITAP 24_30_Aralık_2012 Deneme Sınavı Dinamik IX Dönme Dinamiği _Sorular 1.Seviye ITAP 24_30_Aralık_2012 Deneme Sınavı Dinamik IX Dönme Dinamiği _Sorular 3.26. Yarıçapı R=10cm olan bakırdan yapılmış bir küre ω = 2 tur / s açısal hızı ile kürenin merkezinden geçen bir eksene

Detaylı

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN Yapı Sistemleri: İzostatik (Statikçe Belirli) Sistemler : Bir sistemin tüm kesit tesirlerini (iç kuvvetlerini) ve mesnet reaksiyonlarını

Detaylı

5.DENEY. d F. ma m m dt. d y. d y. -kx. Araç. Basit. denge (1) (2) (3) denklemi yazılabilir. (4)

5.DENEY. d F. ma m m dt. d y. d y. -kx. Araç. Basit. denge (1) (2) (3) denklemi yazılabilir. (4) YAYLI ve BASİ SARKAÇ 5.DENEY. Amaç: i) Bir spiral yayın yay sabitinin belirlenmesi vee basit harmonik hareket yapan bir cisminn periyodununn incelenmesi. ii) Basit sarkaç kullanılarak yerçekimi ivmesininn

Detaylı

BİLGİSAYAR DESTEKLİ TASARIM HAFTA 9 COSMOSWORKS İLE ANALİZ

BİLGİSAYAR DESTEKLİ TASARIM HAFTA 9 COSMOSWORKS İLE ANALİZ BİLGİSAYAR DESTEKLİ TASARIM HAFTA 9 COSMOSWORKS İLE ANALİZ Sunum içeriği: 1. Merkezkaç Kuvveti (Centrifugal Force) 2. Burkulma (Flambaj Analizi) 3. Doğal Frekans Analizi (Natural Frequencies) Merkezkaç

Detaylı

1) Çelik Çatı Taşıyıcı Sisteminin Geometrik Özelliklerinin Belirlenmesi

1) Çelik Çatı Taşıyıcı Sisteminin Geometrik Özelliklerinin Belirlenmesi 1) Çelik Çaı Taşıyıcı Siseminin Geomerik Özelliklerinin Belirlenmesi 1.1) Aralıklarının Çaı Örüsüne Bağlı Olarak Belirlenmesi Çaı örüsünü aşıyan aşıyıcı eleman aşık olarak isimlendirilir. Çaı sisemi oplam

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

SINIFLANDIRMA AMAÇLI KULLANILAN SİLİNDİRİK TRİYÖRLERİN KİNEMATİK ESASLARI * Kinematical Principles of Cylindrical Triors Used for Classification

SINIFLANDIRMA AMAÇLI KULLANILAN SİLİNDİRİK TRİYÖRLERİN KİNEMATİK ESASLARI * Kinematical Principles of Cylindrical Triors Used for Classification Ç.Ü Fen Bilimleri Ensiüsü Yıl:009 Cil:0- SINIFLANDIRMA AMAÇLI KULLANILAN SİLİNDİRİK TRİYÖRLERİN KİNEMATİK ESASLARI * Kinemaical Principles of Cylindrical Triors Used for Classificaion İbrahim Emre YATAR

Detaylı

BÖLÜM-9 TAŞKIN ÖTELENMESİ (FLOOD ROUTING)

BÖLÜM-9 TAŞKIN ÖTELENMESİ (FLOOD ROUTING) BÖLÜM-9 TAŞKIN ÖTELENMEİ (FLD RUTING) 9. GİRİŞ Tarih göseriyor ki pek çok medeniye kurulurken, insanlar için suyun vazgeçilmez öneminden dolayı akarsu kenarları ercih edilmişir. Bunun içme ve sulama suyunu

Detaylı

TDY 2007 YE GÖRE DEPREM ELASTİK TASARIM İVME SPEKTRUMU

TDY 2007 YE GÖRE DEPREM ELASTİK TASARIM İVME SPEKTRUMU KONU: Yeni deprem yönetmeliği taslağında ve TDY2007 de verilen kriterler doğrultusunda, birkaç lokasyonda, deprem tasarım ivme spektrumlarının oluşturulması ve tek serbestlik dereceli bir sistem üzerinde

Detaylı

Saf Eğilme (Pure Bending)

Saf Eğilme (Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde, doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki deformasonları incelenecek. Burada çıkarılacak formüller, en kesiti an az bir eksene göre simetrik

Detaylı

Su Yapıları II Aktif Hacim

Su Yapıları II Aktif Hacim 215-216 Bahar Su Yapıları II Akif Hacim Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversiesi Mühendislik Mimarlık Fakülesi İnşaa Mühendisliği Bölümü Yozga Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversiesi n aa Mühendisli

Detaylı

Kuvvet ve Hareket 96

Kuvvet ve Hareket 96 96 uvve ve Hareke uvve ve Hareke MODE SORU DE SORUARIN ÇÖZÜMER MODE SORU DE SORUARIN ÇÖZÜMER. a) b) Oobüü s n sü rai 9 km/ h Oobüsün 8 km/h. oflucu O dan P ye s de geliyor. OP m/ s oflucu P den R ye s

Detaylı

Gp= ½ ( dp1+dp2) * H * tb= ½ ( ) * 5.4 * 25 = 57.4 kn/m G t=d t l t b=0.6* 4.5 *25 = 67.5 kn/m G d=a 2 H t d=3 *5.4 *18 = 291.

Gp= ½ ( dp1+dp2) * H * tb= ½ ( ) * 5.4 * 25 = 57.4 kn/m G t=d t l t b=0.6* 4.5 *25 = 67.5 kn/m G d=a 2 H t d=3 *5.4 *18 = 291. İSTİNAT DUVARI TASARIMI Şekilde verilen ers T biçimli konsol ipindeki isina duvarında gerekli konrollerin yapılması, donaıların hesaplanması ve donaı krokisinin çizimi: Verilen Bilgiler: Zemin: Sıkı kum,

Detaylı

KUVVET VE HAREKET Bölüm - 3

KUVVET VE HAREKET Bölüm - 3 UVVET VE HAREET Bölüm - 3 HAREET: Bir cismin seçilen bir nokaya göre zamanla yer değişirmesine hareke denir. Yer değiģirme: Bir harekelinin, son konumu ile ilk konumu arasındaki en kısa mesafesidir. Alınan

Detaylı

YAPI ZEMİN ETKİLEŞİMİ. Yrd. Doç. Dr Mehmet Alpaslan KÖROĞLU

YAPI ZEMİN ETKİLEŞİMİ. Yrd. Doç. Dr Mehmet Alpaslan KÖROĞLU YAPI ZEMİN ETKİLEŞİMİ Yrd. Doç. Dr Mehmet Alpaslan KÖROĞLU Serbest Titreşim Dinamik yüklemenin pek çok çeşidi, zeminlerde ve yapılarda titreşimli hareket oluşturabilir. Zeminlerin ve yapıların dinamik

Detaylı