EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK



Benzer belgeler
MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR?

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) 1. Yol:

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c

Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar

10.Konu Tam sayıların inşası

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez.

SAYILAR DOĞAL VE TAM SAYILAR

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur.

BTP 207 İNTERNET PROGRAMCILIĞI I. Ders 8

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

c

SAYILAR SAYI KÜMELERİ

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız.

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

SAYILAR SAYI KÜMELERİ

ÜNİTE 1: TEMEL KAVRAMLAR

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

Temel Matematik Testi - 4

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI

MUSTAFA KÜÇÜK 9-A 853 D.A.L DÖNEM ÖDEVİ

SAYILAR TEORİSİ. KİTAPTA BULUNAN, TEOREM İSPATLARI, KONU ANLATIMI ve ÇÖZÜMLERİN OLDUĞU KISIMLAR, BU DÖKÜMANA KONULMAMIŞTIR.

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1

Sayıtlama Dizgeleri. (a n a n-1 a n1 a n0. b 1 b 2 b m )r. simgesi şu sayıyı temsil eder.

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi

DGS SAYISAL BÖLÜM 1 DGS DENEME SINAVI Ö1. 4) a ve b birer tamsayı ve 1) a. işleminin sonucu kaçtır?

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010)

Sayılar Kuramına Giriş Özet

YGS ÖNCESİ. 1) 1! + 3! + 5! ! Toplamının birler basamağındaki rakam kaçtır?

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =?

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 2010 )

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

SINAV YÖNERGESİ. Numarası : CEVAP. Adı Soyadı : ANAHTARI A) 512 B) 513 C) 256 D) 1024 E) 1025 A) 252 B) 256 C) 3024 D) 126 E) =?

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları

MUTLAK DEĞER Test -1

Bölünebilme Kuralları. Birler basamağındaki rakamı : {0, 2, 4, 6, 8} rakamlarından herhangi biri olan her sayı 2 ile tam bölünür.

1. ÜNİTE:SAYILAR VE İŞLEMLER

ASAL SAYILAR.

Mikroişlemcilerde Aritmetik

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane

TEMEL KAVRAMLAR Test -1

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

Microsoft Excel Uygulaması 2

A GRUBU Noktaları adlandırılmış K 6 tam çizgesinin tam olarak 3 noktalı kaç tane alt çizgesi vardır? A) 9 B) 20 C) 24 D) 60 E) 160

Olimpiyat Eğitimi CANSU DENEME SINAVI

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

d) x TABAN ARĐTMETĐĞĐ

OLİMPİYAT DENEMESİ 4

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı

MODÜLER ARİTMETİK. Örnek:

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

3 7 üs(kuvvet) 5 2 ( 4 3 ( 7 5 (

ÇENTİK METODU İLE SAYMA TEKNİKLERİNDE YENİ TEOREMLER

Köklü Sayılar ,1+ 0,1+ 1, 6= m 10 ise m kaçtır? ( 8 5 ) 2x 3. + a =? (4)

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar,

Sayılar Teorisi SAYILAR TEORİSİ VE SAYILAR

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü

TAM SAYILARLA TOPLAMA İŞLEMİ

10. DİREKT ÇARPIMLAR

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1991 ÖSS. işleminin sonucu kaçtır? A) 2200 B) 220 C) 22 D) 2,2 E) 0,22

2. Dereceden Denklemler

KPSS soruda SORU GENEL YETENEK - GENEL KÜLTÜR MATEMATİK GEOMETRİ TAMAMI ÇÖZÜMLÜ SORU BANKASI

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

A { x 3 x 9, x } kümesinin eleman sayısı A { x : x 1 3,x } kümesinin eleman sayısı KÜMELER

8.Konu Vektör uzayları, Alt Uzaylar

TEST. Tam Sayılar 1. ( 36) : (+12).( 3) : ( 2) 3 + [( 6) ( 2)] işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) 9 B) 1 C) 1 D) 9

Tek Doğal Sayılar; Çift Doğal Sayılar

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır?

TAM SAYILAR. Tam Sayılarda Dört İşlem

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir?

ÜSLÜ SAYILARLA İLGİLİ TEMEL KURALLAR. (2 ) demek 2 tane 2 3 'ün çarpımı demektir. (2 ) = 2.2 = 2 eder.

kişi biri 4 kişilik, üçü ikişer kişilik 4 takıma kaç farklı şekilde ayrılabilir? (3150)

LYS MATEMATİK DENEME - 1

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır?

