BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II"

Transkript

1 BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II KARMAÞIK SAYILAR - II MF TM LYS 3 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. Adý Soadý :... Bu kitapçýðýn her hakký saklýdýr. Tüm haklarý br Bire Eðitim Yaýncýlýk Pazarlama Ltd. Þti. e aittir. Kýsmen de olsa alýntý apýlamaz. Metin ve sorular, kitapçýðý aýmlaan þirketin önceden izni olmaksýzýn elektronik, mekanik, fotokopi a da herhangi bir kaýt sistemile çoðaltýlamaz aýmlanamaz. KARMAÞIK SAYILAR - II KARMAÞIK SAYININ MUTLAK DEÐERÝ (MDÜLÜ) Karmaþýk düzlemde bir karmaþýk saýa karþýlýk gelen noktanýn baþlangýç noktasýna olan uzaklýðýna bu karmaþýk saýnýn mutlak deðeri vea modülü denir. Z=a+ib karmaþýk saýsýnýn modülü Z = a+ib biçiminde gösterilir. b Z=a+ib ise Z = a+ib Z=a+ib Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Örnek: i = ve gerçek saý olmak üzere, ( )+8i =0 olduðuna göre, in alabileceði farklý deðerler toplamý kaçtýr? Örnek: r= Z a r= Z = a +b a b Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri MUTLAK DEÐERÝN (MDÜLÜN) ÖZELLÝKLERÝ Z, Z ve Z birer karmaþýk saý olsun. Z = Z Z. Z= Z Z.Z = Z. Z Z n = Z n, n Z Z Z =, Z 0 Z Z Z =0 ise Z=0 Z = 3+ i ise Z =... Z = 5i ise Z =... Z = 5+ i ise Z =... Z = 3i ise Z =... Z = 7 ise Z =... Z = 7+ i ise Z =... Z = 5 + 3i ise Z =... Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Örnek: 3 i = olmak üzere, Z ( i)( i) olduðuna göre, Z karmaþýk saýsýnýn mutlak deðeri kaçtýr? DAF - MATEMATÝK - II (MF-TM) / (LYS) - 3

2 BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ Örnek: i = olmak üzere, Z 3 i 5 i olduðuna göre, Z karmaþýk saýsýnýn mutlak deðeri kaçtýr? Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Örnek: 7 Z +Z=3 i eþitsizliðini saðlaan Z karmaþýk saýsý aþaðýdakilerden A) i i C) i i 3i 3 5 (006/ÖSS) Örnek: 5 i = olmak üzere, olduðuna göre, Z kaçtýr? Örnek: 6 i = olmak üzere, Z 3i i 3 ( 3 i).( i) Z i olduðuna göre, Z. Z çarpýmý aþaðýdakilerden 6 8 A) C) Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri ÝKÝ KARMAÞIK SAYI ARASINDAKÝ UZAKLIK i = olmak üzere, Z = +i ve Z = +i olsun. Z ile Z karmaþýk saýlarý arasýndaki uzaklýk, bu saýlarýn görüntüleri arasýndaki uzaklýk demektir. Z = +i karmaþýk saýsýnýn görüntüsü; A(, ) Z = +i karmaþýk saýsýnýn görüntüsü; B(, ) olsun. ABC üçgeninde pisagor baðýntýsýndan, A(, ) ile B(, ) noktalarý arasýndaki uzaklýk; B(, ) C AB ( ) ( ) A(, ) Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri olarak bulunur. Z Z = ( +i ) ( +i ) ( ) ( ) AB = Z Z = ( ) +( ) DAF - MATEMATÝK - II (MF-TM) / (LYS) - 3

3 BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ Örnek: 8 i = olmak üzere, Z = 3i Z =3 i karmaþýk saýlarý arasýndaki uzaklýk kaç birimdir? Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Örnek: i = olmak üzere, Z+ = Z i eþitliðini saðlaan Z=+i karmaþýk saýlarýný karmaþýk Örnek: 9 i = olmak üzere, Z = 3i Z = i a) Z karmaþýk saýsýna uzaklýðý br olan karmaþýk saýlarýn kümesini bulunuz. b) Z karmaþýk saýsýna uzaklýðý br olan karmaþýk saýlarýn kümesini bulunuz. Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Örnek: i = olmak üzere, Z < eþitsizliðini saðlaan Z=+i karmaþýk saýlarýný karmaþýk Örnek: 0 i = olmak üzere, Z+i = eþitliðini saðlaan Z=+i karmaþýk saýlarýný karmaþýk Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Örnek: 3 i = olmak üzere, Z+ i eþitsizliðini saðlaan Z=+i karmaþýk saýlarýný karmaþýk Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri DAF - MATEMATÝK - II (MF-TM) / (LYS) - 3

