ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ



Benzer belgeler
Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

10. DİREKT ÇARPIMLAR

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

VEKTÖR UZAYLARI 1.GİRİŞ

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

Normal Alt Gruplar ve Bölüm Grupları...37

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

13.Konu Reel sayılar

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKTRUMLARI ÜZERİNE

Leyla Bugay Doktora Nisan, 2011

Cebir 1. MIT Açık Ders Malzemeleri

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Leyla Bugay Haziran, 2012

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

İleri Diferansiyel Denklemler

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İNJEKTİF MODÜLLERE. Ali Pancar Burcu Nişancı Türkmen

10.Konu Tam sayıların inşası

7. Ders. Mahir Bilen Can. Mayıs 17, 2016

xy, de iki polinom verildiğinde bunların

MAT 302 SOYUT CEBİR II SORULAR. (b) = ise =

İleri Diferansiyel Denklemler

ÖZDEĞERLER- ÖZVEKTÖRLER

SAYILAR DOĞAL VE TAM SAYILAR

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/

3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır.

Soyut Cebir. Prof. Dr. Dursun TAŞCI

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı

Lineer Bağımlılık ve Lineer Bağımsızlık

Cebir 1. MIT Açık Ders Malzemeleri

Özdeğer ve Özvektörler

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur.

HOMOLOJİ CEBİRE GİRİŞ ARA SINAV CEVAP ANAHTARI

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

Grup Homomorfizmaları ve

DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI

Ders 9: Bézout teoremi

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

YÜKSEK LİSANS TEZİ Hande BÜYÜKÇAVUŞOĞLU DANIŞMAN Prof. Dr. Muhittin BAŞER MATEMATİK ANABİLİM DALI

11. Ders. Mahir Bilen Can. Mayıs 23, 2016

İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı

CEBİR ÇÖZÜMLÜ SORU BANKASI

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

12. Ders. Mahir Bilen Can. Mayıs 24, Son dersten hatırlayacağınız üzere simetrikleştirme operasyonundan elde ettiğimiz fonksiyon.

13. Karakteristik kökler ve özvektörler

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

8.Konu Vektör uzayları, Alt Uzaylar

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

MATEMATİK ANABİLİM DALI

Sayı 31, Ağustos 2013 ISSN Lie Cebirleri İçin (Ön)Çaprazlanmış Modüller Üzerine. On (Pre)crossed Modules Over Lie Algebras

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

x 0 = A(t)x + B(t) (2.1.2)

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= Genel: Vektörler bölümünde vektörel iç çarpım;

3. Ders. Mahir Bilen Can. Mayıs 11, Önceki Dersteki Sorular ile İlgili Açıklamalar

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

Kuantum Grupları. Orta Doğu Teknik Üniversitesi, Ankara. Münevver Çelik. Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010

Ayrık Fourier Dönüşümü

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

6 Devirli Kodlar. 6.1 Temel Tan mlar

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

Elementer matrisler, ters matrisi bulmak, denk matrisler

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

3. BÖLÜM MATRİSLER 1

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3

kavramını tanımlayıp bazı özelliklerini inceleyeceğiz. Ayrıca bir grup üzerinde tanımlı

İleri Diferansiyel Denklemler

Lineer Denklem Sistemleri

GEO182 Lineer Cebir. Matrisler. Matrisler. Dersi Veren: Dr. İlke Deniz Derse Devam: %70. Vize Sayısı: 1

Matrisler ve matris işlemleri

İleri Diferansiyel Denklemler

Hamel Taban ve Boyut Teoremi

12.Konu Rasyonel sayılar

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

Transkript:

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ SERBEST İDEAL HALKALARI ÜZERİNDEKİ MODÜLLER MATEMATİK ANABİLİM DALI ADANA, 2013

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SERBEST İDEAL HALKALARI ÜZERİDEKİ MODÜLLER YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI Bu Tez /07/2013 Tarihinde Aşağıdaki Jüri Üyeleri Tarafından Oybirliği/Oyçokluğu ile Kabul Edilmiştir......... Yrd.Doç.Dr.Zeynep ÖZKURT Prof. Dr. Naime EKİCİ Yrd.Doç.Dr.Cennet ESKAL DANIŞMAN ÜYE ÜYE. Bu Tez Enstitümüz Matematik Anabilim Dalında hazırlanmıştır. Kod No: Prof. Dr. Mustafa GÖK Enstitü Müdürü Not: Bu tezde kullanılan özgün ve başka kaynaktan yapılan bildirişlerin, çizelge ve fotoğrafların kaynak gösterilmeden kullanımı, 5846 sayılı Fikir ve Sanat Eserleri Kanunundaki hükümlere tabidir.

ÖZ YÜKSEK LİSANS TEZİ SERBEST İDEAL HALKALARI ÜZERİNDEKİ MODÜLLER ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI Danışman : Yrd. Doç. Dr. Zeynep ÖZKURT Yıl: 2013, Sayfa: 62 Jüri : Yrd.Doç. Dr. Zeynep ÖZKURT : Prof. Dr. Naime EKİCİ : Yrd. Doç. Dr. Cennet ESKAL Bu çalışmada serbest ideal halkalarının incelenmesi amaçlanmıştır. Serbest ideal halkaları ve local serbest ideal halkaları tanımlanarak bu halkaların özellikleri ifade edilmiştir. Serbest ideal halkaları üzerinde, esas ideal bölgesi olmanın, Noetherian olma ve Ore koşulunu sağlama ile eşdeğer olduğu gösterilmiştir. Ayrıca serbest ideal halkalarının serbest çarpımları inşa edilerek bu çarpımın da yine bir serbest ideal halkası olduğu elde edilmiştir. Anahtar Kelimeler: Serbest İdeal Halkası, Local Serbest İdeal Halkası, Modül I

