5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları



Benzer belgeler
5.1 Olasılık Tarihi Temel Olasılık Kavramları

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

7. Ders. Bazı Kesikli Olasılık Dağılımları

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

BEKLENEN DEĞER VE VARYANS

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır.

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= İÇİNDEKİLER. E(X) = k Pascal (Negatif Binom) Dağılımı Hipergeometrik Dağılım N y=

Regresyon ve Korelasyon Analizi. Regresyon Analizi

1. GAZLARIN DAVRANI I

İki veri setinin yapısının karşılaştırılması

Đst201 Đstatistik Teorisi I

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Giriş. Değişkenlik Ölçüleri İSTATİSTİK I. Ders 5 Değişkenlik ve Asimetri Ölçüleri. Değişkenlik. X i ve Y i aşağıdaki gibi iki seri verilmiş olsun:

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

{ 1 3 5} { 2 4 6} OLASILIK HESABI

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

MERKEZİ EĞİLİM ÖLÇÜLERİ

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Polinom İnterpolasyonu

BÖLÜM 2 OLASILIK TEORİSİ

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Tanımlayıcı İstatistikler

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek

Zaman Skalasında Box-Cox Regresyon Yöntemi

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

Tanımlayıcı İstatistikler

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

6. Uygulama. dx < olduğunda ( )

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ

ELN 3401 Mühendislik Olasılığı

Tanımlayıcı İstatistikler

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

Tanımlayıcı İstatistikler

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy

Ki- kare Bağımsızlık Testi

Olasılık, Rastgele Değişkenler ve İstatistik

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ ( tarihli ve sayılı Resmi Gazete'de yayımlanmıştır.) BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayanak

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

AKT201 MATEMATİKSEL İSTATİSTİK I ÖDEV 6 ÇÖZÜMLERİ

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

Tanımlayıcı İstatistikler

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

Ayrık Olasılık. Ayrık Olasılığa Giriş

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr.

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

İstatistik Nedir? Sistem-Model Kavramı

Rassal Değişken. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

BAYES KURAMI. Dr. Cahit Karakuş

Temel Olasılık {\} /\ Suhap SAHIN

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık

OLASILIK LASILIK ve İSTATİSTİK Olasılık

RANKI 2 OLAN SERBEST LIE CEBİRLERİNİN OTOMORFİZM GRUPLARININ SUNUMLARI 1 Reports Of Free Groups Otomorfizm Rank 2 Lie Algebras

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ

İstatistik ve Olasılık

HĐPERSTATĐK SĐSTEMLER

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, olduğuna göre sayısı kaç basamaklıdır?

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

5. BÖLÜM EKİ SAYMANIN TEMEL PRENSİPLERİ

Doç. Dr. Mehmet AKSARAYLI

Quality Planning and Control

YÖNEYLEM ARAŞTIRMASI III. Dinamik Programlama. Örnek 3: Tıbbi Müdahale Ekiplerinin Ülkelere Dağıtımı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

TABAKALI ŞANS ÖRNEKLEME

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

Venn Şeması ile Alt Kümeleri Saymak

Kİ-KARE TESTLERİ. şeklinde karesi alındığında, Z i. değerlerinin dağılımı ki-kare dağılımına dönüşür.

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

Temel Yapılar: Kümeler, Fonksiyonlar, Diziler ve Toplamlar

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI

Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

Transkript:

5 OLSILIK 5.. Olasılık Tarh 5.. Temel Olasılık Kavramları 5.3. Deeysel Olasılık 5.4. Temel olasılık Teoremler 5.5. Olasılığı Tolaablrlk Kuralı: 5.6. Olasılığı çarım kuralı: 5.7. Değl ağıtısı: 5.8. Koşullu (Şartlı) Olasılık 5.9. Koşullu Olasılıkta Çarım Kuralı 5.0. ayes Teorem 5.. ağımsızlık: 5.. Olasılık Foksyoları 5.3. Keskl Rasgele Değşke Olasılık Dağılımı 5.4. Sürekl Rasgele Değşke Dağılımı 5.5. eklee Değer (Exected Value) 5.6. Varyas Ek. Saymaı Temel Presler

5. Olasılık Tarh Şasa bağlı olaylar 7. yüzyılda bu yaa yoğu olarak celemektedr. Ülü fzkç Galle fzksel büyüklükler ölçüm hatalarıı celemş ve bu hataları şasa bağlı olduğuu varsayarak hatalrı olasılığıı hesalamıştır. yı yüzyılda sgorta hesaları yaılmaya başlamış ve doğal olayları kauları oluşturulmaya çalışılırke şasa bağlı olayları aalz ç olasılık hesalamalarıa başvurulmuştur. u amaçla şasa bağlı olayları alaşılması bast modeller kurulurke şas oyularıda yararlaılmıştır. Moder olasılık teoroso 650 lerde Pascal, Fermat, ve Huuyges çalışmaları le oluşmaya başlamıştır. u çalışmalar oyu teoroso, olasılık kavramları ve beklee değer gb kavramları doğmasıa sebe olmuştur. 6. yüzyılı solarıa doğru eroull büyükm sayılar kauu ele almıştış ve satlamıştır. 7. yüzyılı başlarıda De Movre ormal veya Gauss teorem bulmuştur. 7. yüzyılı ortalarıda tbare Lalace ve 8 yüzyılı başlarıda Gauss ve Posso u olasılık teorse çok katkıları olmuştur. Lalace merkez lmt teorem satlamış. Gauss ormal kauu daha cdd olarak ele almış ve e küçük kareler yötem gelştrmştr. 8. yüzyıl ve 9. yüzyılı başları olasılık teors e yoğu gelştğ döem olmuştur. u döemde olasılık teors brçok alada uygulamaya başlamıştır. 9. yüzyılda Tchebyhheff ve Markov olasılık teorse daha moder br alam getre çalışmalarda buludu, 0 yüzyılda se Kolmogorov, Fsher Nevma ve Cramer bu alada büyük katkı sağlamış blm adamlarıdır. 5.. Temel Olasılık Kavramları Gülük hayatta olasılık, gelecektek br olay ç breyler umutlarıı, bekletler br ölçüsüdür. u taıma göre br olayı ortaya çıkma olasılığıı farklı breyler değşk umutları olduğu varsayımıda geelleştrmek mümkü değldr. uda ötürü bu taım blmsel br temel oluşturmaz. r olayı gerçekleşme olasılığı, olayı gerçekleşmes ç uygu haller tüm olaaklı hallere oraıdır. Fzksel ve sosyal br olguu kes olarak belrlemes olaaksız da olsa, bu tür olgular yeterce gözledklerde belrl br düzeler oldukları sataablr. u düze matematksel fades elde etmek, olguları gerçekleşmese lşk yargılarımızı, öermelermz sayılaştırmak olasılık teors suduğu araçlarla olaaklıdır. astçe fade edersek olasılık, rastlatısal br olguya lşk br öerme

