ÖZEL KONU ANLATIMI SENCAR Başarının sırrı, bilginin ışığı

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÖZEL KONU ANLATIMI SENCAR Başarının sırrı, bilginin ışığı"

Transkript

1 GENİŞLETİLMİŞ GERÇEL SAYILARDA LİMİT R = Q I küsin Rl Sayılar Küsi dniliyor. Rl Sayılar Küsid; = Tanısız v = olduğunu biliyorduk. -- R = R { -, + } gnişltiliş grçl sayılar küsind: li = -, - = -, li = + v + = li =, =, li = v = + f fonksiyonun a noktasında liiti d olası dk ; li f = li f = d a- a + li f = d a olası dktir. Yani ; b = c = d f fonksiyonun a noktasında liiti d olaası dk ; li f li f d li f d olası dktir. Yani ; a- a + a b c d li f liiti a noktasında yoktur. a LİMİTTE BİLİNMESİ GEREKEN TEOREMLER c R olak üzr ; li c = c a li f = li f a a li f() c R olak üzr ; li c f = c a a n çift doğal sayı olak üzr ; f için : li n f() = n li f() a a n tk doğal sayı olak üzr ; li n f() = n li f() a a li log f = log li f a b b a SOLDAN LİMİT: li f = b a - SAĞDAN LİMİT: li f = c a +

2 SIKIŞTIRMA (SANDVİÇ TEOREMİ ) R 'dn R'y f,g,h fonksiyonları vriliyor. R için f g h v li f = li h = b oluyorsa ; a a li g = b olacağı aşikardır. a Doyurucu Örnk : li.sin kaçtır?.sin -.sin Sandviç torin gör ; li = li.sin a a li = li.sin = -- - = önrsinin doğruluğunu ispatlayınız. li İspat : li = = = L'hospital uygulanırsa, - - li = li = = li = TRİGONOMETRİK FONKSİYONLARIN ÖRNEKLENDİRME LİMİTLERİ : sin sina a sina li sin = sina li = li = li = li = a a a a sin sinb b sin li cos = cosa a cosa li tan = tana a sina li cot = cota a tan sin a sina a li = li = li = li = 3 3 sina tanb b

3 -3- sin - li sin + tan - cot + li - li sin 6 - li sin - ifadnin dğri kaçtır? li sin + tan - cot = li sin + li tan - li cot O O O = sin3 + tan3 - cot6 = O O = + cot6 - cot6 sin sin sin li = li = li sin sin sin sin. sin li = sin sin li. li =. =

4 - li = li = li = li. li + sin - sin - sin - =. + =. = sin - li sin + tan - cot + li - li sin +- 6 = - li sin - = = 4-4- b li a +b+c = a li a b li a +b+c = - a li a Doyurucu Örnk : li ifadsinin dğri kaçtır? + li = - blirsizliği söz konusu. + + olduğu için: 4 li = li = li = li -+ + = li + =

5 Doyurucu Örnk : li ifadsinin dğri kaçtır? - li = - blirsizliği söz konusu. - + olduğu için: li = li li li = = -4 - = li = = -4 + = Yani, li = = = 3 TEOREM : - < a < için li a = +

6 BELİRSİZLİĞİ v li u.v li u =, li v = olak üzr, li +u = 'dir. Doyurucu Örnk : + - li ifadsinin dğri kaçtır? li = + + olduğuna gör, = - şklin çvrilir.daha sonra, u = v v =+ şklin dönüştürülür li u.v = li.+ = li = Aşikardır ki ; li u.v - li = li = f() li = halini aldığı zaan, pay v payda çarpanlara ayrılır.ortak çarpan yok a g() dilrk blirsizlik gidrilir.sonra liit alınır. İfad köklü is, köklü kısıların şlniklri il ksir gnişltilir.köktn kurtulan kısı çarpanlara ayrılır.sadlştir yapılıp liit alınır. Türv konusu inclndiğind L'hospital kuralıylada liit hsaplanır. a li = halini aldığı zaan, bn n a a a li = li = li -n n n burada üç duru söz konusudur. b bn bn n.durum: a =n li a = b n n bn

7 -7-.DURUM: a <n li = bn n 3.DURUM: a >n li = + vya - bn n Liit hsaplarında li f() - g() = - vya li f() - g() = - il karşılanabilir. - için ksin bir şy söylndiğindn - blirsiz bir ifaddir. Bu blirsizlik gnllikl ya da blirsizliklrindn birin dönüştürdüktn sonra liit hsaplanır. a için a = - - a = - a = = = a = a a 5 li ifadnin dğri kaçtır? li = = li = a a,a R için = TANIMSIZ olduğunu biliyoruz. 4 - < 4-4 < dk ki ; - 4 farkı çok küçük bir ngatif sayıdır Bu ndnl li - = = - = - olacağı aşikardır

8 f = fonksiyonu vriliyor. Buna gör ; f() fonksiyonunun = 3 noktasındaki soldan liiti kaçtır? 3-3 = için Kritik nokta 3 olduğu aşikardır. -8- fonksiyonu vriliyor. li = li -+3. li = f = =. 9+4 =.3 = 4 - li sin ifadnin dğri kaçtır?