ABSTRACT PhD THESIS MODULS OVER FREE IDEAL RINGS ÇUKUROVA UNIVERSITY INSTITUTE OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF MATHEMATİCS Supervisor : Asst. Prof. Dr. Zeynep ÖZKURT Year: 2013, Pages:62 Jury : Asst. Prof. Dr. Zeynep ÖZKURT : Prof. Dr. Naime EKİCİ : Asst. Prof. Dr. Cennet ESKAL In this thesis, our aim is to establish free ideal rings. It has given that definition of free ideal ring, local free ideal rings and their properties. It has shown that Principal ideal domain, Noetherian, Ore condition has same meaning in free ideal rings, In addition, it has indicated that free product of free ideal rings is constructible and is also a free ideal ring. Key Words: Free Ideal Ring and Local Free Ideal Rings, Module II

TEŞEKKÜR Çalışmamın hazırlanmasında bilgi ve tecrübeleriyle beni aydınlatan, her aşamada bana yardımcı olan, yapıcı ve yönlendirici fikirleri ile bana daima yol gösteren danışman hocam Sayın Yrd. Doç. Dr. Zeynep ÖZKURT a sonsuz teşekkürler. Hayatım boyunca sevgi ve desteklerini benden esirgemeyen, varlıkları ile hayatımı anlamlandıran anneme, babama ve çok kıymetli ablacığım Seher TAŞ a sonsuz şükranlarımı sunuyorum. Can dostum Eser Ördem e destek ve yardımları için teşekkür ediyorum. III

İÇİNDEKİLER SAYFA ÖZ... I ABSTRACT... II TEŞEKKÜR... III İÇİNDEKİLER.....IV 1. GİRİŞ... 1 2. TEMEL TANIM VE TEOREMLER... 3 2.1. Temel Yapılar... 3 2.2. Modül... 5 2.3. Serbest Modül... 14 2.4. Modüllerin İç direkt Toplamı ve Tensör Çarpım... 18 2.5. Noetherian Modül ve Ore Koşulu... 20 2.6. Kısa Tam dizi,projektif Injektif Modül... 21 2.7. Tek Çarpan Bölgesi... 29 3. SERBEST İDEAL HALKALARI... 31 4. SERBEST İDEAL HALKALARININ SERBEST ÇARPIMI... 47 4.1. Genişletilmiş Halkaların Serbest Çarpımı... 47 4.2. Serbest İdeal Halkalarının Serbest Çarpımı... 52 KAYNAKLAR... 61 ÖZGEÇMİŞ... 62 IV

IVI

1. GİRİŞ 1. GİRİŞ bir halka ve (,+) abelyen bir grup olmak üzere her, için, :, (, ) =. olarak tanımlanan fonksiyonu her,, ve,, için, ) ( + ) = + ) ( + ) = + ).(. ) = (. ). koşullarını sağlıyorsa ye halkası üzerinde bir sağ -modül denir. Eğer nin lineer bağımsız bir üreteç kümesi varsa serbest -modül olarak adlandırılır. sıfırdan farklı elemanları içeren bir halka olsun. : dönüşümünü ele alalım. ) ( ) 0, h 0 ç ) ( ) [ ( ), ( )] ) ( ) ( ) + ( ) ) (1) =0 koşulu sağlanıyorsa zayıf algoritmayı sağlar denir. Zayıf algoritmalı bir halkada tüm sağ ideallerin, halka üzerinde modül olarak serbest olduğu gösterilebilir. Ve bu durum değişmeli halkalardakine benzer olarak zayıf algoritmalı halkaları içeren ve değişmeli olma durumunda esas ideal bölgesine (PID) e indirgenen halkaların bir sınıfını bulma problemini akla getirir. Problemin açık bir çözümü tüm sağ idealleri serbest modül olan halkalar sınıfını almaktır. Tüm sağ idealleri serbest modül olan tamlık bölgeleri serbest ideal halkası olarak adlandırılır ve kısaca fir ile ifade edilir. Sadece sonlu üretilmiş sağ idealleri serbest olan tamlık bölgeleri ise lokal serbest ideal halkası (local fir) olarak adlandırılır. Bazı durumlarda serbest ideal halkaları yerine lokal serbest ideal halkalarını düşünmek daha uygundur. 1

1. GİRİŞ Serbest ideal halkalarına önemli bir örnek olarak serbest birleşmeli cebirler (Cohn, Paul, 1963) tarafından verilmiştir. Yine değişmeli olmayan polinom halkaları da (Cohn, Paul, 2000) de özel bir örnek olarak verilmiştir. Bu çalışmanın 2.bölümde serbest ideal halkasını ifade edebilmek için gerekli olan temel tanım ve teoremler verilmiştir. 3.bölümde serbest ideal halkalarının ve bu halkalar sınıfının temel özellikleri incelenmiştir. Ayrıca serbest ideal halkası üzerinde esas ideal bölgesi, Ore koşulu, Noetherian özelliği arasındaki ilişkiler araştırılmıştır. Buna ek olarak, lokal serbest ideal halkalarının bir karakterizasyonu oluşturularak serbest ideal halkası üzerindeki modüllerin yapısı araştırılmıştır. 4.bölümde genişletilmiş halkaların serbest çarpımı ile serbest ideal halkalarının serbest çarpımının varlığı gösterilmiştir. Bu tezin temel amacı serbest ideal halkaları ve bu halkaların temel özellikleri ile ilgili önemli çalışmaları araştırıcıların kolaylıkla erişebileceği bir kaynak derlemesi yapmaktır. 2

2.TEMEL TANIM VE TEOREMLER 2.TEMEL TANIM VE TEOREMLER 2.1. Temel Yapılar Tanım 2.1.1: boş olmayan bir küme olmak üzere den ye tanımlı bir (, ) fonksiyonuna üzerinde bir ikili işlem denir. Eğer, üzerinde bir ikili işlem ise (, ) ifadesine de bir cebirsel yapı denir. Tanım 2.1.2: boş olmayan bir küme ve üzerinde bir + ikili işlemi tanımlı olsun. Eğer aşağıdaki koşullar sağlanırsa (,+) cebirsel yapısına grup denir. i) Her, için + (Kapalılık özelliği) ii) Her,, için ( + ) + = +( + ) (Birleşme özelliği) iii) Her için + = + = olacak şekilde bir vardır. (Birim elemanın varlığı) iv) Her için + = + = olacak şekilde bir vardır. (Ters elemanın varlığı) Eğer (,+) grubunda her, için + = + ise bu gruba değişmeli ya da abelyen grup denir. 3