3 kese yada olaaksıza e kadar yakı olduğuu göstere br sayıdır. 0 olaaksızı se kesleşmey smgeler. Olasılık, objektf yötemlerle ve/veya sübjektf süreçte hesalaablr. r olayı sübjektf olasılığı, daha öcek k taım da olduğu gb yalızca objektf yötemlerle değl, sübjektf yargılarıı da hesaba katıldığı ve söz kousu olayı geçerllğe ya da olablrlğe lşk verle ve vere kş olayı gerçekleşmese lşk kşsel güve dereces göstere [0, ] aralığıda reel br sayıdır. Sübjektf taım, yasaya lk kez sürülecek ola br ürüü % 5 lk Pazar ayı alması, 05 yılıda br meteoru düyaya çarması ya da 0 yıl çersde Kuzey aadolu fay hattı üzerde merkez üssü İstabul u güey ve 7 büyüklüğüde br derem olması gb gelecekte gerçekleşecek olayları olasılığıı hesalamada kullaılablr. Olasılıklar tay edlrke objektf ver ve veya sübjektf yargıya başvurulur. Öreğ br ürüü Pazar ayı ç olasılık hesalarke, gelecektek müşter bekletler gb sübjektf verler yaı sıra geçmştek bezer ve rak ürü grularıı Pazar ayları gb objektf verler brleştrerek olasılıklar tay edeblrler. cak başvurdukları krterlere, blg brkmlere ve yeteeklere göre farklı hesalama modeller farklı olasılıklar vereblr, bu edele bu taım sübjektf olasılık kavramı le fade edlr. Taım : r olayı meydaa gelme şasıı sayısal değere olasılık der ve le gösterlr. Olasılık 0 aralığıda değerler alablr. Kes olaylarda %00 meydaa gelme olasılığı dr. Taım : Eğer adet deemede başarı sayısı s ve lm ke başarıı s frekası s/ bell br lmte ulaşırsa, bu değere (s/) o deeme başarı olasılığı der. Taım 3: Eğer br olay s defa gerçekleşr ve f defa gerekleşmezse ve eğer s+f kadar olayı hes eşt şasa sahse bu olaylardak s başarıı olasılığı ve s + f u taımda başarısızlık olasılığı f q olur. s + f

4 s f + q + elde edlr ve bu souç geelleeblr. s + f s + f Taım 4: Verle br deey mümkü ola bütü souçlarıı oluşturduğu S kümese örek uzay der. Taım 5: İster deemede, ster doğruda elde edle verlere olay der. u olaylar brer örek oktası olarak le gösterlr. oluşur. u edele E ( evet ) le gösterlrse; Tek zar atılışıda gelmes E gelmes E.. 6 gelmes E 6 tek sayı gelmes 4 de küçük gelmes E ler brer olaydır ve ve se brkaç olayı ( ) E : bast (elemeter) olaylar,: brleşk olaylar olarak adladırılır. E brleşmesde Örek : Deey : Tek zar atılışı Örek Uzayı : S {,, 3, 4, 5, 6} r başka gösterm se : S { E, E, E, E, E, E } { } E { } {} E {} {} 5 E {} 6 3 4 5 6 E E3 3 4 4 ast olaylar E5 6 Olayı: Tek zar atılışı deey soucuda tek sayı gelmes Olayı: Tek zar atılışı deey soucuda 4 de küçük sayı gelmes {, 3, 5} {,3,5} {,, } {,,3} E E E rleşk Olaylar E E E 3

5 Taım 6: u olaylar okta setler oluştururlar ve her bast olay ( E ) ç br okta vardır ve bular örek oktası adıı alırlar. Örek oktalarıı oluşturduğu sete( uzaya ) örek uzayı (S) delr. Örek uzayıı gösterm 3 bçmde olur:. Lsteleme Örek: Deeme br metal ara le yaılırsa; { Y T} S, örek uzayıda k okta var.. Ve dyagramı S.E.E 6.E 3.E E 5.E 4 3. ğaç dyagramı ğaç dyagramı çoğulukla brde çok brlkte veya ardışık gerçekleşe olayları göstermde daha yararlı olur. Örek: Deeme k metal ara le yaılırsa; {( Y, Y )(, Y, T, )(, T, Y ), ( T T )} S, Y YY I Y T T Y YT TY T TT

6 Taım 7: oş küme le örek uzay S de brer olaydır. olayıa olaaksız olay, S olayıa da kes olay der. r set çde tüm elema ya da olayları olasılıkları tolamı dama; E ve ) ( ) ) 0 ( E ) dr. Örek uzayı ( set ) S le gösterlrse; { E E } S,,..., E ( E ) ( E ) + ( E ) + + ( )... dr. E Örek: Deeme k zar le yaılırsa örek uzayı {(, );,,,...,6} S j j {(, ), (,), (,3 ),..., (,6), (, ),...,..., ( 6,6) } S şeklde oluşturulur. Taım 8: r örek uzayıda taımlaa olaylar brbr egelleyeblecek telkte olablr. rbr egelleye olaylar ( mutually exclusve ), ayı ada gerçekleşmes mümkü olmaya olaylardır. (ayrık olaylar: dsjot) Örek: r basketbol müsabakasıı soucuda takımlar açısıda 3 durum söz kousudur: Mağlubyet M Galbyet G eraberlk S { M, G, } Olaylar değşk şlemler le brleştrlerek ye olaylar elde edlr. ), ya da şeklde okuur ve ( x x x ) bçmde gösterlr. ), ve şeklde okuur ve ( x x x ) bçmde gösterlr. 3) - veya!, le farkı şeklde okuur ve ( xx x, ) bçmde gösterlr. 4), değl şeklde okuur. ı S ye göre tümleyedr ve

7 ( x x S, x ) bçmde gösterlr. Taım 9: Örek uzayıda k olayda herhag br gerçekleşmes söz kousu se k olayı oluşturduğu alt sete bu olayları brleşm( uo ) der ve E ve E gb k olayı brleşm E E şeklde gösterlr. Tek zar atılışıda; çıkablecek souçları kümes örek uzay olu { E, E E } S dr. ve olayları aşağıdak gb oluşturulmuş olsu:,..., 6 { E, E, E 4 } { E, E 5 } { E, E, E E } 4, 5 S ı ı ı ı ı 3 4 5 6 * * * * * {} tersecto( arakest ) rbr egelleye olaylar ç kesşm: E E φ dr. j E : :,..., tümü E E E... E E ler herhag brde yer ala oktaları E E E... E E ler hesde ortak ola oktalar

8 Örek: Çft zar atılışıda üst yüzler tolamıı 6 gelmes olasılığı S { 36 okta var } I. II. ( 6 ) 5 36 r metal ara atılışıda; { Y T} S, zar zar 5 4 3 3 4 5 Örek: Y ve T gelmes eşt olasılıklıdır varsayımı altıda, ya metal ara hlesz se, karşılıklı bağımsız bu k soucu meydaa gelme olasılıkları 0,5 dr. NOT: r olayı olasılığı ölçülürke, olaaklı souçlarda oluşa br oulasyo ya da set ( örek uzayı ) düşüülmeldr. Örek: İk metal ara atılışıda; {( T, T )(, T, Y )(, Y, T )( Y Y )} S, ( T, T ) YT 4 (, ) + 4 4 Örek:,,C gb değşk ırkta üç at yarışıyor. ı kazama olasılığı k katı; k de C k katıdır. Her br ),),C) kazama olasılıklarıı buluuz. C) dyelm. ) ; )4 dr. Tüm olasılıklar tolamı olacağıda ++4 /7 )4/7 )/7 C)/7 Taım 0: Şasa ağlılık yı koşullar altıda tekrarladığıda dama ayı soucu vermeye, bu edele de determstk( kes ) olmaya deeylere şasa bağlı deey der. Taım : Şas değşke: r değşke acak, taım aralığıdak br değer bell br olasılık değer le alabldğde şasa bağlı br değşkedr.