9 li = li = blirsizliği var. sin sin olduğunda - dır. - = y alınırsa = + y v için y olacağı aşikardır. - y y y li = li = li = - li sin sin + y - siny siny Yani, - li = - sin 5 sin - sin3 li 3-3 ifadnin dğri kaçtır? sin - sin3 sin3 - sin3 li = li = blirsizliği var sin - sin3 =.sin.cos 'dn yararlanarak vriln ifadnin liiti hsaplanaya çalışılır sin.cos.sin sin - sin3 +3 li = li = li. li cos ayrıca, - 3 = t alınırsa 3 için - 3 t olacağı aşikardır. Buna gör ; sin - sin3 li t sin sin =. li. li cos =. li. li cos t t =..cos = cos3

10 6 -- Yandaki şkild f() parçalı fonksiyonun grafiği vriliştir. Buna gör ; 'in -,, v noktalarındaki var olan liitlrinin çarpıı kaçtır? li f = - - v li f = - + Aşikardır ki ; li f = li f = li f = li f = 5 - v li f = 7 + Aşikardır ki ; li f li f li f = YOKTUR - +

11 -- li f = 5 - v li f = 5 + Aşikardır ki ; li f = li f = 5 li f = li f = - v li f = + Aşikardır ki ; li f = li f = li f = - +

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için DERS 9 Grafik Çizimi, Maksimum-Minimum Problmlri 9.. Grafik çizimind izlnck adımlar. y f() in grafiğini çizmk için Adım. f() i analiz diniz. (f nin tanım kümsi, f() in tanımlı olduğu tüm rl sayıların oluşturduğu

Detaylı

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0)

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0) DERS 4 Üstl v Logaritik Fonksionlar 4.. Üstl Fonksionlar(Eponntial Functions). > 0, olak üzr f ( ) = dnkli il tanılanan fonksiona taanında üstl fonksion (ponntial function with as ) dnir. Üstl fonksionun

Detaylı

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri DERS 9 Grafik Çizimi, Maksimum Minimum Problmlri Bundan öncki drst bir fonksiyonun grafiğini çizmk için izlnbilck yol v yapılabilck işlmlr l alındı. Bu drst, grafik çizim stratjisini yani grafik çizimind

Detaylı

DERS 7. Türev Hesabı ve Bazı Uygulamalar II

DERS 7. Türev Hesabı ve Bazı Uygulamalar II DERS 7 Türv Hsabı v Bazı Uygulamalar II Bu rst bilşk fonksiyonlarının türvi il ilgili zincir kuralını, üstl v logaritmik fonksiyonların türvlrini, ortalama v marjinal ortalama ğrlri; rsin sonuna oğru,

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler

ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler ÜN TE II L M T Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler MATEMAT K 5 BU BÖLÜM NELER AMAÇLIYOR? Bu bölümü çal flt n zda (bitirdi inizde), *Bir

Detaylı

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ 015-016 EĞİTİM-ÖĞRETİM YILI 1. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI AY HAFTA SAAT KAZANIMLAR BÖLÜMLER (ALT ÖĞRENME ALANLARI) ÖĞRENME

Detaylı

OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe)

OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe) OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe) Merak uyandıran konulardan birisi olan fonksiyonel denklemlerle ilgili Türkçe kaynakların az oluşundan dolayı, matematik

Detaylı

300 = Ders notlarındaki ilgili çizelgeye göre; kömür için üst kaplama kalınlığı 4 mm, alt kaplama kalınlığı 2 mm olarak seçilmiştir.