2.TEMEL TANIM VE TEOREMLER Tanım 2.1.3: boş olmayan bir küme ve üzerinde "+" ve " " ikili işlemleri tanımlanmış olsun. Eğer aşağıdaki koşullar sağlanırsa (,+, ) cebirsel yapısına halka denir. i) (,+) bir değişmeli gruptur. ii) Her,, için ( ) = ( ) dir. iii) Her,, için ( + ) = + ve ( + ) = + dir. Eğer her, için = oluyorsa ye değişmeli halka denir. Eğer her için 1 =1 = olacak şekilde bir 1 varsa ye birimli halka denir. Bu çalışmadaki tüm halkalar birimli olarak düşünülecektir. Buna ek olarak herhangi bir halkasının herhangi bir alt halkasının nin birimini içerdiği düşünülecektir. Tanım 2.1.4: bir halka olsun. ile aynı elemanlara sahip olan ve çarpmanın ters yönden sağlandığı halkaya nin ters halkası denir. nin ters halkası ile gösterilir. Tanım 2.1.5: bir halka ve ve olsun. Eğer kümesi halkasındaki işlemlerle birlikte bir halka oluyorsa kümesine halkasının bir alt halkası denir. Teorem 2.1.6: bir halka ve ve olsun. kümesinin halkasının bir alt halkası olması için gerek ve yeter koşul aşağıdaki koşulların sağlanmasıdır. i) Her, için olmasıdır. ii) Her, için. olmasıdır. 4

2.TEMEL TANIM VE TEOREMLER Tanım 2.1.7: bir halka ve 0 olmak üzere =0 olacak şekilde 0 varsa elemanına sol sıfır bölen denir. Benzer şekilde 0 olmak üzere =0 olacak şekilde varsa a elemanına sağ sıfır bölen denir. Eğer elemanı hem sağ hem de sol sıfır bölen ise elemanına sıfır bölen denir. Tanım 2.1.8: Birimli, değişmeli, sıfır bölensiz bir denir. halkasına tamlık bölgesi Tanım 2.1.9: bir halka ve, nin bir alt halkası olsun. Eğer her ve her için. ve. ise ya nin bir ideali denir. Tanım 2.1.10: bir tamlık bölgesi,,, { : } da nin alt kümesini içeren ideallerin bir ailesi olsun. Bu durumda, nin tarafından doğrulan idealidir. Bu ideal ile gösterilir. in elemanları idealinin üreteçleri (doğurayları) olarak adlandırılır. Eğer ideali tek bir eleman tarafından üretiliyorsa idealine esas ideal denir. Tanım 2.1.11: bir tamlık bölgesi olsun. nin her ideali esas ideal ise ye esas ideal halkası (principal ideal domain) denir. Kısaca PID ile ifade edilir. Tanım 2.1.12: birimli, değişmeli bir halka olsun. nin sıfırdan farklı her elemanının çarpmaya göre tersi varsa o zaman bu halkaya cisim denir. 2.2. Modül Tanım 2.2.1: bir halka ve (,+) abelyen bir grup olsun. Eğer her, için, :, (, ) (, )= olarak tanımlanan fonksiyonu aşağıdaki koşulları sağlıyorsa ye halkası üzerinde sol -modül denir. Her, ₁, ₂ ve, ₁, ₂ için, 5

2.TEMEL TANIM VE TEOREMLER i) ( ₁ + ₂) = ₁+ ₂ ii) ( ₁ + ₂) = ₁ + ₂ iii) ( ₁ ₂) = ₁ ( ₂ ) Eğer her, için :,(, ) (, )= olarak tanımlanan f fonksiyonu aşağıdaki koşulları sağlıyorsa ye halkası üzerinde bir sağ - modül denir. Her, ₁, ₂, ₁, ₂ için i) ( ₁ + ₂) = ₁ + ₂ ii) ( ₁ + ₂) = ₁ + ₂ iii) ( ₁ ₂)=( ₁) ₂ Eğer birimli bir halka ise 1 ve her için fonksiyonu iv) 1= koşulunu sağlıyorsa ye birimli (üniter) sağ -modül denir. Not 2.2.2: bir -modül ve ise bir -modüldür. Tanım 2.2.3: R bir halka, M bir R-modül olsun. N ve N, M nin bir alt kümesi olmak üzere N, bir R-modül ise N ye M nin alt modülü denir. Teorem 2.2.4: R bir halka, M bir R-modül olsun. N M nin bir altmodülü olması için gerek ve yeter koşul i) ii) Her ve, için +. olmasıdır. İspat: (: ) altmodül ise altgruptur. Böylece 0 ve dır., ve alalım. N bir -modül olduğundan. ve altgrup olduğundan 6

2.TEMEL TANIM VE TEOREMLER +. dir. ( :) olsun., ve = +( 1). dir., nin bir altgrubudur. Her ve için 0+. olduğundan., dolayısıyla dir. N, M nin bir altmodülüdür. Teorem 2.2.5: bir -modül olsun., ve, modülünün alt modülleri ve olsun. Bu durumda dir. + ( ) =( + ) İspat: + ( ) + ve olduğundan, + ( ) + dir. + ( ) ( + ) bulunur. Tersine, ( + ) alalım. = + olacak şekilde bir y ve bir bulunabilir. K ve olduğundan, = bulunur. = + +( ) olur. ( + ) + ( ) elde edilir. O halde, + ( ) =( + ) dir. Tanım 2.2.6: R bir halka, M bir R-modül ve N de M nin bir alt modülü olsun. Rx M N M N skaler çarpımını (, + ) + ile tanımlayarak, toplamsal bölüm grubu, bir R-modül yapılabilir. ye bölüm modülü denir. Tanım 2.2.7: M ve N, R halkası üzerinde iki sağ R-modül olmak üzere ϕ:m N fonksiyonu aşağıdaki koşulları sağlıyorsa ϕ dönüşümüne M den N ye bir sağ R- modül homomorfizmi denir. 7