9 x x x Px ( ) Px ( ) Px ( ) 0 Px ( ) Px ( ) 5.3. Deeysel Olasılık Olasılığı dğer br satama yolu çok sayıda deeyler yamakla da mümküdür ve olayı souçları defalarca gözlemler. u şeklde elde edle başarılı olay sayısıı tolam deey sayısıa oraıa deeysel olasılık der. Şasa bağlı br deey ayı koşullar altıda f keza tekrarlaırsa, bu deeyde lglele olaya at souç (sıklık) sayısı f a olsu. Deey sayısı yeterce tekrarlaırsa bu oraıı belrl br değere vardığıda durağalaştığı görülür. İlglele bu a olayıı gerçekleşme olasılığı ( a) lm a f f bçmde fade edlr. cak gerçekte br olayı ortaya çıkma olasılığıı bulmak ç Taım 0 dek yolu zlemek zordur çükü lmt her zama taımlı olmayablr. 5.4. Temel olasılık Teoremler ) ( x) ; x olayıı olasılığı gerçek br sayıdır. ) ( x) 0 se ( ) ( ) + ( ) 3) φ

0 oulasyo olasılığı dr. 4) E ( E ) ( u) φ 5) ( ) 0 se ( ) ( ) 6) ( ) ( ) + ( ) ( ) 0 olduğuda ( ) ( ) dır. 7) ( ) ( ) + ( ) ( ) 0 se k ( a k) + ( b k) a + b k + k ( ) ( ) + ( ) ( ) cak ( ) 0 ( ) ( ) + ( ) dr. se bağımsız k olay söz kousudur ve

8) ) ( ) ( S φ ) ( ) ( S 9) ve k olay olsu. u durumda ( ) veya ) ( ) ( ) ( ( ) 0) E E, olayıı tamamlayıcısı olu ( ) ( ) E E dolayısıyla da ( ) ( ) E E dr. Çükü; ( ) ( ) ( ) + + E E S E E S ) ) ( ) ( ) ( ) ( ) ( + azı özellkler : C C ) ( ) ( C C ) ( ) (

( C) ( ) ( C) ( C) ( ) ( C) De Morga Kauları Eğer,,... kşer kşer ayrık olaylar se... ) ( ) + ( ) +... + ( ( ) Taım : Eğer P ( ) ). ) se le bağımsız k olaydır. ks halde k olay bağımlıdır. 5.5. Olasılığı Tolaablrlk Kuralı: Eğer olaylar bağımsız seler ya ve brbr egellyorsa { } φ ( ) 0 (temel olasılık teoremler 3) ( ) ( ) ( ) + Örek: tlarla lgl öreğe döersek veya C atıı kazama olasılığı edr? C))+C)/7 + /7 3/7 Eğer olaylar bağımlı se ya ve brbr egellemyorsa

3 ( ) ( ) + ( ) ( ) ( ) + ( ) ( ). ( ) Örek: r sııfta 0 erkek 0 kız öğrec vardır. Kızları ve erkekler yarısı syah gözlüdür. Örek olarak alıa br öğrec br erkek veya syah gözlü olması olasılığıı hesalayıız. Öğrec erkektr Öğrec syah gözlüdür. Öğrec erkek veya syah gözlüdür. 0 5 P ( ), P ( ) 30 3 30 5 P ( ) 30 6 4 P ( ) P ( ) + P ( ) P ( ) + 3 6 6 3 ağımsız üç olayı olasılığı ( C) ( ) + ( ) ( C) + Karşılıklı bağımlı üç olayı olasılığı

4 d + g C e + g C f + g C a d + e + g + b d + g + f + c f + e + g + d + e + f + [ ( )] [ ( )] [ ( )] g ( ) a + b + c a + b + c C ( ) + ( ) + ( C) ( d + g) ( e + g) ( f + g) + g ( ) ( C) ( C) + ( C) ( ) ( ) ( ) ( ) C C + C u souç 3 de fazla olaylar ç de geelleeblr. P ( ) ) P ( ) P ( ) j j + P ( ) P ( ) + j k j k m j k j k m 5.6. Olasılığı çarım kuralı: ağımsız olaylarda: ve gb k olay varsa ve bular bağımsız se ( ) ( ) ( ) dr.

5 Örek: 5 lk br destede yere koularak yaıla çeklşlerde lk kartı kız, kc tek sayılı olma olasılığı 4 0 80 ( KZ KU) ( KZ). KU). 5 5 5 ( ) ağımlı olaylarda: olayıı soucu y ya da olayıı soucu yı etkledğ durumlar da söz kousudur ve brbr egellyorsa olmaz. ( ) ( ). ( ) ( / ) / 0 ( ) ( ) Örek: r okulu öğrecler %5 matematkte, %5 kmyada ve %0 u hem matematkte hem kmyada başarısızdır. Rassal olarak alıa öğrec )Kmyada zayıf se, matematkte de zayıf olması )Matematkte zayıf se kmyada da zayıf olması )Kmyada yada matematkte zayıf olması olasılıklarıı ayrı ayrı hesalayıız. MMatematkte zayıf öğrecler KKmyada zayıf öğrecler. ) ) PC ( M) 0.0 PMC ( ) PC ( ) 0.5 3 PC ( M) 0.0 PCM ( ) PM ( ) 0.5 5 ) PM ( C) PM ( ) + PC ( ) PM ( C) 0.5 + 0.5 0.0 0.30 Örek: r bakada yaıla br araştırmada her 5 kadı müşterde 3 üü (), her erkek müşterde () kred şlem ç bakaya geldğ test edlmştr. Her k olaya lşk )3/5 )/ )3/0 olasılıkları verldğe göre ) U) v) ) ) P (), P () v) ) ) ) v) ) ) U))+)- ) 3 + 3 8 5 0 0

6 ) 3 P ( ) P ( ) 5 5 ) ( ) v) ( ) P ( ) ) P ( ) 8 P ) 0 5 7 P ( ) P ( ) + P ( ) P ( ) + 5 5 0 3 3 3 P ) ) ) 5 0 0 v) ( ) 3 P ) ) ) 0 0 v) ( ) ( ) ( ) P ( ) 3 7 P ) 0 0 5.7. Değl ağıtısı: r olayıı meydaa gelme olasılığı ( ), ayı olayı meydaa gelmeme olasılığı se ( ' ) le gösterlrse; ' olayı, olayıı meydaa gelmemes durumudur. u k olay arasıda şu lşk mevcuttur. ( ) + ( ' ) ( ' ) ( ) veya ( ) ( ' ) dür. Örek: 5 lk br deste kağıtta çekle 5 kağıt çersde, e az tae tek sayı buluması olasılığı edr? u deeyde 5 lk destede 5 kağıtlık br alt set seçm söz kousudur. 5 lk destede beşerl kart gruları sayısı 5 dr. 5 5 lk destede, (5-0)3 tae tek sayılı kart dışıda kart vardır. O halde tek sayılı bulumama durumuu çere alt setler se E az tae tek sayılı buluma olasılığı 3 dr. 5 ( x ) ( x ) + ( x ) + ( x 3) + ( x 4) + ( x 5) ( ) x 0 dr.