300 = Ders notlarındaki ilgili çizelgeye göre; kömür için üst kaplama kalınlığı 4 mm, alt kaplama kalınlığı 2 mm olarak seçilmiştir. Soru-) Eğii, uzunluğu 50 olan dsandr y bant konvyör kurularak bununla saatt 300 ton tüvönan taş köürü taşınacaktır. Bant konvyörü boyutlandırınız. Kabullr: Bant hızı :,5 /s Köür yoğunluğu : 0,9 ton/ 3

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

Trigonometrik Dönüşümlerin Fiziksel Yorumu

Trigonometrik Dönüşümlerin Fiziksel Yorumu S a y f a 1 Trigonometrik Dönüşümlerin Fiziksel Yorumu Giriş Çoğumuz, trigonometrik dönüşüm formüllerini aklımızda tutmakta güçlük çekiyoruz. Ancak her şeyin bir kolay yolu var. Trigonometrik dönüşüm formüllerini

Detaylı

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 7 Haziran 7 Matematik II Soruları ve Çözümleri. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * ( + i) işleminin sonucu

Detaylı

YÜK KANCALARI VİDALI BAĞLANTILARINDA KULLANILAN FARKLI VİDA DİŞ PROFİLLERİNİN BİLGİSAYAR DESTEKLİ GERİLME ANALİZİ

YÜK KANCALARI VİDALI BAĞLANTILARINDA KULLANILAN FARKLI VİDA DİŞ PROFİLLERİNİN BİLGİSAYAR DESTEKLİ GERİLME ANALİZİ . Ulusal Tasarım İmalat v Analiz Kongrsi 11-1 Kasım 010- Balıksir YÜK KANCALARI VİDALI BAĞLANTILARINDA KULLANILAN FARKLI VİDA DİŞ PROFİLLERİNİN BİLGİSAYAR DESTEKLİ GERİLME ANALİZİ Aydın DEMİRCAN*, M. Ndim

Detaylı

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak DERS: MATEMATİK I MAT0(09) ÜNİTE: TÜREV ve UYGULAMALARI KONU: A. TÜREV. GİRİŞ Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre) zamanın t (saniye) bir fonksiyonu olarak

Detaylı

IŞINIM VE DOĞAL TAŞINIM DENEYİ

IŞINIM VE DOĞAL TAŞINIM DENEYİ IŞINIM VE DOĞAL TAŞINIM DENEYİ MAK-LAB005 1. DENEY DÜZENEĞİNİN TANITILMASI Dny düznği, şkild görüldüğü gibi çlik bir basınç kabının içind yatay olarak asılı duran silindirik bir lman ihtiva dr. Elman bakırdan

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

Kirişli döşemeler (plaklar)

Kirişli döşemeler (plaklar) Kirişli döşmlr (plaklar) Dört tarafından kirişlr oturan döşmlr Knarlarının bazıları boşta olan döşmlr Boşluklu döşmlr Düznsiz gomtrili döşmlr Üç tarafı kirişli bir tarafı boşta döşm Bir tarafı kirişli

Detaylı

Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(2015)-Ara Sınav

Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(2015)-Ara Sınav Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(015)-Ara Sınav S-1) Merkezi M(, 1) de olan ve 4y + 1 = 0 doğrusundan 4 birimlik bir kiriş ayıran çemberin S-) Merkezi M(,4) de olan ve + 5y 10 = 0 doğrusundan

Detaylı

DESTEK DOKÜMANI. Mali tablo tanımları menüsüne Muhasebe/Mali tablo tanımları altından ulaşılmaktadır.

DESTEK DOKÜMANI. Mali tablo tanımları menüsüne Muhasebe/Mali tablo tanımları altından ulaşılmaktadır. Mali Tablolar Mali tablo tanımları mnüsün Muhasb/Mali tablo tanımları altından ulaşılmatadır. Mali tablolarla ilgili yapılabilc işlmlr ii gruba ayrılır. Mali Tablo Tanımları Bu bölümd firmanın ullanacağı

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

TMOZ/tmoz@yahoogroups.com Kasım - 2005 Ters trigonometrik fonksiyonlar Eyüp Kamil Yeşilyurt Alaattin Altuntaş Mustafa Yağcı Dikkat edilmeyen veya önemsenmeyen ayrıntılar bir gün sizi de rahatsız edebilir.

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1...

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1... İçindekiler. Türev......... Türev kavramı.. 00. Bir fonksiyonun bir noktadaki türevi. 00. Alıştırmalar.... 005. Bir fonksiyonun bir noktadaki soldan ve sağdan türevi..... 006.4 Bir fonksiyonun bir noktadaki

Detaylı

ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ

Detaylı

Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç

Detaylı

Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ

Detaylı

Belirsiz Integraller. 1.1 Ilkel Fonksiyon ve Belirsiz Integral. 1.1.1 Temel Tan mlar ve Sonuc. lar

Belirsiz Integraller. 1.1 Ilkel Fonksiyon ve Belirsiz Integral. 1.1.1 Temel Tan mlar ve Sonuc. lar Ic. indekiler Belirsiz Integraller 3. Ilkel Fonksiyon ve Belirsiz Integral................ 3.. Temel Tan mlar ve Sonuc.lar............... 3. Temel Integral Alma Yöntemleri................ 0.. De giṣken