4 BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ Örnek: i = olmak üzere, 3 Z < eþitsizliklerini saðlaan Z=+i karmaþýk saýlarýný karmaþýk Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Örnek: 6 i = olmak üzere, A={Z : Z i, Z C} B={Z : Z Z, Z C} olduðuna göre, A B kümesinin grafiði aþaðýdakilerden A) C) Uarı: Z Z 0 gösterimi Z karmaşık saısının Z 0 karmaşık saısına olan uzaklığı demektir. Z Z 0 =r eşitliğini sağlaan Z karmaşık saılarının kümesi, Z 0 saısına uzaklığı r birim olan noktaların kümesidir. Bu ise Z 0 merkezli, r birim arıçaplı çemberdir. Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri M M / M 3 Z Z 0 <r eşitsizliğini sağlaan Z karmaşık saılarının kümesi Z 0 merkezli, r birim arıçaplı çemberin iç bölgesidir. Z Z 0 >r eşitsizliğini sağlaan Z karmaşık saılarının kümesi Z 0 merkezli, r birim arıçaplı çemberin dış bölgesidir. Örnek: 5 Karmaþýk düzlemde A(+6i), B( i), C(+5i) noktalarý verilior. A nýn [BC] nin orta noktasýna olan uzaklýðý kaç birimdir? A)5 C) Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Örnek: 7 i = ve Z=+i olmak üzere, Z = olduðuna göre, Z 5 i ifadesinin a) alabileceði en büük deðer kaçtýr? (99/ÖYS) Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri b) alabileceði en küçük deðer kaçtýr? DAF - MATEMATÝK - II (MF-TM) / (LYS) - 3

5 KARMAÞIK SAYILAR II. i = olmak üzere, Z= 3i olduðuna göre, Z kaçtýr? A) 5 5 C)6 8 0 Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri 5. i = olmak üzere, Z =3 5i Z =a 6i Z Z = KNU TESTÝ olduðuna göre, a nýn alabileceði deðerler çarpýmý kaçtýr? A) C) i = olmak üzere, i Z ( i)( i) olduðuna göre, Z kaçtýr? 3 5 A) C) Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri 6. i = olmak üzere, 7 i Z 3 i olduðuna göre, Z.Z çarpýmý aþaðýdakilerden hangisine eþittir? A) C) i = olmak üzere, Z+3Z =5+i olduðuna göre, Z kaçtýr? A) 3 C) i = olmak üzere, Z = +i Z =3 i olduðuna göre, Z ile Z karmaþýk saýlarý arasýndaki uzaklýk kaç br dir? A)5 C)3 Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri 8. i = olmak üzere, Z+ i = eþitliðini saðlaan Z=+i karmaþýk saýlarýnýn karmaþýk düzlemdeki görüntüsü aþaðýdakilerden A) C). i = olmak üzere, Z.Z Z = olduðuna göre, Z karmaþýk saýsýnýn mutlak deðeri kaçtýr? A) C) 3 5 Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri DAF - MATEMATÝK - II (MF-TM) / (LYS) - 3

6 KARMAÞIK SAYILAR II 9. Z i eþitsizliðini saðlaan Z=+i karmaþýk saýlarýnýn karmaþýk düzlemdeki görüntüsü aþaðýdakilerden A) C) Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri. Z +i = Z i eþitliðini saðlaan Z=+i karmaþýk saýlarýnýn karmaþýk düzlemdeki görüntüsü aþaðýdakilerden A). Z < eþitsizliðini saðlaan Z=+i karmaþýk saýlarýnýn karmaþýk düzlemdeki görüntüsü aþaðýdakilerden C) KNU TESTÝ 0. Z++i eþitsizliðini saðlaan Z=+i karmaþýk saýlarýnýn karmaþýk düzlemdeki görüntüsü aþaðýdakilerden A) C) DAF - MATEMATÝK - II (MF-TM) / (LYS) - 3 Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri 6 A) 3 C) 3. i = ve Z=+i olmak üzere, Z 7 olduðuna göre, Z+3+i ifadesinin alabileceði en büük deðer kaçtýr? A) 6 8 C) 0