2.TEMEL TANIM VE TEOREMLER i) Her m₁,m₂ M için ϕ(m₁+m₂)=ϕ(m₁)+ϕ(m₂) ii) Her m M ve r R ϕ(m r)=ϕ(m) r Eğer ϕ homomorfizmi birebir ise ϕ ye monomorfizm denir. Eğer ϕ homomorfizmi örten ise ϕ ye epimorfizm denir. Eğer ϕ homomorfizmi birebir ve örten ise ϕ ye izomorfizm denir ve M N olarak gösterilir. Tanım 2.2.8: ϕ : bir modül homomorfizmi olmak üzere Ç ϕ = {m M: ϕ(m) =0} kümesine ϕ nin çekirdeği denir. Tanım 2.2.9: ϕ : bir modül homomorfizmi olmak üzere ö ϕ = ϕ(m) = {ϕ(m): m M} kümesine ϕ nin görüntü kümesi denir. Teorem 2.2.10 (1.İzomorfizm Teoremi): ve iki modül ve : bir modül homomorfizmi olsun. Çek, M nin bir alt modülüdür ve /Ç ( ) dir. İspat: Ç ={ : ( ) =0 } olmak üzere Ç nin, nin bir alt modül olduğunu göstermeliyiz., Ç için ( ) = 0 ve ( ) = 0 dır. bir modülü olduğundan ( ) = ( ) ( ) =0 0=0 ve böylece Ç dir., Ç ve ( ) =0 olmak üzere 8

2.TEMEL TANIM VE TEOREMLER (. ) = ( ). =0. =0 dır. Ç, nin alt modülüdür. Ϝ: /Ç ö fonksiyonunu her için Ϝ( +Ç )= ( ) şeklinde tanımlayalım. Ϝ nin modül homomorfizmi olduğunu gösterelim. ₁, ₂ ve için Ϝ( ₁ +Ç + ₂ +Ç )= Ϝ( ₁+ ₂+Ç ) = ( ₁+ ₂) = ( ₁)+ ( ₂) = Ϝ( ₁ +Ç )+Ϝ( ₂+Ç ) Ϝ(( ₁ +Ç ) ) =Ϝ( ₁. +Ç )= ( ₁. )= ( ₁)=Ϝ( ₁+Ç ). Ϝ, modül homomorfizmidir. Ϝ nin birebir olduğunu gösterelim. Ϝ( ₁ +Ç )=Ϝ( ₂+Ç ) olsun. ( ₁) = ( ₂) ve ( ₁ ₂) =0 ise ₁ ₂ Ç olup Ϝ,1 1 dir. ₁ +Ç = ₂ +Ç Ϝ nin örten olduğunu gösterelim. Her ö için = ( ) = Ϝ( +Ç ) olacak şekilde m + Çekf M Çekf vardır., örtendir, izomorfizmdir. dir. Ç ö 9

2.TEMEL TANIM VE TEOREMLER Teorem 2.2.11 (2.İzomorfizm Teoremi): + ={ +, } verilsin., + nin bir alt modülü ve, nın bir alt modülüdür. Bu durumda + dir. İspat: nin + nin alt modülü ve nin de nın alt modülü olduğu kolaylıkla gösterilebilir. : dönüşümünü ya kısıtlayarak / dönüşümünü ( ) = + şeklinde tanımlayalım. ₁, ₂ olsun. nin modül homomorfizmi olduğunu gösterelim. ( ₁ + ₂) = ₁+ ₂ + = ₁+ + ₂ + = ₁ + + ( ₂ + ) = ( ₁)+ ( ₂), modül homomorfizmidir. Ç ={ : ( ) = }={ : + = }={ : }= ö ={ ( ): } ={ + : ={ + + :, } = + / Birinci izomorfizm teoreminden /Ç ö dir. / + / 10

2.TEMEL TANIM VE TEOREMLER Teorem 2.2.12 (3.İzomorfizm Teoremi): bir -modül; olmak üzere, nin alt modülleri olsun. dir. İspat: Ψ : dönüşümünü ( + ) = + şeklinde tanımlayalım. Ψ dönüşümün iyi tanımlı olduğunu göstermeliyiz., M için +A = +A olsun. - B ve +B = +B dir. Ψ, iyi tanımlıdır. Ψ, dönüşümünün modül homomorfizmi olduğunu gösterelim., M ve r R için Ψ( +A+r( +A))= Ψ( +A+r +A =Ψ( +r +A) = + +B = +B+r( +B) = Ψ( +A)+r Ψ ( +A) 1.izomorfizm teoreminden ç Ψ Gör Ψ dir. Çek Ψ={ m+a: Ψ(m+A)=B } ={ m+a: m+b=b } ={ m+a: m B }=B/A Gör Ψ= {Ψ(m+A): m+a }={m+a: m+b=b}={m+b: m B}= olduğundan dir. 11

2.TEMEL TANIM VE TEOREMLER Tanım 2.2.13: ve iki -modül olmak üzere den olan tüm homomorfizmlerin kümesi (, ) = {ϕ ϕ:m N,R modül homomor izmi} olarak tanımlanır. Önerme 2.2.14:, (, ) olsun. + fonksiyonu her için ( + )( ) = ( ) + ( ) şeklinde tanımlarsak bu toplama ile (, ) bir abelyen grup olur. R değişmeli halka olsun., (, ) için yi her için (, ) (, ) ( )( ) = ( ) olarak tanımlarsak (, ) bir -modül olur. İspat: ) (, ) abelyan bir gruptur. 1) Her ve, (, ) için ( + )( ) (, ) olduğundan kapalıdır. 2) Her ve, (, ) için ( + ) + h ( ) = ( + )( ) + h( ) = ( ) + ( ) + h( ) = ( ) + ( + h)( ) = + ( + h) ( ) olduğundan birleşmelidir. 12