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

Makine Öğrenmesi 4. hafta

Makine Öğrenmesi 4. hafta ain Öğrnmsi 4. hafta Olasılı v Koşullu Olasılı ays Tormi Naïv ays Sınıflayıcı Olasılı Olasılı ifadsinin birço ullanım şli vardır. Rasgl bir A olayının hrhangi bir olaydan bağımsız olara grçlşm ihtimalini

Detaylı

BÖLÜM II A. YE Đ BETO ARME BĐ ALARI TASARIM ÖR EKLERĐ ÖR EK 2

BÖLÜM II A. YE Đ BETO ARME BĐ ALARI TASARIM ÖR EKLERĐ ÖR EK 2 BÖLÜ II A. YE Đ BETO ARE BĐ ALARI TASARI ÖR EKLERĐ ÖR EK SÜ EKLĐK DÜZEYĐ YÜKSEK 6 KATLI BETO ARE PERDELĐ / ÇERÇEELĐ BĐ A SĐSTEĐ Đ EŞDEĞER DEPRE YÜKÜ YÖ TEĐ ĐLE A ALĐZĐ E TASARII.1. GENEL BĐNA BĐLGĐLERĐ...II./..

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H

Detaylı

kirişli döşeme Dört tarafından kirişlere oturan döşemeler Kenarlarının bazıları boşta olan döşemeler Boşluklu döşemeler Düzensiz geometrili döşemeler

kirişli döşeme Dört tarafından kirişlere oturan döşemeler Kenarlarının bazıları boşta olan döşemeler Boşluklu döşemeler Düzensiz geometrili döşemeler Kirişli döşmlr Dört tarafından irişlr oturan döşmlr Knarlarının bazıları boşta olan döşmlr Boşlulu döşmlr Düznsiz gomtrili döşmlr bir tarafı irişli üç tarafı boşta döşm (Konsol döşm) Đi tarafı irişli ii

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4.

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4. 04 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. P() polinomunda katsayısı kaçtır? 4 lü terimin. ifadesinin değeri kaçtır? 4. yy y 4y y olduğuna göre, + y toplamının değeri kaçtır?

Detaylı

SÜLFÜRİK ASİTLE MUAMELE EDİLEN FISTIK KABUKLARI İLE Cr(VI) İYONLARININ ADSORPSİYONU

SÜLFÜRİK ASİTLE MUAMELE EDİLEN FISTIK KABUKLARI İLE Cr(VI) İYONLARININ ADSORPSİYONU SÜLFÜRİK ASİTLE MUAMELE EDİLEN FISTIK KABUKLARI İLE Cr(VI) İYONLARININ ADSORPSİYONU Vyis SELEN, Ali YARAŞ 2, Cansu YILMAZ 3, M. Şaban TANYILDIZI 4, Dursun ÖZER 5 Fırat Ünivrsitsi Mühndislik Fakültsi Kimya

Detaylı

- BANT TAŞIYICILAR -

- BANT TAŞIYICILAR - - BANT TAŞIYICILAR - - YAPISAL ÖZELLİKLER Bir bant taşıyıcının nl örünümü aşağıdaki şkild vrilmiştir. Bant taşıyıcıya ismini vrn bant (4) hm taşınacak malzmyi için alan bir kap örvi örn, hm d harkt için

Detaylı

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak MAT 1 Hata 73 1 C 135 8 A 137 7 D şıkkına parantez konacak 143 Sol üst örnek Sıkça yapılan yanlış ün son cümlesi O halde. 144 Son örnek tam yerine doğal 208 9 18 yerine 18 8 5 225 2 A 246 6 Doğru cevap:

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması Bulanık Dntlyicilr Bilgi Tabanı (Uzman) Anlık (Kskin) Girişlr Bulandırma Birimi Bulanık µ( ) Karar Vrm Kontrol Kural Tabanı Bulanık µ( u ) Durulama Birimi Anlık(Kskin) Çıkış Ölçklm (Normali zasyon) Sistm

Detaylı

ULTRASES KULLANARAK AKTİF KARBON ÜZERİNE REACTİVE BLUE 19 UN ADSORPSIYON TERMODİNAMİĞİNİN İNCELENMESİ

ULTRASES KULLANARAK AKTİF KARBON ÜZERİNE REACTİVE BLUE 19 UN ADSORPSIYON TERMODİNAMİĞİNİN İNCELENMESİ ULTRASES KULLANARAK AKTİF KARBON ÜZERİNE REACTİVE BLUE 19 UN ADSORPSIYON TERMODİNAMİĞİNİN İNCELENMESİ Ens ŞAYAN a,*, O. Nuri ATA b a,b,* Atatürk Ünivrsitsi Mühndislik Fakültsi Kiya Mühndisliği Bölüü, 25240,

Detaylı

TANITIM ve KULLANIM KILAVUZU. Modeller UBA4234-R. Versiyon : KK_UBA_V3.0210

TANITIM ve KULLANIM KILAVUZU. Modeller UBA4234-R. Versiyon : KK_UBA_V3.0210 SAT-IF / CATV Ultra Gniş Bantlı Dağıtım Yükslticilri (UBA-Srisi) TANITIM v KULLANIM KILAVUZU Modllr UBA4234-R Vrsiyon : KK_UBA_V3.0210 1.Gnl Tanıtım UBA Srisi Dağıtım Yükslticilri, uydu (950-2150MHz) v

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez.