Atatürk Anadolu. Bölme, Bölünebilme, Asal Sayılar, Obeb, Okek, Rasyonel Sayılar, Basit Eşitsizlikler ve Mutlak Değer Üzerine Kısa Çalışmalar

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

Transkript:

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK Amaç: 1 den n ye kadar olan tamsayı ağırlıkları, toplamları n olan en az sayıda ağırlığı kullanarak tartmak. Giriş: Bu araştırmanın temelini Ulusal Bilgisayar Olimpiyatı(UBO) nda çıkmış iki farklı soru oluşturmaktadır. Bu sorulara geçmeden önce, araştırmada karşılaşılan bazı ön bilgiler şöyle sıralanabilir: tabanında bir sayı nde çözümlenir. Burada ve. kümesi, m modülüne göre, kalan sınıflarının kümesini gösterir. Yani m ye bölündüğünde elde edilebilecek kalanların kümesini belirtir ve nde ifade edilir. Araştırmanın temeli olan sorular ise, şu şekildedir: Soru 1: Çift kollu bir terazinin sadece tek bir tarafında kullanılabilecek ve ağırlıkları 1 kg dan 30 kg a kadar tamsayılar olan cisimleri tartmakta kullanılabilecek N adet tamsayı ağırlık belirlemeniz istenmektedir. N en az kaç olacaktır? A) 4 B) 5 C) 6 D) 7 E) 8 (1997-UBO (Ulusal Bilgisayar Olimpiyatı)) Çözüm: Herhangi bir pozitif tamsayı 2 nin kuvvetlerinin toplamı olarak yazılabileceği için 31 e kadar olan ağırlıklar için 1, 2, 4, 8, 16 kg lık ağırlıklar kullanılabilir. Dolayısıyla burada cevap 5 olarak bulunur. 1

Soru 2: 40 kg ağırlığındaki bir taşı parçalara bölmeniz isteniyor öyle ki bu parçaları kullanarak 1 kg dan 40 kg a kadar bütün tamsayı ağırlıkları tartabilesiniz. Terazinin her iki kefesine de ağırlık koymanıza izin verilmektedir. Parçaların sayısı en az kaç olmalıdır? A) 3 B) 4 C) 5 D) 6 E) 7 (2009 UBO) Çözüm: İki kefeye de ağırlık konulduğu zaman, tartılacak cismin yanına konulan ağırlıklar diğer taraftaki toplam ağırlıktan çıkartıldığında cismin ağırlığı bulunmuş olur. Bilindiği üzere, te herhangi bir tamsayı 0, 1 veya 1 e denktir. O nedenle, burada 3 ün kuvvetleri kullanılabilir. Aşağıdaki tabloda 1 kg dan 40 kg a kadar bütün tamsayı ağırlıkların elde edilişi görülmektedir: 1 1 11 9+3 1 21 27+3 9 31 27+3+1 2 3 1 12 9+3 22 27+3+1 9 32 27+9 3 1 3 3 13 9+3+1 23 27 3 1 33 27+9 3 4 1+3 14 27 9 3 1 24 27 3 34 27+9+1 3 5 9 3 1 15 27 9 3 25 27+1 3 35 27+9 1 6 9 3 16 27+1 9 3 26 27 1 36 27+9 7 9+1 3 17 27 9 1 27 27 37 27+9+1 8 9 1 18 27 9 28 27+1 38 27+9+3 1 9 9 19 27+1 9 29 27+3 1 39 27+9+3 10 9+1 20 27+3 9 1 30 27+3 40 27+9+3+1 Yani, 40 kg ağırlığındaki bir taşı 1, 3, 9 ve 27 kg lık parçalara bölüp 1 den 40 kg a kadar olan bütün tamsayı ağırlıklar tartılabilir. Buradan da, parçaların sayısı en az 4 olarak elde edilmiş olur. 2

Bu çözümlerden hareketle, araştırma problemi iki ayrı problem olarak şu şekilde ifade edilebilir: Problem 1: n kg ağırlığındaki bir taşı parçalara bölmeniz isteniyor öyle ki bu parçaları kullanarak 1 kg dan n kg a kadar bütün tamsayı ağırlıkları tartabilesiniz. Terazinin sadece bir kefesine ağırlık koymanıza izin verilmektedir. Parçaların sayısı en az kaç olmalıdır? Problem 2: n kg ağırlığındaki bir taşı parçalara bölmeniz isteniyor öyle ki bu parçaları kullanarak 1 kg dan n kg a kadar bütün tamsayı ağırlıkları tartabilesiniz. Terazinin her iki kefesine de ağırlık koymanıza izin verilmektedir. Parçaların sayısı en az kaç olmalıdır? Yöntem: Araştırma problemlerinin çözümleri şu şekildedir: Problem 1: n kg ağırlığındaki bir taşı parçalara bölmeniz isteniyor öyle ki bu parçaları kullanarak 1 kg dan n kg a kadar bütün tamsayı ağırlıkları tartabilesiniz. Terazinin sadece bir kefesine ağırlık koymanıza izin verilmektedir. Parçaların sayısı en az kaç olmalıdır? Çözüm: olsun. 1 den n ye kadar bütün tamsayılar 2 nin kuvvetlerinin toplamı olarak yazılabilir. Çünkü herhangi bir pozitif tamsayı 2 lik sayma sisteminde nde ifade edilir. Buradan da, en az k tane parça olması gerektiği ortaya çıkar ki bu parçaların ağırlıkları ndedir. Eğer ise, den büyük değerler şu şekilde tartılabilir: 3