7 O halde f f 3 5 5 5 ( ' ) dr ve ( ) temel olasılık teoremde 3 5 olarak buluur. 5 5 Örek: Üç kutu ve çdekler aşağıdak bçmde verlmştr. I. kutu 0 amul 4 ü bozuk II. kutu 6 amul bozuk III. kutu 8 amul 3 ü bozuk Kutularda br rastgele seçlyor ve bu kutuda br amul alııyor. u amulü bozuk olması olasılığı edr? urada k deeylk br ser var: ) üç kutuda br seçmek ) seçle kutuda bozuk ya da sağlam amul çekmek /3 I /5 3/5 S (/3).(/5) /3 /3 II /6 5/6 S (/3).(/6) 3/360 III 3/8 (/3).(3/8) 5/8 S Örek: I. ve II. torbadak toları sayısı aşağıdak gbdr. Rastgele çekle br tou, a. S olması b. olması c. M olması d. S veya olması e. S veya veya M olması olasılığı edr?

8 6 8 S I S II S I) S) + II) S). +. 5 8 a. ( ) ( ) ( ) b. ( ) [ ( I ) ( II ) ] c. ( M ) [ ( I M ) ( II M )]. 5 5 +. 4 6. +. veya 5 8 [ ( S) ( )] ( M ) d. ( S ) { [( I S ) ( II S )] [ ( I ) ( II ) ]} ( S ) ( M ). 6 5 4 8 8 5 4 +. +. +. veya 8 5 8 e. ( S M ) ( S ) + ( ) + ( M ) 5.8. Koşullu (Şartlı) Olasılık S örek uzayı çde E herhag br olay olsu. (E)>0). E olayıı gerçekleştğ bldkte sora, k bu durumda ye örek uzayı E ye drgemş olur ve bua drgemş örek uzayı da der, olayıı gerçekleşmes olasılığı ya da br başka deyşle E olayı gerçekleşt se ı koşullu olasılığı /E) le gösterlr.

9 PE ( ) PEP ( ) ( / E) P ( E) P ( / E) PE ( ) Örek: İk zar brlkte atılıyor; tolam 6 gelmşse zarlarda br gelmes olasılığı edr? E { tolam 6} {(,5),(,4),( 3,3 ), ( 4,),( 5, )} { zarlarda br } {(,4),( 4,) } E {(,4),( 4,) } P ( E) /36 P ( / E) PE ( ) 5/36 ( E)' elemasays / E) E' elemasays Souçlar: P ( E) / E) E) P ( E ) E / ) ) da yazılablr. Taım 3: oole eştszlğ,,..., br S örek uzayıda olaylarsa P ) dr. 5.9. Koşullu Olasılıkta Çarım Kuralı P (... ) P ( ). P ( / ). P ( / ) 3 P ( / )

0 Örek: r kutuda adet arça vardır. uları 4 taes arızalıdır. Kutuda 3 tae arça arka arkaya (yere komada) çeklyor. Çekle üç arçaı da sağlam olması olasılığı edr? rc arçaı sağlam olması olasılığı: 8/ rc sağlam kalmak koşuluyla kcs sağlam olması olasılığı 7/ İlk ks sağlam olmak koşuluyla üçücüsüüde sağlam olması olasılığı 6/0 dur. Çarım teorse göre I II III) I) II / I) III / I II) 8 7 6 4.. 0 55 Örek : İçde 40 tae stadarda uygu, 0 tae se stadarda uygu olmaya arça bulua br kutuda a) İadel b) İadesz örekleme le arça alııyor. arça bozuk. arça bozuk gösteryor se ) ve ) e olur? a) )/5) b) )/5 ve /E)9/49 P ( / E ) 0 / 49 ya burada veya. ) P ( / ) )>0 ). ) P ( / ) )>0 şeklde yazılablr. ve burada da ) P ( ) / ). ) çarım kuralıa uygu yazılablr. Örek: r fabrkada bulua 0 tae make özellkler aşağıdak gbdr. Marka Tolam Ye 4 3 7 Esk 3 Tolam 6 4 0 Makelerde br şasa bağlı olarak çekldğde a) Make ye olması b) Make makesde olma olasılığı c) Ye olma olasılığı

d) Make ye olduğu blyorsa buu makesde olma olasılığı edr? a) Y)7/0 b) )6/0 c) Y)4/0 d) /Y) Y)/Y)4/7 şeklde hesalaır. Örek: I. torbada to çeklyor ve II. torbaya kouyor. II. torbada çekle tou beyaz olması olasılığı edr? : II. torbada çekle tou beyaz gelmes : I. torbada çekle tou beyaz ve II. torbada çekle tou beyaz gelmes C: I. torbada çekle tou syah ve II. torbada çekle tou beyaz gelmes : I. torbada çekle tou beyaz gelmes C : I. torbada çekle tou syah gelmes +C... ().... () C C.... (3) ( ) ( ) ( C) ( C) 0 ( ) + ( C ) + ve C brbr egelleye olaylar ( ) ( / ) + ( C ). ( / C ).. 3 veya dğer br çözüm yolu olayları tümüü taımlamakla mümküdür. +. 3 5 6

: beyaz gelmes :,,3 S : syah gelmes olaylar ( E ) I. torbada çekle to II.torbada çekle to olasılığı ( E ) E /3.//6 E /6 (*) 3 E 3 /6 (*) E 4 /6 (*) 3 E 5 S /6 (*) 3 E S S /6 6 5 : II. torbada çekle tou beyaz gelmes ( ) 6 Örek: 5 lk br skambl destesde br kart çekl dışarıda bırakıldıkta sora kc kart çeklyor. : k kartta br as, dğer 0 lu olması : brc kartı as, kartı 0 lu olması C: brc kartı 0 lu, kc kartı as olması : brc kartı as olması : kc kartı 0 lu olması C : brc kartı 0 lu olması C : kc kartı as olması + C ( C) 0 + C.C ( ) ( ) ( / ) ( C ). ( C C ) + / 4 4. 5 5 + 4 4. 5 5 8 663