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez. BÖLÜM IV (KÜÇÜK FERMAT VE WİLSON TEOREMLERİ Teorem 4. (Fermat Teoremi F a olan bir asal sayı olsun. Bu durumda a (mod İsat: a sayısının a a a K ( a gibi ilk ( katından oluşan sayı takımını gözönüne alalım.

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

Mühendisler İçin DİFERANSİYEL DENKLEMLER

Mühendisler İçin DİFERANSİYEL DENKLEMLER Mühndislr İçin DİFERANSİYEL DENKLEMLER Doç. Dr. Tahsin Engin Prof. Dr. Yunus A. Çngl Sakara Ünivrsitsi Makina Mühndisliği Bölümü Elül 8 SAKARYA - - Mühndislr İçin Difransil Dnklmlr İÇİNDEKİLER BÖLÜM BİRİNCİ

Detaylı

Türev Uygulamaları. 4.1 Bağımlı Hız

Türev Uygulamaları. 4.1 Bağımlı Hız Bölüm 4 Türev Uygulamaları 4.1 Bağımlı Hız Eğer bir balonun içine hava pompalarsak, balonun hem yarıçapı hem de hacmi artar ve artış hızları birbirine bağımlıdır. Fakat, hacmin artış hızını doğrudan ölçmek

Detaylı

OLASILIK ve ÝSTATÝSTÝK ( Genel Tekrar Testi-1) KPSS MATEMATÝK. Bir anahtarlıktaki 5 anahtardan 2 si kapıyı açmak - tadır.

OLASILIK ve ÝSTATÝSTÝK ( Genel Tekrar Testi-1) KPSS MATEMATÝK. Bir anahtarlıktaki 5 anahtardan 2 si kapıyı açmak - tadır. OLASILIK v ÝSTATÝSTÝK ( Gnl Tkrar Tsti-1) 1. Bir anahtarlıktaki 5 anahtardan si kapıyı açmak - tadır. Açmayan anahtar bir daha dnnmdiğin gör, bu kapının n çok üçüncü dnmd açılma olasılığı kaçtır? 5 6 7

Detaylı

ÜÇ ÇUBUK MEKANİZMASI

ÜÇ ÇUBUK MEKANİZMASI ÜÇ ÇUBUK MEKNİZMSI o l min l, lmaks B l,, B o Doç. Dr. Cihan DEMİR Yıldız Teknik Üniversitesi Dört çubuk mekanizmalarının uygulama alanı çok geniş olmasına rağmen bu uygulamalar üç değişik gurupta toplanabilir.

Detaylı

SÜLFÜRİK ASİTLE DEHİDRATE EDİLEN BUĞDAY KEPEĞİ İLE Cu(II) İYONLARININ ADSORPSİYONU

SÜLFÜRİK ASİTLE DEHİDRATE EDİLEN BUĞDAY KEPEĞİ İLE Cu(II) İYONLARININ ADSORPSİYONU SÜLFÜRİK ASİTLE DEHİDRATE EDİLEN BUĞDAY KEPEĞİ İLE Cu(II) İYONLARININ ADSORPSİYONU A. ÖZER, D.ÖZER Fırat Ünivrsitsi, Mühndislik Fakültsi, Kimya Mühndisliği Bölümü. 23279-ELAZIĞ ÖZET Bu çalışmada, sülfürik

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

İNTEGRAL KONU ANLATIMI ÖRNEKLER

İNTEGRAL KONU ANLATIMI ÖRNEKLER İNTEGRL KONU NLTIMI ÖRNEKLER Ġtgrl lmk, türi ril ir oksio lmk tır d,, d oksio olrk rildiğii =F i istdiğii rslım d içi i cid idsi: d = + dir, hrhgi ir sit df d koģl sğl = F oksio i gör itgrli dir d F içimid

Detaylı

Anaparaya Dönüş (Kapitalizasyon) Oranı

Anaparaya Dönüş (Kapitalizasyon) Oranı Anaparaya Dönüş (Kapitalizasyon) Oranı Glir gtirn taşınmazlar gnl olarak yatırım aracı olarak görülürlr. Alıcı, taşınmazı satın almak için kullandığı paranın karşılığında bir gtiri bklr. Bundan ötürü,