2.TEMEL TANIM VE TEOREMLER 3) Her ve (, ) için (f+0)(x)=f(x)+0(x)=f(x) olacak şekilde 0( ) (, ) birim eleman vardır. 4) Her ve (, ) için (f+(-f))(x)=f(x)-f(x)=0(x) olacak şekilde ( f) (, ) ters elemanı vardır. 5) Her ve, (, ) için ( + )( ) = ( ) + ( ) = ( ) + ( ) = ( + )( ) olduğundan değişmelidir. ii) Her, (, ) için ( + )( ) = ( ) + ( ) = ( ) + ( ) =( )( ) +( )( ) iii) Her, (, ) için ( + ) ( ) = ( )+ ( ) =( )( ) +( )( ) iv) Her, (, ) için ( ) ( ) = ( ( )) = (( )( )) = ( ( ))( ) (, ) bir -modüldür. Tanım 2.2.15: bir -modülü ve bir alt küme olsun. X kümesini kapsayan, tüm alt modüllerin arakesitine in ürettiği alt modül denir ve < > ile gösterilir. Yani; < >= { } dir. < >, alt kümesini kapsayan en küçük -alt modülüdür. kümesine üreteç kümesi denir. 13

2.TEMEL TANIM VE TEOREMLER Tanım 2.2.16: bir -modülü ve bir alt küme olsun. sonlu bir alt küme olmak üzere, M=< > ise ye sonlu üretilmiş modül denir. Önerme 2.2.17: sonlu üretilmiş ise bölüm modülü de sonlu üretilmiştir. İspat:, {,, } tarafından üretilmiş olsun., nin altmodülü olmak üzere bölüm modülünü alalım. = { + } dir. Her için = + + şeklinde yazılabilir. Dolayısıyla her + için + = + + + = + + + + + = ( + )+ ( + )+ + ( + ) şeklindedir. Dolayısıyla her +, { +, +,, + } sonlu kümesi tarafından üretilir. 2.3. Serbest Modüller Tanım 2.3.1: Eğer herhangi bir sağ -modül ve. =0 (, ) olacak şekildeki =0 ise nin alt kümesi -bağımsızdır denir. Tanım 2.3.2: bir -modül olsun. nin bağımsız bir üreteç kümesi varsa bir serbest -modüldür. 14

2.TEMEL TANIM VE TEOREMLER Örnek 2.3.3: Her vektör uzayı bir serbest modüldür. Çünkü her vektör uzayının bir baz vardır. Örnek 2.3.4: Her {1 } alınabilir. halkası kendi üzerinde bir serbest modüldür. Taban olarak Teorem 2.3.5: bir halka, bir sağ -modül ve = {,.., } nin alt kümesi olsun. Aşağıdakiler birbirine denktir. (i), -modülünün bir bazıdır. (ii),, olmak üzere = + + olacak şekilde deki {,, } katsayıların kümesi tektir. İspat: (i) (ii), nin bir bazı olsun.,, ve olmak üzere = + + şeklinde yazabiliriz. Bu yazılışın tek türlü olmadığını kabul edelim. Bazı,, için = + + olsun. = + + = + + olmak üzere ifadeler eşitliğin bir tarafında toplanırsa 0=( ) + +( ) elde edilir. Böylece tüm ler için = olmak üzere {,, } katsayıların kümesi tektir. (ii) (i),, olmak üzere = + + olacak şekilde deki {,, } katsayıların kümesi tek ise nın yi ürettiği 15

2.TEMEL TANIM VE TEOREMLER açıktır. nin lineer bağımsız olduğunu göstermeliyiz. Kabul edelim ki bazı,, katsayıları için 0= + + olsun. Ayrıca 0=0 + +0 olacağından ve katsayıların tekliğinden her için =0. O halde lineer bağımsızdır. Teorem 2.3.6: bir halka ve bir sol modül olsun. : tüm -modül izomorfizmlerinin kümesi ile nin tüm = {,, } bazların kümesi arasında birebir olan bir dönüşüm vardır. Bu dönüşüm altında izomorfizmi nın,, standart bazını ( ),, ( ) bazına dönüştürür. Özel olarak, bir -modüldür ancak ve ancak bazı lar için dır. İspat: = {,, } olmak üzere =1,, için : = olacak şekilde bir dönüşüm verilsin. bir baz olduğunu göstermek için lineer bağımsız olduğunu ve yi ürettiğini göstermeliyiz. olmak üzere bazı için = ( ) dir. Böylece örtendir. Bazı,, için = + + dır ve = ( ) = ( ) + + ( ) = ( ) + + ( ) = + + olduğundan nın yi ürettiğini görülür. Eğer 0= + + ise ( + + ) =0 dır. birebir olduğundan da 0= + + ve = = =0 dır. 16

2.TEMEL TANIM VE TEOREMLER Tersine, bazı verilsin. Teorem 2.3.5 den deki her elemanı = + olacak şekilde tek türlü yazılabilir. : ( + + )= + + ve : ( + + ) = + + dönüşümlerini tanımlayalım., -modül homomorfizmidir., birbirinin tersi olduğu aşikardır. (, 1998, 4.12.1) den bir izomorfizmdir. dan dolayı dönüşüm birebir ve örtendir. herbirini tek şekilde belirler. Sonuç 2.3.7: R[X] polinomlar halkası bir serbest R-modül ve dir. R[X] R ( ), n N Tanım 2.3.8: Eğer serbest, -modüllerin tüm bazlarının eleman sayısı aynı ise ye değişmez baz sayılı halka denir. Bu sayı nin rankı olarak adlandırılır ve r( ) ile gösterilir. Böylece rank, serbest modüller için tanımlanır fakat bunun nasıl genelleştirileceğini daha sonra göstereceğiz. 17