3 Örek: de 0 a kadar umaralamış kartlarda k tae örek seçlyor. Tolamı tek sayı olma olasılığıı hesalayıız. )İk kart beraber çeklmşse, )rc çekl yere komada kc çeklmşse, )rc çekl yere kouldukta sora kc çeklmşse, ) 0 45 mümkü durum vardır. Tolamı tek olması ç br kartı umarası tek se ötek çft olması gerekr. 5 tae tek, 5 tae çft sayı olduğu ç, tolamı tek ola 5 5 5 tae sayı kls vardır. P 5 5 45 9 )0 990 mümkü durum vardır, 5 5 5 tae, lk çft kcs tek 5 5 5 tae de lk tek kcs çft ola sayı kls vardır; ya uygu haller sayısı 5+550 dr ve P 50 5 90 9 )Çekle tekrar koymak şartıyla arka arkaya çekle kart ç 0 000 değşk durum vardır. ) c soruda olduğu gb tolamı tek sayı vere kller mktarı 5+550 dr ve P 50 00 Örek: a) rdı arda çekle (adesz) 3 tou M olması olasılığı 6 5 4 PM ( M M3) PM ( ). PM ( M) PM ( 3 M M).. 5 4 3 b)iadel çeklş olursa koşul ortada kalkar, 6 6 6 PM ( M M3) PM ( ). PM ( ) PM ( 3).. 5 5 5

4 5.0. ayes Teorem S örek uzayıı br artsyouu oluştura E,E,...E olaylarıı göz öüe alalım; u olaylar kşer kşer ayrıktır ve hes bleşm S kümese eşttr. Dğer herhag br olay olsu. ( ) S E E... E urada E (( E ) ( E ) φ ) ( E ) ( E ) ( E )... kümeler kşer kşer aralarıda ayrıktır. P ( ) PE ( ) + PE ( ) +... + PE ( ) Çarım kuramıı uygulayarak PE ( ) PE ( ) P ( / E) yere koyduğumuzda P ( ) PE ( ) P ( / E) + PE ( ) P ( / E) +... + PE ( ) P ( / E) Öte yada, E ya göre şartlı olasılığı PE ( ) PE ( ) PE ( / ) P ( ) PE ( ) P ( / E) + PE ( ) P ( / E) +... + PE ( ) P ( / E) PE ( ) PE ( ) P ( / E) yere koyduğumuzda PE ( ) PE ( ) P ( / E) PE ( / ) P ( ) PE ( ) P ( / E) + PE ( ) P ( / E) +... + PE ( ) P ( / E) elde edlr. ua ayes Teorem der. Taım 4: ayes Teorem Olayı souçları bell ke ede,sebe, kayak bulmak ç kullaıla olasılıktır. maç olayıı olasılığıı bulmak yere bu olayıı meydaa geldğ

5 örek uzayıı alt kümelerde herhag bre at olasılığı hesalamasıdır. Örek uzayı arçalara ayrılmıştır ve olayı bu uzayda taımlamıştır. E E E E3...... E taşıya ayrık olayları olasılıkları; S (örek uzayı) ve E )>0 özellkler P ( E ) / E ) E ) / )>0 şeklde buluur. / E ) E ) Örek: r fabrkada üretle mamüller %50 s makesde, %30 u makesda, %0 s de C makesde üretlmektedr. u makelerdek üretmde dak %3 ü, dek %4 ü ve C dek %5 bozuk olduğu blmektedr. a) u mamullerde rastgele olarak alıa br taes bozuk olması olasılığıı hesalayıız b) Rastgele olarak alıa mamülü bozuk çıktığıı düşüürsek, bu mamülü makesde üretlmş olması olasılığı edr? a) r mamülü bozuk olması olayıa X dersek P ( X ) ) X / ) + ) X / ) + C) X / C) b) ( 0.5)( 0.03) + ( 0.3)( 0.04) + ( 0.)( 0.05) 0. 037 PPX ( ) ( / ) P ( / X) PPX ( ) ( / ) + PPX ( ) ( / ) + PCPX ( ) ( / C) ( )( ) 0.5 0.03 0.05 0.4 0.037 0.037

6 Örek:r şrket yöetcs kadrosua çalışalarıda br atamasıı yaacaktır. r kşs başvurursa ş elde etme şasıı e kadar olduğuu merak etmektedr., arkadaşı başvurmazsa ş elde etme şasıı 0,75 olduğuu, başvurursa şasıı /3 olduğuu düşüüyor. arkadaşı şe başvurma şasıı /5 olduğuu düşümektedr. u durumda ı yöetc kadrosua atama olasılığıı buluuz. roblem çözelm: olasılık 33 ı ataması). +. 0,583 buluur. Olaylar taımlayarak 5 3 5 4 C{ ı şe alıması} D{ şe başvurması} olsu. 3 3 PC ( / D ), PC ( / D), PD ( ), P.( D ) olduğuda stee 4 3 5 5 PC ( ) PC ( D) + PC ( D ) PD ( ). PC ( / D) + PD ( ). PC ( / D ) 3 3 35. +. 0,583 5 3 5 4 60 Örek: r fabrkada 3 ayrı makede üretm yaılmaktadır. I. make II. make katı, II. ve III. makelerde se eşt mktarda üretm yaılmaktadır. I. ve II make üretmlerde 0.0, III. make üretmde se 0.04 lük hatalı ürü elde edlmektedr. u tezgahlarda br güde üretle arçalar tolaarak rassal br seçm yaıldığı zama bu arçaı hatalı olduğu görülürse, buu I. makede üretlmş olma olasılığı edr? : arçaı hatalı olması E :. makede üretlmes E :. makede üretlmes E 3 : 3. makede üretlmes, şeklde gösterlrse. P ( E ) P ( E ) 4 P ( E3 ) 4

7 P ( / E) PE ( ) PE ( / ) P ( / E) PE ( ) + P ( / E) PE ( ) + P ( / E) PE ( ) 3 3 0.0( ) ( ) + ( ) + ( ) 0.4 0.0 0.0 0.04 4 4 y., bozuk arçaı I. makede üretlmş olma olasılığı %40 dır. urada kullaıla E ) olasılıklarıa deey öces (ror) olasılık ve E /) olasılığıa se deey sorası (osteror) olasılık der. ayes teoremde deey sorası olasılık deey öcek olasılıkta daha geçerldr. Deeyler tekrarlaarak, her br olay ye tekrarda deey sorası olay, deey öces gb kabul edlerek zcrleme olarak gerçek olasılığa yaklaşılır. Parça bozuk se II.makede gelme olasılığı? PE ( / ) P ( / E) PE ( ) 0.0(/ 4) P ( / E) PE ( ) 0.0(/ ) + 0.0(/ 4) + 0.04(/ 4) Örek: I. kutuda II. kutuya br to kouyor. II kutuda to çeklyor. a) Çekle to sarı se I.K çekl II.K koa tou kırmızı olma olasılığı edr? 4K K S 3S 5S I II IK.IIKK to kımızı/ii KÇT sarı)? IIKÇT sarı IKÇIIKK to kımızı IKÇII KK to sarı P ( ) 4 7 P ( / ) 5 8 P ( ) P ( / ) 5 /.4 ) ) P ( / ) 8 7 / ) ( ) ( / ) ( ) 5. 4 6. 8 7 8 3 P + P P + 7 6 8 3 7 0 9

8 b) Çekle to sarı se I. K çekl II. kutuya koa tou sarı olma olasılığı edr? 6 3 /. ) ) P ( 8 7 / ) ( / ) ( ) ( / ) ( ) 5. 4 P 6. 3 P + P P + 8 7 8 7 9 9 P ( / ) + / ) Örek: Hoda Ford Fat grdğ yarış 0 5 5 kazadığı yarış 0 5 0 H/kazadı)? 5.. ağımsızlık: Souca lşk olasılığı dğer olayları soucuda etklemeye ve oları etklemeye olaylar bağımsızdır. r deemede br olayı meydaa gelmes veya gelmemes öbür deemedek olayları olasılığıı etklemedğde veya olarda etklemedğde bu olaylar bağımsız olaylardır. Eğer br olayıı meydaa gelme olasılığı olayıı meydaa gelmesde hçbr etk yamıyor se olayı le olayı bağımsız k olaydır der. r başka deyşle olayıı olasılığı şartı le olasılığıa eştse ya )/) se, le bağımsız k olaydır. ) P ( ) / ) ) ). ) dr. ) Yada )/) u eştlk, bağımsız k olayı brlkte meydaa gelme gelmes olasılığıı herbr tek başıa meydaa gelmes olasılıkları çarımıa eşt olduğuu fade eder. Taım 5: Eğer P ( ) ). ) se le bağımsız k olaydır. ks halde k olay bağımlıdır.