Detaylı

Ruppert Hız Mekanizmalarında Optimum Dişli Çark Boyutlandırılması İçin Yapay Sinir Ağları Kullanımı

Ruppert Hız Mekanizmalarında Optimum Dişli Çark Boyutlandırılması İçin Yapay Sinir Ağları Kullanımı Makin Tknolojilri Elktronik Drgisi Cilt: 6, No: 2, 2009 (-8) Elctronic Journal of Machin Tchnologis Vol: 6, No: 2, 2009 (-8) TEKNOLOJİK ARAŞTIRMALAR www.tknolojikarastirmalar.com -ISSN:304-44 Makal (Articl)

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1 Test 6. Teorem: a R ve a ise a dir. Kanıt: Varsayalım ki, olsun. a a olduğundan a 0 dır. Bu durumda, eşitsizliğin yönü değişmeden, a a olur. Demek ki, a a dir. Fakat bu durum a hipotezi ile çelişmektedir.

Detaylı

FONKSİYONLAR ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

FONKSİYONLAR ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT FONKSİYONLAR ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT Fonksionlar. Kazanım : Fonksion kavramı, fonksion çeşitleri ve ters fonksion kavramlarını açıklar.. Kazanım : Verilen bir fonksionun artan, azalan ve sabit

Detaylı

Çözüm: Yanıt:E. Çözüm:

Çözüm: Yanıt:E. Çözüm: ., -< 0 önermesinin olumsuzu, aşağıdakilerden, - 0 B), -> 0, -> 0, - 0 E ), - 0, -< 0 önermesinin olumsuzu, +- 0 dir.. a A önermesi p, b B önermesi q ve c C önermesi de r ile gösterildiğine göre A = B

Detaylı

Otomatik Kontrol Ulusal Toplantısı, TOK2013, 26-28 Eylül 2013, Malatya PROSES (SÜREÇ) KONTROLÜ

Otomatik Kontrol Ulusal Toplantısı, TOK2013, 26-28 Eylül 2013, Malatya PROSES (SÜREÇ) KONTROLÜ Otatik Kntrl Ulual Tplantıı, TOK, 6-8 Eylül, Malatya PROSES (SÜREÇ KONTROLÜ 868 Otatik Kntrl Ulual Tplantıı, TOK, 6-8 Eylül, Malatya U-Tüp Buhar Jnratörü Sviy Kntrlü İçin Gözlyici-Tlli Kntrlör Taarıı Günyaz

Detaylı

Maltepe Üniversitesi [Fen Edebiyat Fakültesi] MAT 159 Matematikte Temel Kavramlar ve Sorunlar 2013-2014 Güz Yarıyılı Final Soruları

Maltepe Üniversitesi [Fen Edebiyat Fakültesi] MAT 159 Matematikte Temel Kavramlar ve Sorunlar 2013-2014 Güz Yarıyılı Final Soruları Öğrenci Numarası: Adı Soyadı: Bölümü: 1) Hangi Amerikan başkanı Pisagor teoreminin değişik bir ispatını vermiştir? A) George Washington B) Theodore Roosevelt, Jr C) John Fitzgerald Kennedy D) James Abram

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

Negatif Binom Dağılımı

Negatif Binom Dağılımı Ngatif Binom Dağılımı Brnoulli dnyinin tüm varsayımları ngatif binom dağılımı içind gçrlidir. Binom dağılımında n dnmd adt başarı olasılığı l ğ il ilgilnilirkn, ili ngatif binom dağılımındağ d is şans

Detaylı

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü DERS NOTU 10 (Rviz Edildi, kısaltıldı!) ENFLASYON İŞSİZLİK PHILLIPS EĞRİSİ TOPLAM ARZ (AS) EĞRİSİ TEORİLERİ Bugünki drsin içriği: 1. TOPLAM ARZ, TOPLAM TALEP VE DENGE... 1 1.1 TOPLAM ARZ EĞRİSİNDE (AS)

Detaylı

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun. 11. Cauchy Teoremi ve p-gruplar Bu bölümde Lagrange teoreminin tersinin doğru olduğu bir özel durumu inceleyeceğiz. Bu teorem Cauchy tarafından ispatlanmıştır. İlk olarak bu teoremi sonlu değişmeli gruplar