7 KARMAÞIK SAYILAR II. i = olmak üzere, Z +Z=8+i olduðuna göre, Z karmaþýk saýsý aþaðýdakilerden A) 5+i 5 i C) 5i 5+i +5i Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri 8. Z=+i ve Z = Z olduðuna göre, Z nin karmaþýk düzlemdeki geometrik eri aþaðýdakilerden A) Gerçek eksene dik bir doðru Sanal eksene dik bir doðru C) birim çaplý bir çember Bir elips Bir parabol KNU TESTÝ (995/ÖYS) 5. Z 3i eþitsizliðini saðlaan Z karmaþýk saýlarýnýn orijine en akýn noktasý A dýr. Buna göre, A noktasýnýn orijine olan uzaklýðý kaç br dir? A) 3 C) 5 6 Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri 9. i = ve a bir reel saý olmak üzere, Z=6 i+ai karmaþýk saýsýnýn baþlangýç noktasýna olan uzaklýðý 0 br olduðuna göre, a nýn alabileceði deðerler toplamý kaçtýr? A) C) Karmaþýk saýlar kümesi üzerinde * iþlemi, Z * Z = Z +Z + Z Z biçiminde tanýmlanýor. Buna göre, ( i) * ( +i) iþleminin sonucu nedir? A) +8i 8i C) 8+i 8 i i (007/ÖSS) Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri 0. u= i ve v=3i olmak üzere, u.v i ifadesi aþaðýdakilerden hangisine eþittir? A) C) Z+ i =0 eþitliðini saðlaan Z karmaþýk saýlarýnýn geometrik erinin denklemi aþaðýdakilerden A) ( ) +( ) =6 ( 3) +( ) =6 C) (+) +( ) =00 ( ) +( ) =8 ( ) +(+) = (99/ÖYS) Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri 7. Z ve Z i eþitsizlik sistemini saðlaan bölgenin alaný kaç br dir? A) C) DAF - MATEMATÝK - II (MF-TM) / (LYS) - 3

8 KARMAÞIK SAYILAR II. i = olmak üzere, P(i) Q(i) P()= 0 ++, Q()= karmaþýk saýsýnýn uzunluðu kaç birimdir? A) C) Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri 5. i = olmak üzere, Z iz 7i olduðuna göre, Z ifadesinin deðeri kaçtýr? KNU TESTÝ A) C) i = ve Z=+i olmak üzere, eþitliðini saðlaan Z karmaþýk saýlarýnýn karmaþýk düzlemdeki görüntüsü aþaðýdakilerden A) C) Z i Z = = = Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri 6. i = olmak üzere, Z 3 i =3 olduðuna göre, Z ifadesinin alabileceði en büük deðer kaçtýr? A) 5 6 C) i = ve gerçek saý olmak üzere, i Z ( )i olduðuna göre, Z. Z ifadesinin deðeri kaçtýr? A) C) i = ve a ile b gerçek saý olmak üzere, a+b+bi i =0 olduðuna göre, a+b toplamý kaçtýr? A) C) 3. i = olmak üzere, Z 5 olduðuna göre, Z karmaþýk saýsý aþaðýdakilerden hangisi olabilir? A) 5i 5i C) i 3 i 3i Bire Dershaneleri Bire Dershaneleri Bire Dershaneleri 9. i = olmak üzere, Z 5 i =5 eþitliðini saðlaan herhangi iki karmaþýk saý arasýndaki uzaklýk en çok kaç br dir? A) 5 0 C) B -A 3-A -D 5-D 6-E 7-C 8-B 9-C 0-C -E -D 3-D -D 5-C 6-D 7-C 8-A 9-B 0-A -A -C 3-E -C 5-B 6-D 7-A 8-B 9-B DAF - MATEMATÝK - II (MF-TM) / (LYS) - 3 8

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II KARMAÞIK SAYILAR - I MF TM LYS 30 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. Adý Soadý :... Bu kitapçýðýn

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II II. DERECEDEN DENKLEMLER - II MF TM LYS 06 Ders anlatým föyleri öðrenci tarafýndan dersten sonra