9 Örek: r ara üç defa atıldığıda eş olasılıklı br souçlar uzayı oluşmakta d bağımsız bağımlı bağımlı { YYY, YYT, YTY, TYY, TTY, TYT, YTT TTT} S, şağıdak olayları göz öüe alırsak: lk atış yazı { YYY, YYT, YTY, YTT} kc atış yazı { YYY, YYT, TYY, TYT} C lk k atış yazı C { YYY, YYT} 4 P ( ) 8 { YYY YYT}, { YYY YYT} C, { YYY YYT} C, 4 P ( ) 8 ) 8 C) 8 C) 8 4 4 4 P ( C) 8 ) P ( ). ). ve 4 4 C) P ( ). C). ve C 4 4 8 C) P ( ). C). ve C 4 4 8 4 Örek: ı hedef vurma olasılığı /4, hedef vurma olasılığı /5 se le ateş etmes halde hedef e az br defa vurulması olasılığı edr? Hedefe sabet ya da tarafıda olacaktır. O halde; ) ) + ) ) k olay bağımsız olduğuda P ( ) ). ) olacağıda ) ) + ) ). ) olacaktır. 4 + 5. 4 5 0

30 Not :, ve C gb üç olay bağımsız se P ( C) ). ). C) dr. Not :, ve C gb üç olay kşer kşer bağımsız seler üçüü brde bağımsız olması bekleemez. Örek: rc atış yazı YY,YT İkc atış yazı YY,TY kşer kşer bağımsız. P ( ) ). ) C Yalız br yazı YT,TY acak üçü brde bağımsız değl C) φ) 0 P ( ). ). C) 8 ağımsızlık kuralları: r olaylar setde ve gb k olay aşağıdak koşullar sağlıyorsa bu olaylar bağımsız olaylardır. ) ( ) ( ). ( ) ) ( / ) ( ) 3) ( / ) ( ) Örek: r çft zar atılışıda. zarı ve her k zarı üst yüzler tolamıı 7 gelmes olasılığı : brc gelmes : üst yüzler tolamıı 7 gelmes ( ) ( / ) 6 ( ) ( / ) 6 ( ) ( ). ( ). 6 6 36 İkde fazla olayı bağımsızlığı söz kousu olursa ayı koşullar geçerldr. adet olay ç br geellemeye gdlrse; öreğ br deeme brbrde bağımsız olarak defa tekrarlaırsa, başarı olasılığı her tekrar ç varsayıldığıa göre a) E az br başarı b) k başarı c) başarı sağlama olasılıkları a) : e az br başarı

3 0 başarıyı gösters aşarı olasılığı, başarısızlık olasılığı q- dr. Olayları bağımsızlığıda dolayı, hç başarı sağlamama olasılığı ( ) ( )(. )...( ) ( ) ( ) + ( ) ( ) ( ) ( ) ( ) b) bağımsız deemede k tae başarı söz kousu se -k tae de başarısızlık söz kousudur. O halde k başarı olasılıkla ve -k başarısızlık - olasılıkla meydaa gelrke bu olaylar C değşk şeklde ortaya çıkar. O halde k başarıı olasılığı k c) tae başarıı olasılığı da. olur. k k k ( k).( ) ( )..... 5.. Olasılık Foksyoları Taım 6: r deey ya da gözlem şasa bağlı soucu br değşke aldığı değer olarak düşüülürse böyle br değşkee rasgele değşke adı verlr. Rasgele br değşke le ou alableceğ değerler smgesel olarak farklı bçmde gösterlr. Değşke X gb büyük harflerle, ou alableceğ değerler se x gb küçük harflerle gösterlr. Rasgele değşkeler keskl veya sürekl olablmektedr. Taım 7: r rasgele değşke yalızca sayılablr sayıda değerler alablyorsa keskl değşkedr. Öreğ ; r galer herhag br ayda satmış olduğu otomobl sayısı r ara üç defa atıldığıda yazı gelme sayısı r ale çocuk sayısı r şrket hesalarıda bulua hata sayısı lgsayardak rskl dosya sayısı

3 Taım 8: r rasgele değşke belrl br aralıktak bütü değerler alablyorsa sürekldr. Öreğ; r ale yıllık gelr r kmyasal madde üretm artsde krllk oraı r kş boy uzuluğu r şşe sodaı ağırlığı 5.3. Keskl Rasgele Değşke Olasılık Dağılımı Rasgele br değşke olasılık dağılımı, alableceğ değerlere göre olasılıklarıı asıl dağıldığıı açıklamaktadır. Dağılım Foksyou Taım aralığı reel sayılar ekse, değşm aralığı [0,] ola ve F( x ) X x ) ( < x < + ) eştlğ sağlaya foksyoa olasılık dağılım foksyou der. Özellğ: Dağılım foksyou arta(azalmaya) br foksyodur. F(x) F(x) x x x x x x Yoğuluk Foksyou foksyou: X, x, x, değerler ala keskl br şas değşke se x olasılık yoğuluk

33 X x ) X x,,... f ( x) 0 dd u foksyo olasılığı herhag br oktadak değer verr. Dğer br adı olasılık yoğuluk foksyoudur. Yoğuluk foksyouu özellkler : ) f ( x) 0 ) f ( ) x Dağılım foksyou F(x) ve yoğuluk foksyou f(x) br dğerde elde edleblr. f(x) blyorsa, F ( x) X x) + X x ) +... + X xk ) f ( x ) F(x) blyorsa, f ( x) F( x ) lm F( x h 0 h) Örek: çft zar atılışıda üst yüzler arasıdak mutlak fark x değşke olsu. x 0 3 4 5 f(x) 6/36 0/36 8/36 6/36 4/36 /36 F(x) 6/36 6/36 4/36 30/36 34/36 36/36 X ( ) f( X ) 8 36 yada F( X ) F( X ) 4 36 6 36 836 ( X 4) f( X ) + f( X 3) + f( X 4) 836+ 636+ 436 8 36 yada F( X 4) F( X ) 34 36 6 36 8 36