Detaylı

MANYEZİT ARTIĞI KULLANILARAK SULU ÇÖZELTİLERDEN Co(II) İYONLARININ GİDERİMİ

MANYEZİT ARTIĞI KULLANILARAK SULU ÇÖZELTİLERDEN Co(II) İYONLARININ GİDERİMİ Onuncu Ulusal Kimya Mühndisliği Kongrsi, 3-6 Eylül 1, Koç Ünivrsitsi, İstanbul MANYEZİT ARTIĞI KULLANILARAK SULU ÇÖZELTİLERDEN Co(II) İYONLARININ GİDERİMİ İlkr KIPÇAK, Turgut Giray ISIYEL Eskişhir Osmangazi

Detaylı

Tekirdağ&Ziraat&Fakültesi&Dergisi&

Tekirdağ&Ziraat&Fakültesi&Dergisi& ISSN:130*7050 NamıkKmalÜnivrsitsi TkirdağZiraatFakültsiDrgisi Jurnal(f(Tkirdag(Agricultural(Faculty( ( ( ( ( ( ( An(Intrnatinal(Jurnal(f(all(Subjcts(f(Agricultur( Cilt(/(Vlum:(1Sayı(/(Numbr:((((((Yıl(/(Yar:(015

Detaylı

Farklı Kural Tabanları Kullanarak PI-Bulanık Mantık Denetleyici ile Doğru Akım Motorunun Hız Denetim Performansının İncelenmesi

Farklı Kural Tabanları Kullanarak PI-Bulanık Mantık Denetleyici ile Doğru Akım Motorunun Hız Denetim Performansının İncelenmesi Ahmt GANİ/APJES II-I (24) 6-23 Farklı Kural Tabanları Kullanarak PI-Bulanık Mantık Dntlyici il Doğru Akım Motorunun Hız Dntim Prformansının İnclnmsi * Ahmt Gani, 2 Hasan Rıza Özçalık, 3 Hakan Açıkgöz,

Detaylı

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir. ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım

Detaylı

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu,

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu, Geçen Derste Kırınım olayı olarak Heisenberg belirsizlik ilkesi ΔxΔp x 2 Fourier ayrışımı Bugün φ(k) yı nasıl hesaplarız ψ(x) ve φ(k) ın yorumu: olasılık genliği ve olasılık yoğunluğu ölçüm φ ( k)veyahut

Detaylı

İŞLEM KURALLARI BİLDİRİM FORMU

İŞLEM KURALLARI BİLDİRİM FORMU İŞLEM KURALLARI BİLDİRİM FORMU SERMAYE PİYASASI KURULU'NUN YAPTIĞI DEĞERLENDİRME SONUCUNDA, BORSA İSTANBUL A.Ş. DE İŞLEM GÖREN PAYLAR A, B, C v D GRUBU OLMAK ÜZERE DÖRT GRUBA AYRILMIŞ OLUP, GRUPLAR İLE

Detaylı

Infrared Kurutucuda Ayçiçeği Tohumlarının Kuruma Davranışı ve Kuruma Modellerine Uyum Analizi

Infrared Kurutucuda Ayçiçeği Tohumlarının Kuruma Davranışı ve Kuruma Modellerine Uyum Analizi Fırat Üniv. Mühndislik Bilimlri Drgisi Fırat Univ. Journal of Enginring 7(1), 51-56, 015 7(1), 51-56, 015 Infrard Kurutucuda Ayçiçği Tohumlarının Kuruma Davranışı v Kuruma Modllrin Uyum Analizi Özt * Mhmt

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

ORTAÖĞRETİM MATEMATİK 10. SINIF DERS KİTABI YAZARLAR KOMİSYON

ORTAÖĞRETİM MATEMATİK 10. SINIF DERS KİTABI YAZARLAR KOMİSYON ORTAÖĞRETİM MATEMATİK 0. SINIF DERS KİTAI YAZARLAR KOMİSYON DEVLET KİTAPLARI İKİNCİ ASKI..., 0 MİLLİ EĞİTİM AKANLIĞI YAYINLARI...: 5659 DERS KİTAPLARI DİZİSİ...: 54.?.Y.000.470 Her hakkı saklıdır ve Milli

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences Pamukkal Ünivrsitsi Mühndislik Bilimlri Drgisi, Cilt 19, Sayı 6, 013, Sayfalar 66-74 Pamukkal Ünivrsitsi Mühndislik Bilimlri Drgisi Pamukkal Univrsity Journal of Enginring Scincs DIŞ MERKEZ ÇAPRAZLI BİR

Detaylı

MENKUL KIYMET DEĞERLEMESİ

MENKUL KIYMET DEĞERLEMESİ MENKUL KIYMET EĞERLEMESİ.. Hiss Sdii Tk ömlik Gtirisii Hsaplaması Bir mkul kıymti gtirisi, bkl akit akımlarıı, şimdiki piyasa fiyatıa şitly iskoto oraıdır. Mkul kıymti özlliği gör bu akit akımları faiz