2.TEMEL TANIM VE TEOREMLER 2.4. Modüllerin İç Direkt Toplamı ve Tensör Çarpımı Tanım2.4.1 ve birimli halka, değişmeli bir grup olsun. bir sağ -modül ve bir sol -modül iken her,, için ( ) = ( ) oluyorsa ye (, ) bimodül denir. Özel olarak, hem sağ -modül hem de sol -modül iken = ise ye (, ) bimodül kısaca bimodül denir. Örnek 2.4.2: Her halka kendi üzerine sağ ve sol modül yapılabilir. Dolayısıyla değişmeli bir halka olmak üzere bir bimodüldür. Tanım 2.4.3: bir -modül olsun. { } ailesi;, -alt modüllerinin bir ailesi olsun. Her elemanı, olmak üzere sonlu toplam olarak =. şeklinde yazılabilir. Bu yazılış tek türlü ise, { } alt modüllerinin iç direkt toplamı denir ve ile gösterilir. = Tanım 2.4.4: { } bir R-modüller ailesi olsun. Bu ailenin direkt çarpımı ={ f:i M, f( ) M, her I} dır. bir R-modüldür. f, g, r ve olmak üzere 18

2.TEMEL TANIM VE TEOREMLER ( + )( ) = ( ) + ( ) (. )( ) =. ( ) işlemleriyle bir R-modül olur. ya Eğer I sonlu ise = dır. ların direk çarpımı denir. Tanım 2.4.5: bir sağ -modül ve de bir sol -modül olsun. herhangi bir abelyan grup ve : bir fonksiyon olsun. Eğer,, ;,, ; için ( +, ) = (, ) + (, ) (, + ) = (, ) + (, ) (, ) = (, ) oluyorsa ye -dengeli bilineer fonksiyon denir. Tanım 2.4.6: herhangi bir küme ise üzerindeki serbest abelyen grup Z- modül olarak ( ) ile gösterilsin. ( ) =., Z, ı ç 0 bir sağ -modül, bir sol -modül olsun. = ( ), üzerinde serbest abelyen gruptur. = (, )(, ):,, ı (, ) 0, (, ) Z nin içinde,, ;,, ; için ( +, ) (, ) (, ) (, + ) (, ) (, ) (, ) (, ) 19

2.TEMEL TANIM VE TEOREMLER şeklindeki elemanların doğurduğu alt grup ise grubu ile gösterilir. Bu gruba ve nin tensör çarpımı denir., ise sembolü ile (, ) + kosetini göstereceğiz. 2.5. Noetherian Modül ve Ore Koşulu Tanım 2.5.1: bir halka ve bir -modül olsun. nin alt modüllerinin her artan...... zinciri sonlu adımda duruyorsa ye Noetherian modül denir. Önerme 2.5.2: bir halka ve bir -modülü olsun. Noetherian modül ise nin her alt modülü sonlu üretilmiştir. İspat:, nin herhangi bir alt modülü olsun. sonlu üretilmiş olmasın. ( ) olacak şekilde bir, (, ) olacak şekilde ( vardır. Bu şekilde devam ederek, bir ) (,,, ) bulunabilir. Böylece M nin alt modüllerinin ( ) (, ) (,,, ) olacak şekildeki sonsuz bir zinciri elde edilir. Bu ise çelişki oluşturur. O halde N sonlu üretilmiştir. Tanım 2.5.3: bir tamlık bölgesi olsun., 0 ve, olmak üzere 0 koşulu sağlanıyorsa ye sağ Ore bölgesi denir. 20

2.TEMEL TANIM VE TEOREMLER 2.6. Kısa Tam Dizi, Projektif ve Injektij Modül Tanım 2.6.1: R-modüllerin bir dizisi ve bunlar arasında da R-homomorfizmleri verilsin. Eğer her 0 için, Im =Ç ise bu diziye tam dizi denir. Eğer belli bir yerden sonra modüller hep sıfırsa, 0 veya belli bir yerden önce modüller hep sıfırsa, 0 ile gösterilir. Özel olarak, 0 0 şeklinde tam diziye de bir kısa tam dizi denir. Önerme 2.6.2: R bir halka, M ve N iki R-modül olsun (i) : ve :, R-homomorfizmleri için =1 ise örten, birebir ve =Ç dir. (ii) 0, -monomorfizmi için, =1 olacak şekilde bir :, -homomorfizmi bulunabilmesi için gerek ve yeter koşul nin, M nin bir direkt toplamında bir terim olmasıdır. 21

2.TEMEL TANIM VE TEOREMLER (iii) 0, -epimorfizmi için, = 1 olacak şekilde bir :, -homomorfizmi bulunabilmesi için gerek ve yeter koşul Ç nin, M nin bir direkt toplamında bir terim olmasıdır. Bu takdirde =Ç ise, Ç olduğundan, de nin direkt toplamında bir terimdir. İspat: (i) : ve :, -monomorfizmi için, =1 ise için, ( ) = olacağından, nin örten, nin de birebir olduğu görülür. Her M için, = ( ) + ( ) dir. ( ) = ( ) ( ) = ( ) ( ) =0 olduğundan, ( ) Ç ve ( ) olduğu göz önünde tutularak, önceki eşitlikten =Ç + olduğu görülür. Ayrıca, Ç =0 olduğunu gösterelim. Ç ise bir için, = ( ) ve ( ) =0 olduğundan, 0= ( )= ( ) = ( ) = ve = ( )=0 bulunur. Şu halde, =Ç dir. (ii): 0, -monomorfizmi için, =1 olacak şekilde bir :, -homomorfizmi bulunabildiğini kabul edelim. 1.şıktan, bulunur. =Ç : = olacak şekilde, nin bir alt modülünün varlığını kabul edelim. Toplam, direk toplam olduğundan, her elemanı ve 22