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II PRL - I MF TM LYS 09 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý

Detaylı

LYS MATEMATÝK II - 10

LYS MATEMATÝK II - 10 ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS UYGULM FÖYÜ (MF-TM) DERSHNELERÝ LYS MTEMTÝK II - 0 PRL - I Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý :... u kitapçýðýn her hakký

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II EÞÝTSÝZLÝKLER - III MF TM LYS1 15 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II TRÝGNMETRÝ - I MF TM LYS 8 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II II. DERECEDEN DENKLEMLER - IV MF TM LYS1 08 Ders anlatým föyleri öðrenci tarafýndan dersten

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II PRL - IV MF TM LYS1 12 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II EÞÝTSÝZLÝKLER - I MF TM LYS1 13 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu ÝÞLEM YETENEÐÝ Ders Adý Bölüm Sýnav DAF No. MATEMATÝK TS YGSH YGS 01 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK SAYI BASAMAKLARI - I TS YGSH YGS 06 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar

Detaylı

Örnek: 7. Örnek: 11. Örnek: 8. Örnek: 12. Örnek: 9. Örnek: 13. Örnek: 10 BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ.

Örnek: 7. Örnek: 11. Örnek: 8. Örnek: 12. Örnek: 9. Örnek: 13. Örnek: 10 BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ. BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ Ders Adý Bölüm Sýnav DAF No. MATEMATÝK TS YGSH YGS 11 DERSHANELERÝ Konu BÖLME VE BÖLÜNEBÝLME - II Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ Ders Adý Bölüm Sýnav DAF No. MATEMATÝK TS YGSH YGS 04 DERSHANELERÝ Konu TEMEL KAVRAMLAR - III Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - I

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - I BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - I SAYI BASAMAKLARI - II MF TM YGS LYS1 05 Ders anlatým föyleri öðrenci tarafýndan dersten sonra

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý Bölüm Sýnav DF No. MTEMTÝK - II TRÝGONOMETRÝ - IX MF TM LYS 6 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II TRÝGONOMETRÝ - IV MF TM LYS Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No MATEMATÝK - II POLÝNOMLAR - IV MF TM LYS1 04 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr

Detaylı

Polinomlar II. Dereceden Denklemler

Polinomlar II. Dereceden Denklemler Ödev Tarihi :... Ödev Kontrol Tarihi :... Kontrol Eden :... LYS MATEMATİK - II Ödev Kitapçığı 1 (MF-TM) Polinomlar II. Dereceden Denklemler Adý Soyadý :... BÝREY DERSHANELERÝ MATEMATÝK-II ÖDEV KÝTAPÇIÐI

Detaylı

Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende Alan

Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende Alan Ödev Tarihi :... Ödev Kontrol Tarihi :... Kontrol den :... LYS GOMTRİ Ödev Kitapçığı 1 (M-TM) oðruda çýlar Üçgende çýlar çý - Kenar aðýntýlarý ik Üçgen ve Öklit aðýntýlarý Ýkizkenar ve þkenar Üçgen Üçgende

Detaylı

DERSHANELERÝ MATEMATÝK - I

DERSHANELERÝ MATEMATÝK - I B Ý R E Y D E R S H A N E L E R Ý S I N I F Ý Ç Ý D E R S A N L A T I M F Ö Y Ü DERSHANELERÝ Konu Bölüm DAF No. FONKSÝYONLAR - I MF-TM 53 MATEMATÝK - I 53 Bu yayýnýn her hakký saklýdýr. Tüm haklarý bry

Detaylı

DERSHANELERÝ MATEMATÝK

DERSHANELERÝ MATEMATÝK BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ KÜMELER - I Konu Bölüm Sýnav DAF No. MATEMATÝK 53 TS YGSH YGS 53 Bu yayýnýn her hakký saklýdýr. Tüm haklarý bry Birey Eðitim Yayýncýlýk Pazarlama

Detaylı

LYS 1 ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI 1 MA = a 4, 3 b Bazý M pozitif gerçek sayýlarý için, 5M = M 5 ve. 6.