Detaylı

TÜRK EKONOMİSİNDE PARA İKAMESİNİN BELİRLEYİCİLERİNİN SINIR TESTİ YAKLAŞIMI İLE EŞ-BÜTÜNLEŞME ANALİZİ

TÜRK EKONOMİSİNDE PARA İKAMESİNİN BELİRLEYİCİLERİNİN SINIR TESTİ YAKLAŞIMI İLE EŞ-BÜTÜNLEŞME ANALİZİ TÜRK EKONOMİSİNDE PARA İKAMESİNİN BELİRLEYİCİLERİNİN SINIR TESTİ YAKLAŞIMI İLE EŞ-BÜTÜNLEŞME ANALİZİ Cünyt DUMRUL * ÖZ Bu çalışma ticarî dışa açıklık, bklnn döviz kuru, bklnn nflasyon oranı v Türkiy il

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. a 9! 8!, 9! 8! OKEK (a, ) OBEB (a, ) ifadesinin değeri kaçtır?. a ve a ile arasındaki ağıntı nedir? a a a a a a a a. ( ). ( ). ( ) 8 nın insinden eşiti nedir?. z z z toplamı

Detaylı

ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ

ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ Onuncu Ulual Kimya Mühndiliği Kongri, 3-6 Eylül 2012, Koç Ünivriti, İtanbul ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ Abdulwahab GIWA, Sülyman KARACAN

Detaylı

İyon Kaynakları ve Uygulamaları

İyon Kaynakları ve Uygulamaları İyon Kaynakları v Uygulamaları E. RECEPOĞLU TAEK-Sarayköy Nüklr Araştırma v Eğitim Mrkzi rdal.rcpoglu rcpoglu@tak.gov.tr HPFBU-2012 2012-KARS KONULAR İyon kaynakları hakkında gnl bilgi İyon kaynaklarının

Detaylı

REAKTİF GÜÇ İHTİYACININ TESPİTİ. Aktif güç sabit. Şekil 5a ya göre kompanzasyondan önceki reaktif güç. Q 1 = P 1 * tan ø 1 ( a )

REAKTİF GÜÇ İHTİYACININ TESPİTİ. Aktif güç sabit. Şekil 5a ya göre kompanzasyondan önceki reaktif güç. Q 1 = P 1 * tan ø 1 ( a ) REAKTİF GÜÇ İHTİYACININ TESPİTİ Aktif güç sabit Şekil 5a ya göre kompanzasyondan önceki reaktif güç Q 1 = P 1 * tan ø 1 ( a ) kompanzasyondan sonra ise Q = P 1 * tan ø ( b ) dir. Buna göre kondansatör

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

VOLEYBOLCULARIN FARKLI MAÇ PERFORMANSLARI İÇİN TEKRARLANAN ÖLÇÜMLER YÖNTEMİNİN KULLANILMASI

VOLEYBOLCULARIN FARKLI MAÇ PERFORMANSLARI İÇİN TEKRARLANAN ÖLÇÜMLER YÖNTEMİNİN KULLANILMASI 96 OLEBOLCULAIN FAKLI MAÇ PEFOMANSLAI İÇİN TEKALANAN ÖLÇÜMLE ÖNTEMİNİN KULLANILMASI ÖET Gürol IHLIOĞLU Süha KAACA Farklı yr, zaman v matryallr üzrind tkrarlanan dnylr il bir vya birdn fazla faktörün tkisi

Detaylı

1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir.

1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir. Değişkenler 1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir. Örnek Kullanım : sayı değer= 3; sayı sayı1; 2- ondalık - Ondalık sayıları ifade etmek için

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

Türev Kavramı ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Kavramı ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Kavramı Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramını anlayacak, türev alma kurallarını öğrenecek, türevin geometrik ve fiziksel anlamını kavrayacak,

Detaylı

İçindekiler. KarışıkÖrnekler 108

İçindekiler. KarışıkÖrnekler 108 İçindekiler BİRİNCİBÖLÜM Logaritma Logaritma Fonksiyonunun Özellikleri Logaritma Fonksiyonunun Grafiği 5 Karakteristik ve Mantis 5 Logaritmik Denklemler 6 Logaritmik Eşitsizlikler 0 KarışıkÖrnekler İKİNCİBÖLÜM

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

TAM DEĞER ARDIŞIK TOPLAMLAR

TAM DEĞER ARDIŞIK TOPLAMLAR ÖZEL EGE LİSESİ TAM DEĞER VE ARDIŞIK TOPLAMLAR HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 01 İÇİNDEKİLER 1. PROJENİN AMACI.... GİRİŞ..YÖNTEM. ÖN BİLGİLER.. 5.ARDIŞIK TOPLAMLARIN

Detaylı