34 X X 4) f (4) 4) F(4) 4 / 36 34 / 36 F(x) 36/36 34/36 30/36 4/36 6/36 a 6/36 3 4 5 Olasılık Dağılım Foksyou x f(x) 0/36 8/36 6/36 4/36 a /36 0 3 4 5 Olasılık yoğuluk foksyou x Örek : Tek zar atılışı ç olasılık dağılım ve yoğuluk foksyolarıı buluuz. x 3 4 5 6 f(x) /6 /6 /6 /6 /6 /6 F(x) /6 /6 3/6 4/6 5/6 6/6

35 5.4. Sürekl Rasgele Değşke Dağılımı azı uygulamalarda rasgele değşke br aralıkta ya da brde çok aralıkta her değer alablr. Sürekl rasgele değşkelere karşılık getrle olasılıklar roblem, keskl rasgele değşkelerde olduğu gb düşüülemez. Sürekl rasgele değşke ç taımlaa olasılık yoğuluk foksyou, keskl rasgele değşkelerdek olasılık foksyouu oyadığı rolü bezer oyar. f(x) c d x Olasılık Yoğuluk Foksyou X, (-, ) aralığıda taımlaa sürekl rasgele değşke olsu. şağıdak koşulları sağlaya f(x) foksyoua X rasgele değşke olasılık yoğuluk foksyou der.. f( x) 0, < x<. f ( xdx ) (f(x) eğrs altıda kala ve x-ekse le sıırlaa ala e eşttr.) x c le d arasıda buluma olasılığı; d Pc ( < X< d) f( xdx ) f( x) eğrs, x-ekse ve xc, xd doğruları le sıırlaa aladır. c Örek: x sürekl rassal br değşke olsu ve buu yoğuluk foksyou şu şeklde taımlamış olsu: x 0 x f( x) x ve.5 arasıda buluma olasılığı edr? 0 dh..5.5.5 ( x.5) f( x) dx xdx x 0.35 4 x ( ) f( xdx ) 0

36 Olasılık Dağılım Foksyou X,f(x) olasılık yoğuluk foksyoua sah sürekl rasgele değşke olsu. x dağılım foksyou x F( x) X x) f( s) ds olarak taımlaır. F(x) 0 x X sürekl br rasgele değşke se, F(x) foksyou da bütü x değerler ç sürekldr. a) F azalmaya br foksyodur. Ya x < x se F( x) F( x) dr. b) lm F( x) 0 ve lm F( x) (Geellkle F(- )0 ve F(+ ) yazılır.) x x ve a b olmak üzere herhag a ve b gerçel sayıları ç x a le b arasıda buluma olasılığı; b Pa ( X b) Fb ( ) Fa ( ) f( xdx ) dr. a X, x < x <... gb sıralı x, x,... değerler alable keskl rasgele değşke olsu. F(x), X dağılım foksyou se bu takdrde f ( x) F( x) ve f ( x ) X x ) F( x ) F( x ) dr. Örek: r öcek örekte yer ala x sürekl değşkee lşk dağılım foksyou aşağıda verlmştr. x 0 x F( x) 4 x ve.5 arasıda buluma 0 dh. olasılığı edr? 5 X.5) F(.5) F() (.5) () 4 4 6 Görüldüğü gb yoğuluk foksyou ve dağılım foksyou souçları lgl olasılık ç her zama ayı soucu verr.

37 Sürekl X rasgele değşke olasılık yoğuluk foksyou f ve dağılım foksyou F olsu. u takdrde bütü x değerlerde yoğuluk foksyouda dağılım foksyoua geçş : x F( x) f( x) dx Dağılım foksyouda yoğuluk foksyoua geçş: d f ( x) ( F( x)) dx Örek: Yukarıda verle örek ç yoğuluk foksyouda dağılım foksyoua ve dağılım foksyouda yoğuluk foksyoua geçşler gösterz. d dx d F x x x x f x dx 4 4 ( ( )) ( ). ( ) x x f ( xdx ) xdx ( x 0) x F( x) 4 4 0 0 5.5. eklee Değer (Exected Value) rtmetk ortalamaı olasılık foksyou üzerdek değerdr. x şas değşke, olasılık dağılışı ( x), beklee değer ( x) değşke olsu. X değşke beklee değer; E ( x) x. ( x) şeklde taımlaır. x x şas değşke sürekl br değşke se bu durumda beklee değer; E( x) x. f( x) dx şeklde taımlaır. R E olsu ve x keskl br Örek: r tek zar atılışıda x değşke zarı üst yüzüdek sayıları gösterrse, x 3 4 5 6 x) /6 /6 /6 /6 /6 /6 ( x) x. /6 /6 3/6 4/6 5/6 6/6 ( x) x ( x) E. 3, 5 şeklde elde edlr. 6 x

38 Yorumu: Olayı çok defa tekrarlaması durumuda buluacak ola ortalamadır. Değşke lm durumuda alacağı değer gösterr. Örek: ell br oyu tekrar tekrar oyadığı zama olaaklı sayıda meydaa geleblecek souçları olasılıkları olarak souçlara ödeecek tutarlar,,..., olsu ve karşılıklı G,..., oyuu sayısı defa tekrarladığıda beklee E, G G se bu oyuu beklee değer veya G değer;. ( G ) G +. G +... +. G. G dr. öyle br oyua örek olması açısıda; kazama şası 3/4 ola br oyuda, oyucu kazadığıda lra alır ve kaybettğde 3 lra verrse, taımlaablr. Oyuu beklee değer; ( G ). G. G E + 3 4 + lra 4.().( 3) 0 Gerçektede haklı br bahs( adl br bahs ) veya beklee değer 0 olarak eklee değer özellkler: c sabt sayı ve x şas değşke se; ) E ( c. x) c. E( x) ) E () c c ) E ( c x + c. x) c. E( x) c. E( x) v) j. + Eğer x ve ( x ) E( x ) j ( c c ). E( x) + x j brbrde bağımsız se E ( x. x ) E. j dr. 5.6. Varyas X şas değşke olasılık dağılışı (x) ve X keskl br değşke olsu, X değşke varyası

39 ( ) ( ) ( ) ( ) ( ) Var( x) E x μ E x E x E x E x şeklde hesalaır. urada ( ) E x ( ) E x x( x) x ( x) X sürekl değşke se bu durumda varyası aşağıdak eştlk le taımlaır; var( ) ( μ) ( ) x x f x dx R Varyası özellkler c br sabt ve x ve y bağımsız se Var() c 0 Var cx ( ) ( ) c Var x Var( x + y) Var( x) + Var( y)

40 EK. Saymaı Temel Presler elrl br takım deeylerde olaaklı tüm souçları belrlemek ç gelştrlmş tekklere kombasyo aalz der. Öreğ k farklı deemede. deeme m. deeme adet olaaklı soucu olduğu varsayılırsa bu k deeme soucu meydaa geleblecek souçları tolam sayısı mx dr. II I.... m,..........,m Örek: 5 baya ve 4 erkekte oluşa br gruta baya ve erkek seçm 4x50 farklı şeklde souçlaablr. u temel res. de büyük boyuttak deemeler çde gerçekleştrleblr. r farklı deeme ç. deeme. deeme.. r. deeme r adet olaaklı soucu olsu. r deeme ç meydaa geleblecek souçları tolam sayısı; x x... r veya r olur. Örek: 3 zar atılışıda 6x6x66 3 mümkü souç vardır. Sor toto öreğ