LYS 1 ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI 1 MA = a 4, 3 b Bazý M pozitif gerçek sayýlarý için, 5M = M 5 ve. 6. LYS ÜNÝVERSÝTE HAZIRLIK ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI A Soru saýsý: 0 Yanýtlama süresi: dakika Bu testle ilgili anýtlarýnýzý optik formdaki Matematik bölümüne iþaretleiniz. Doðru anýtlarýnýzýn

Detaylı

PARABOL TEST / 1. 1. Aþaðýdaki fonksiyonlardan hangisinin grafiði parabol. 5. Aþaðýdaki fonksiyonlardan hangisinin grafiði A(0,2) noktalarýndan geçer?

PARABOL TEST / 1. 1. Aþaðýdaki fonksiyonlardan hangisinin grafiði parabol. 5. Aþaðýdaki fonksiyonlardan hangisinin grafiði A(0,2) noktalarýndan geçer? PARABOL TEST /. Aþaðýdaki fnksinlardan hangisinin grafiði parabl belirtir? 5. Aþaðýdaki fnksinlardan hangisinin grafiði A(0,) nktalarýndan geçer? A) f()=5 f()=+ C) f()= D) f()= f()= 4 + + A) f()= f()=

Detaylı

LYS MATEMATÝK II. Polinomlar. II. Dereceden Denklemler

LYS MATEMATÝK II. Polinomlar. II. Dereceden Denklemler LYS MATEMATÝK II Soru Çözüm Dersi Kitapçığı 1 (MF - TM) Polinomlar II. Dereceden Denklemler Bu yayýnýn her hakký saklýdýr. Tüm haklarý bry Birey Eðitim Yayýncýlýk Pazarlama Ltd. Þti. e aittir. Kýsmen de

Detaylı

4. f(x) = x 3 3ax 2 + 2x 1 fonksiyonunda f ý (x) in < x < için f(x) azalan bir fonksiyon olduðuna

4. f(x) = x 3 3ax 2 + 2x 1 fonksiyonunda f ý (x) in < x < için f(x) azalan bir fonksiyon olduðuna Artan - Azalan Fonksionlar Ma. Min. ve Dönüm Noktalarý ÖSYM SORULARI. Aþaðýdaki fonksionlardan hangisi daima artandýr? A) + = B) = C) = ( ) + D) = E) = + (97). f() = a + fonksionunda f ý () in erel (baðýl)

Detaylı

LYS GEOMETRÝ. Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý

LYS GEOMETRÝ. Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý LYS GEOMETRÝ Soru Çözüm ersi Kitapçığı 1 (MF - TM) oðruda çýlar Üçgende çýlar çý - Kenar aðýntýlarý ik Üçgen ve Öklit aðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende lan u yayýnýn her hakký saklýdýr. Tüm

Detaylı

4. a ve b, 7 den küçük pozitif tam sayý olduðuna göre, 2 a a b. 5. 16 x+1 = 3

4. a ve b, 7 den küçük pozitif tam sayý olduðuna göre, 2 a a b. 5. 16 x+1 = 3 LYS ÜNÝVSÝT HAZILIK ÖZ-D-BÝ YAYINLAI MATMATÝK DNM SINAVI A Soru saýsý: 5 Yanýtlama süresi: 75 dakika Bu testle ilgili anýtlarýnýzý optik formdaki Matematik bölümüne iþaretleiniz. Doðru anýtlarýnýzýn saýsýndan

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF) LYS FÝZÝK - 13 KALDIRMA KUVVETÝ - I

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF) LYS FÝZÝK - 13 KALDIRMA KUVVETÝ - I BÝRE DERSHANEERÝ SINIF ÝÇÝ DERS UUAMA FÖÜ (MF) DERSHANEERÝ S FÝÝ - 13 ADIRMA UVVETÝ - I Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. ADIRMA UVVETÝ - I Adý Soyadý :... Bu

Detaylı

DOÐRUNUN ANALÝTÝÐÝ - I

DOÐRUNUN ANALÝTÝÐÝ - I YGS-LYS GEOMETRÝ Konu Anlatýmý DOÐRUNUN ANALÝTÝÐÝ - I ANALÝTÝK DÜZLEM Baþlangýç noktasýnda birbirine dik olan iki sayý doðrusunun oluþturduðu sisteme dik koordinat sistemi, bu doðrularýn belirttiði düzleme