2.TEMEL TANIM VE TEOREMLER olmak üzere, = + olacak şekilde tek türlü yazılabilir. olduğundan, bir için, = ( ) dir. Şimdi bu nin alınan elemanı için, teklikle belli olduğunu gösterelim. Gerçekten, = + ( ) =m + ( ), (m,m M,x,x ) olsa, ( ) ( ) = =0 olmasından, ( ) = ( ) ve birebir olduğundan, = elde edilir. Böylece, tek türlü = + ( ) yazılışı yardımıyla, ( ) = tanımlayarak bir : fonksiyonu bulunmuş olur. =1 olduğunu göstermek kolaydır. Böylece de bir -homomorfizmidir. (iii) : 0, -epimorfizmi için, =1 olacak şekilde bir :, -homomorfizmi bulunabilsin. 1.şıktan, =Ç bulunur. : =Ç olacak şekilde, nin bir alt modülünün varlığını kabul edelim. h: fonksiyonunu, h( ) = ( ) ile tanımlayalım. Her elemanı için, örten olduğundan, ( ) = olacak şekilde bir vardır. elemanı, Ç ve için = + olacak şekilde tek türlü yazılabilir. Buradan, = ( ) = ( )+f( )=f( )=h( ) bulunacağından, h nın örten olduğu anlaşılır. Ayrıca, Ç h =Ç =0 olduğundan, h birebir olur. = h alırsak, : için, =1 sağlanır. örten homomorfizmi ve =1 homomorfizmi olduğundan, nin bir - homomorfizmi olduğu görülür. 23

2.TEMEL TANIM VE TEOREMLER Teorem 2.6.3: R bir halka olsun. L, M ve N birer R-modül ve 0 0 bir kısa tam dizi ise aşağıdakiler birbirine denktir. (i) = 1 olacak şekilde bir :, -homomorfizmi vardır. (ii) =1 olacak şekilde bir :, -homomorfizmi vardır. ( ) N dir. İspat: (i) (ii): Dizi kısa tam dizi olduğundan, Ç = dir. Önerme 2.1.45 tenistenen elde edilir. (ii) (iii): 0, -monomorfizmi için =1 olacak şekilde bir :, -homomorfizmi varsa, olacak şekilde nin bir alt modülünün varlığını Önerme 2.6.2 tenbiliyoruz. Şu halde, = Ç ve olduğundan, N bulunur. (iii) (i): N olsun. Dizi kısa tam dizi olduğundan, dir. Böylece, M nin direkt toplamında bir terimdir. Önerme 2.6.2 e göre, istenen elde edilir. Tanım 2.6.4: Teorem 2.6.3 nın koşullarından birini sağlayan kısa tam diziye, parçalanabilir kısa tam dizi denir. 24

2.TEMEL TANIM VE TEOREMLER Teorem 2.6.5: R bir halka M, N ve P de R-modüller olsun. Aşağıdakiler birbirine denktir. (i) Her 0, R-epimorfizmi için, f = 1 olacak şekilde bir :, R-homomorfizmi vardır. (ii) P, bir F serbest R-modülünde bir direkt toplam terimidir. (iii) Her 0, R - epimorfizmi ve her h : P, R homomorfizmi için h = h olacak şekilde bir h :, R- homomorfizmi vardır. İspat: (i) (ii) Her modül, bir serbest modülün homomorfik görüntüsü idi. Şu halde verilen modülü için, bir :, -epimorfizmi ve bir serbest - modülü bulunabilir. üzerine her epimorfizmi için yaptığımız kabule göre, = 1 olacak şekilde bir :, homomor izmi bulunabilir. Önerme 2.6.2 den P, F serbest -modülünde bir direkt toplam terimi olur. (ii) (iii) olsun. Herhangi bir h:, -homomorfizmi ve 0, -epimorfizmi alalım. : = içerme fonksiyonu ve : = izdüşüm fonksiyonu için. =1 dir. F serbest modülünün bir tabanı { } olsun. Her için, örten olduğundan, ( ) = h ( ) olacak şekilde bir bulunabilir. Böylece :, ( ) = ile tanımlı bir -homomorfizmini tanımlayabiliriz. Her taban elemanı için, ( ) = ( ) = ( ) = h ( ) olduğundan, = h bulunur. Aranan h :, -homomorfizmi olarak h : alınabilir. Gerçekten, h = h = = h olur. 25

2.TEMEL TANIM VE TEOREMLER (iii) (i) Her 0, -epimorfizmi için, (iii) hipotezi altında, (N=P alarak) 1 0 diyagramı değişmeli = 1 olacak şekilde bir :, -homomorfizmi bulunmuş olur. Tanım 2.6.6: Yukarıdaki teoremin koşullarından birini sağlayan R -modüle projektif modül denir. Sonuç 2.6.7: R bir halka ve P bir projektif -modül ise her 0 0 kısa tam dizisi parçalanabilir dizidir. Sonuç 2.6.8: Her serbest modül projektiftir. Teorem 2.6.9: R bir halka ve E bir R-modül olsun. Aşağıdakiler birbirine denktir. (i) Her 0, R-monomorfizmi için, =1 olacak şekilde bir :, -homomorfizmi vardır. (ii) Her 0, R-monomorfizmi ve her h - homomorfizmi için h = h olacak şekilde bir h :, - homomorfizmi vardır. Bu özelliği aşağıdaki değişmeli diyagram gösterebiliriz. 26

2.TEMEL TANIM VE TEOREMLER 0 h E h İspat: (i) (ii) Bir 0, monomorfizmi ve bir h: - homomorfizmi verildiğinde, h= h olacak şekilde bir h :, - homomorfizmi varlığını gösterelim. 0 E h h nin S={(h( ), ( )): } alt modülüne göre, L=( ) bölüm modülünü göz önüne alalım. ve : ( ), (0, ) + : ( ), (,0)+ ile tanımlı fonksiyonları alalım. = h olduğu açıktır. Ayrıca birebir olduğundan, de birebirdir. Çünkü, ( ) =0 olsa, 0= ( )=(,0)+ den, bir m için, (,0) = (h( ), ( )) olduğundan ( )=0, yani =0 ve h( )=y=0 elde edilir. Şu halde, monomorfizmi için, (1) den u =1 olacak şekilde bir : homomorfizmi bulabiliriz. Eğer h = alırsak istenen elde edilmiş olur. Çünkü, h = = h = h dır. 27