4 Permutasyo a) hacml oulasyoda, sıraı öeml olduğu ve adesz örekleme ssteme göre l grular oluşturmak P! farklı şeklde yaılablr.! π e 0! farklı öğe br sırada kaç farklı şeklde sıralaır? Doldurulablecek yer sayısı dr. İlk yer farklı yolla doldurulurke kc yer - öğede herhag br le - yolla doldurulur. Üçücü yer ger kala - öğe - farklı yoluyla doldurulur. öylece kaç farklı şeklde sıralaır sorusuu cevabı çarma kuralı yardımıyla şöyle olacaktır:.(-).(-) 3..! Tümü brlkte kullaıla farklı ese oluşturulablecek ermütasyolarıı tolam sayısı! dr. Örek: r tyatro gşesde blet almak steye 3 kş kaç farklı şeklde gşe öüde sıraya greblrler.? İlk yer 3 farklı şeklde doldurulablr, kc yer k farklı şeklde so yerde br yolla doldurulur. O halde çarma kuralı le üç şahsı br arada 3...6 farklı şeklde dzlebleceğ söyler. C C C C C C C C C C C Örek: Ders btmde elektrok kart öüde yoklama vermek steye 0 öğrec kaç farklı şeklde sıralaarak kartlarıı göstereblrler?!0!..9.0368800

4 b) ezer şeklde kullaıla tekrar kullaılmayacak şeklde (adesz) farklı esede oluşturulacak r l gruları sayısı ( )( )...( r+ )( r)!! Pr, ( )( )...( r+ ) ( r)! ( r)! >r farklı şeklde yazılablr. Daresel ermütasyo (-)! dr. Örek: r televzyo suucusu haber bültede okuması gereke 3 farklı haberde ks kaç farklı şeklde sıralayablr? 3! P 3, 3.. 6 (3 )! H,H H,H 3 H,H 3 H,H H 3,H H 3,H c) Sıra öeml, adel olarak r l grular oluşturmak; r veya r farklı şeklde yaılablr. Yukarıdak örekte 3 9 H,H H,H 3 H,H 3 H,H H 3,H H 3,H H,H H,H H 3,H 3 d) Katlı Permütasyo hacml oulasyoda, sıra öeml, adel örekleme le + +...() l grular oluşturmak. P! + +... 3!! 3!... / 3... farklı şeklde yazılablr.

43 çıklama:,, 3 sayıları oulasyodak.,., elemaları tekrarlama sayılarıdır. Örek: İSTTİSTİK kelmesdek harfler kaç farklı şeklde dzleblr? İ 3 T 3 S 3 4 K 5 0 0! 50400 3!3!!!! e) adesz örekleme le, sıra öeml grubuda k tae grubuda k tae...... r grubuda k r tae olmak üzere farklı şeklde oluşacak tolam örek sayısı P P... P, k, k r, kr ( ) ( ) k + k +... k r k, k,... kr ( k + k + k )!!...! r r... k! k! k! k!... k! r r r Örek: lgsayarda mal hesabı ç şfre almak steye br kş rakamlarda ve Türkçe karakterler harcdek karakterlerde oluşa yarısı rakam yarısı karakter ola 6 hael kaç farklı şfre yazablr? 0,,,3,4,5,6,7,8,9 0 k 3 a,b,c,d,e,f,g,h,,j,k,l,m,,o,,r,s,t,u,v,y,z 3 k 3 0! 3! (3 + 3)! 0.9.8.7! 3...0! 6! 70.066.0 53.04.400 (0 3)!(3 3)! 3!3! 7! 0! 3!3!

44 Permutasyola İlgl Örekler(uygulamalar),,3,,7 sayılarıı tümüü kullaılmasıyla 7!5040 sayıda ermütasyo yazılablr. Şmd 7! ermütasyou bell bazı alt kümeler düşüelm. ) Ne kadarıda çft sayılar tek sayılarda öce gelr? Dz lk üç öğes çft sayı olmalıdır; bular, 4, 6 dır. Dğer 4 yer se 4! Sayıda tek sayılarla doldurulur. Çarma kuralıı uygulamasıyla N3!.4!44 taesde stee elde edlr. 3! sayıda sıralaablrler. ) Ne kadarıda, de heme öce gelr? (,) kls tek br öğe gb düşüerek böylece 6 farklı öğe ermütasyolarıı sayısıı hesalamamız gerekr: P 6,6 6!70 3) Ne kadarıda ve sayıları dz çde 3 ve 4 te öce gelr?,,3,4 sayılarıı tüm ermütasyo sayısı 4!4 dür. 3 4 3 4 4 3 3 4 İstee durumdur; ya tüm ermütasyo sayısıı /6 sıdır. u edele stele uygu ermütasyo sayısı (7!) 840 6 Kombasyo İadesz örekleme le, sıraı öemsz olduğu alt gruları her bre verle addır. a) elemalı oulasyoda r elemalı grular yaı ayı elemalı grularda yalız br taes alıdığı kombasyo sayısı: C, r! r r!( r)! >r se se

45 Dğer br bakış açısı le, ermutasyo sayısıda yola çıkılırsa, her r! lk grular ayı sayıldığı ç ermutasyou r! e bölümes le de edleblr. azı özel otlar: r r b) adesz örekleme, sıra öemsz grubuda k tae grubuda k tae...... r grubuda k r tae oluşturulacak farklı gru sayısı; kk +k +...+k r olacak şeklde k hacml k k... k r r olur. c) Katlı Kombasyo: İadel örekleme( sıra öemsz) le hacml br oulasyoda r hacml oluşturulacak örek sayısı, + r + r r > veya < r olur. Örek: 4 evl çft arasıda 3 kşlk br kurul kaç yolla seçlr? a)tümü eşt seçlme şasıa sahtr b)kurulda kadı ve erkek olmak zorudadır. c)r karı-koca ayı kurulda buluamayacaklardır. a) r kurulda sıra öeml olmadığıda 8 şahıs arasıda 3 üü seçm düşüülecektr. Oluşturulablecek tolam kombasyo sayısı : 8 8! 56 3 3!5!

46 b) kadı 4 6 yolla seçlr, bu seçm yaıldıkta sora erkek 4 4 yolla seçlr. öylece çarma kuralıyla kadı ve erkeğ seçlmes yollarıı sayısı 4 4 6.4 4 c) r karı-koca ayı kurulda bulumayacaklarsa, kurulda 3 çftte şahıs bulumalıdır. 4 Öce 3 çft, 4 çft arasıda yolla seçlr. 3 çft seçldkte sora, lk çftte k 3 (erkek veya kadı), kc çftte k, üçücü çftte seçm yaılablr. Çarma kuralıyla kurulları tolam sayısı 4 3 3 yada kc br çözüm yolu le 8 4 6 3 dr. 3 4 urada dört çftte br seçm, 6 ger kala 6 kşde br seçmdr. Tüm seçm sayısıda herhag br karı kocaı buluduğu kurulları sayısıı çıkartıyoruz.