Dolayısıyla, en az k+1 tane parça olması gerektiği ortaya çıkar ki bu parçaların ağırlıkları olarak elde edilir. Problem 2: n kg ağırlığındaki bir taşı parçalara bölmeniz isteniyor öyle ki bu parçaları kullanarak 1 kg dan n kg a kadar bütün tamsayı ağırlıkları tartabilesiniz. Terazinin her iki kefesine de ağırlık koymanıza izin verilmektedir. Parçaların sayısı en az kaç olmalıdır? Çözüm: olsun. Herhangi bir pozitif tamsayı 3 lük sayma sisteminde şu şekilde ifade edilir: ise nde yazılabilir. ise istenen bir durum olmuş olur. Eğer ise nde yazılabilir. Eğer ise nde yazılarak işleme devam edilir. Bu şekilde 1 den n ye kadar bütün pozitif tamsayılar 3 ün kuvvetleriyle ifade edilebilir. Dolayısıyla, burada çözüm, gerek yukarıdaki açıklama gerekse örnek sorunun çözümünden hareketle şu şekilde geliştirilebilir: olduğundan en az k tane parça kullanılır ki, bu parçaların ağırlıkları olur. için çözüm geliştirmeden önce özel bir durum olarak n yerine 38 alınsın. Bu durumda 38=1+3+9+25 olur ki, 1 den 38 e kadar bütün tamsayı ağırlıklar şu şekilde tartılabilir: 4

1 1 11 9+3 1 21 25 3 1 31 25+9 1 2 3 1 12 9+3 22 25 3 32 25+9+1 3 3 3 13 9+3+1 23 25+1 3 33 25+9 1 4 1+3 14 25+1 9 3 24 25 1 34 25+9 5 9 3 1 15 25 9 1 25 25 35 25+9+1 6 9 3 16 25 9 26 25+1 36 25+9+3 1 7 9+1 3 17 25+1 9 27 25+3 1 37 25+9+3 8 9 1 18 25+3 9 1 28 25+3 38 25+9+3+1 9 9 19 25+3 9 29 25+3+1 10 9+1 20 25+3+1 9 30 25+9 3 1 Buradan da, durumu için şöyle bir çözüm elde edilebilir: Eğer ise, en az k+1 tane parça kullanılır ki bu parçaların ağırlıkları nde elde edilir. Bu sonuçlar bir teorem olarak şu şekilde ifade edilir: Teorem: n kg ağırlığındaki bir taşı parçalara bölmeniz isteniyor öyle ki bu parçaları kullanarak 1 kg dan n kg a kadar bütün tamsayı ağırlıkları tartabilesiniz. (i) (ii) Terazinin sadece bir kefesine ağırlık konulabildiğinde parçaların sayısının Terazinin her iki kefesine de ağırlık konulabildiğinde parçaların sayısının 5

Sonuç: Terazinin sadece bir kefesine ağırlık konulduğunda en az sayıda ağırlık kullanılarak tartım için 2 nin kuvvetlerinden istifade edilirken; her iki kefeye de ağırlık koymaya müsaade edildiğinde ise, 3 ün kuvvetlerinden faydalanılır. Genel hatlarıyla sonuçlar şu şekildedir: 1 kg dan n kg a kadar olan tamsayı ağırlıkları, toplamları n olan en az sayıda ağırlık kullanılarak ve terazinin sadece bir kefesine ağırlık konulabilmesi şartıyla tartılmak istendiğinde şu sonuçlar elde edilmiştir: olduğunda, en az k tane parça olması gerektiği ortaya çıkar ki bu parçaların ağırlıkları ndedir. Eğer ise, en az k+1 tane parça olması gerektiği ortaya çıkar ki bu parçaların ağırlıkları olarak elde edilir. 1 kg dan n kg a kadar olan tamsayı ağırlıkları, toplamları n olan en az sayıda ağırlık kullanılarak ve terazinin her iki kefesine de ağırlık konulabilmesi şartıyla tartılmak istendiğinde ise, şu sonuçlar elde edilmiştir: olduğunda, en az k tane parça kullanılır ki, bu parçaların ağırlıkları olur. Eğer ise, en az k+1 tane parça kullanılır ki bu parçaların ağırlıkları nde elde edilir. 6

Bütün bu sonuçların birleşimiyle şu sonuca ulaşılır: n kg ağırlığındaki bir taşı parçalara bölmeniz isteniyor öyle ki bu parçaları kullanarak 1 kg dan n kg a kadar bütün tamsayı ağırlıkları tartabilesiniz. (i) (ii) Terazinin sadece bir kefesine ağırlık konulabildiğinde parçaların sayısının Terazinin her iki kefesine de ağırlık konulabildiğinde parçaların sayısının Kaynakça: 1. Özdemir, M. (2011), Matematik Olimpiyatlarına Hazırlık 1, Altın Nokta Yayınları, İzmir 2. Aysan, B. ve Cansu, F. K., (2011), TÜBİTAK Ulusal Bilgisayar Olimpiyatı Soru ve Çözümleri 2000-2010, Altın Nokta Yayınları, İzmir 7