2.TEMEL TANIM VE TEOREMLER (ii) (i) Her 0, -monomorfizmi için, (2) kullanılarak, 0 1 E =1 olacak şekilde bir :, -homomorfizmi bulunmuş olur. Tanım 2.6.10: R bir halka olsun. Yukarıdaki teoremin koşullarından birini sağlayan R-modülüne injektif R-modülü denir. Sonuç 2.6.11: R bir halka ve E bir injektif R-modül olsun. Her 0 0 kısa tam dizisi parçalanabilir dizidir. Sonuç 2.6.12: Bir injektif modülün her direkt toplam terimi de injektiftir. Tanım 2.6.13: Her serbest modül projektif olduğundan, her modül bir projektif modülün izomorfik görüntüsü olarak yazılabilir. Böylece projektif olmak üzere her -modül için 0 0 kısa tam dizisi elde edilir. Bu ise nin takdimi olarak adlandırılır. nin diğer takdimleri aşağıdaki lemmada kıyaslanmıştır. Schanuel s Lemma 2.6.14: M herhangi bir M modül olsun., projektif olmak üzere M nin iki farklı takdimi 28

2.TEMEL TANIM VE TEOREMLER 0 0 ve 0 0 olsun. Buna göre, dir. 2.7. Tek Çarpan Bölgesi Tanım 2.7.1: birim elemanlı ve değişmeli bir halka olsun. için i), sıfır veya birim değildir. ) =. ise ya ya da birimdir. koşulları sağlanıyorsa ye de indirgenemez eleman denir. Tanım 2.7.2: tamlık bölgesi olsun. Sıfır ve birim olmayan her elemanı indirgenemez elemanların bir çarpımı şeklinde yazılabiliyorsa ve bu yazılış tek türlü ise ye tek çarpan bölgesi (Unique Factorization Domain) denir. Kısaca UFD ile gösterilir. 29

2.TEMEL TANIM VE TEOREMLER 30

3.SERBEST İDEAL HALKALARI 3.SERBEST İDEAL HALKALARI Tanım 3.1.1: değişmez baz sayılı bir tamlık bölgesi olsun. nin tüm sağ idealleri serbest -modül ise ye sağ serbest ideal halkası (free ideal ring) denir. nin tüm sol idealleri serbest -modül ise ye sol serbest ideal halkası (free ideal ring) denir. Hem sağ hem de sol serbest ideal halkası kısaca fir olarak yazılır. Tanım 3.1.2: değişmez baz sayılı bir tamlık bölgesi olsun. nin sonlu üretilmiş tüm sağ idealleri serbest ise ye lokal serbest ideal halkası denir. Tüm sonlu üretilmiş alt modülleri serbest olan modüle lokal serbest modül denir. Bir serbest modül lokal serbest olmak zorunda değildir. Bunun olabilmesi için bir kriter verelim. Teorem 3.1.3: Serbest zorunda değildir. (Leavitt, W.G., 1956) -modüllerin farklı bazları, aynı sayıda eleman içermek Önerme 3.1.4: bir halka olsun. Serbest -modüller lokal serbesttir., sağ - modül olarak lokal serbesttir. İspat: (: ) Eğer tüm -modüller lokal serbest ise serbest olan local serbesttir. ( :) Kabul edelim ki lokal serbest olsun. bir serbest -modül ve, nin sonlu üretilmiş alt modülü olsun. nin sonlu üreteç kümesi, nin bazından sadece sonlu çoklukta üreteç içerir. Kalan baz elemanlarını, yı etkilemeksizin "0" ile eşleyelim. Böylece, elemanlarının kümesi tarafından sonlu üretilmiş alınabilir. üzerinde tümevarım kullanalım. Verilen bazın ilk 1 elemanı tarafından üretilen nin alt modülü 1 serbest üreteç üzerinde serbesttir ve / dir. = alınırsa / + / / 31

3.SERBEST İDEAL HALKALARI olur. sonlu üretilmiş olduğundan / de sonlu üretilmiştir. Böylece + /, / nün sonlu üretilmiş bir alt modülüdür. / altmodüllü, sağ ideallerdir. lokal serbest olduğundan nin alt modülleri de serbest olmak zorundadır. Böylece / serbesttir. ", nin bir serbest alt modülü olmak üzere = " (1) elde edilir. Burada / " yine sonlu üretilmiş ve nün alt modülüdür. Tümevarım hipotezinden serbesttir ve (1) den dolayı serbesttir. bir lokal serbest ideal halkası ise üzerinde tüm serbest modüller lokal serbesttir. Bir fir üzerinde bir serbest modülün her alt modülünün serbest olduğu daha genel bir şekilde gösterilebilir.(cohn, Paul, 1959, Teorem 1.5.3) Bu tanımlamaların bir sonucu olarak aşağıdaki önermeyi verelim: Önerme 3.1.5:, lokal fir üzerinde herhangi bir modül olsun., elemenlı sonlu bir üreteç kümesine sahip olsun. ( ) dir, üzerinde serbesttir. (2) Bunların hepsi özellikle fir üzerindeki modüllerde sağlanır. Fakat fir olmak üzere üzerindeki sonlu üretilmiş modüllerin alt modülleri sonlu üretilmiş olmak zorunda değildir. Bu durum ancak, sağ Noetherian iken sağlanır. Şimdi Noetherian fir lerin bir karakterizasyonunu verelim. Teorem 3.1.6:, herhangi bir fir olsun. Buna göre aşağıdakiler birbirine denktir: (i), esas sağ ideal bölgesidir. (ii), sağ Noetheriandır. (iii) Her, ve, 0 için 0 (3) olacak şekilde, Ore sağ çarpım koşulu sağlanır. 32