Detaylı

LYS - 1 GEOMETRÝ TESTÝ

LYS - 1 GEOMETRÝ TESTÝ LYS - 1 GMTRÝ TSTÝ ÝKKT : 1. u testte toplam 3 soru vardýr. 2. evaplamaa istediðiniz sorudan baþlaabilirsiniz. 3. evaplarýnýzý, cevap kaðýdýnýn Geometri Testi için arýlan kýsmýna iþaretleiniz.. Safalar

Detaylı

LYS - 1 MATEMATÝK TESTÝ

LYS - 1 MATEMATÝK TESTÝ LYS - 1 MATEMATÝK TESTÝ DÝKKAT : 1. Bu ese oplam 50 soru vardýr.. Cevaplamaa isediðiniz sorudan baþlaabilirsiniz.. Cevaplarýnýzý, cevap kaðýdýnýn Maemaik Tesi için arýlan kýsmýna iþareleiniz.. Safalar

Detaylı

ÇEMBERÝN ANALÝTÝÐÝ - I

ÇEMBERÝN ANALÝTÝÐÝ - I YGS-LYS GEOMETRÝ Konu Anlatýmý ÇEMBERÝN ANALÝTÝÐÝ - I 1. Çember Denklemi: Analitik düzlemde merkezi M(a, b) ve yarýçapý r birim olan çemberin denklemi, (x - a) 2 + (y - b) 2 = r 2 (x - a) 2 + y 2 = r 2

Detaylı

YAZILIYA HAZIRLIK TESTLERÝ TEST / 1

YAZILIYA HAZIRLIK TESTLERÝ TEST / 1 YAZILIYA HAZIRLIK TESTLERÝ TEST / 1 1. x +6x+5=0 5. x +5x+m=0 denkleminin reel kökü olmadýðýna göre, m nin alabileceði en küçük tam sayý deðeri kaçtýr? A) {1,5} B) {,3} C) { 5, 1} D) { 5,1} E) {,3} A)

Detaylı

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir.

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. a, b, c birbirinden farklý rakamlardýr. 2a + 3b - 4c ifadesinin alabileceði

Detaylı

EÞÝTSÝZLÝKLER. I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik. Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik

EÞÝTSÝZLÝKLER. I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik. Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik l l l EÞÝTSÝZLÝKLER I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik Çift ve Tek Katlý Kök, Üslü ve Mutlak Deðerlik Eþitsizlik l Alýþtýrma 1 l Eþitsizlik

Detaylı

10. 4a5, 2b7 ve 1cd üç basamaklý sayýlardýr.

10. 4a5, 2b7 ve 1cd üç basamaklý sayýlardýr. 5. ACB + AC BC iþlemine göre, A.C çarpýmý kaçtýr? 0. 4a5, b7 ve cd üç basamaklý sayýlardýr. 4a5 b7 cd A) B) 4 C) 5 D) 6 E) olduðuna göre, c + b a + d ifadesinin deðeri kaçtýr? A) 8 B) C) 5 D) 7 E) 8 (05-06

Detaylı

KÖKLÜ SAYILAR TEST / 1

KÖKLÜ SAYILAR TEST / 1 KÖKLÜ SAYILAR TEST / 1 1. Aþaðýdakilerden hangisi reel sayý deðildir? A) B) C) 0 D) 8 E). 6 2 9 A) 16 B) 18 C) 20 D) 2 E) 0 2. Aþaðýdakilerden hangisi irrasyonel sayýdýr? 6. Aþaðýdakilerden hangisi yanlýþtýr?

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER 6. ÜNİTE İKİNCİ DERECEDEN DENKLEM VE FNKSİYNLAR İkinci Dereceden Bir Bilinmeyenli Denklemler... 4 a + b + c = 0 Denkleminin Genel Çözümü... 5 7 Karmaşık Sayılar... 8 4 Konu Testleri

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLAIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MAEMAÝK - II PARABL - II MF M LYS1 10 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

4. BÖLÜM 1. DERECEDEN DENKLEMLER

4. BÖLÜM 1. DERECEDEN DENKLEMLER MATEMATÝK 4. BÖLÜM 1. DERECEDEN DENKLEMLER Test(1-3) Birinci Dereceden Bir Bilinmeyenli Denklemler Test(4) Birinci Dereceden Ýki Bilinmeyenli Denklemler KARTEZYEN egitim - yayinlari 1. DERECEDEN DENKLEMLER

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

6. loga log3a log5a log4a. 7. x,y R olmak üzere;

6. loga log3a log5a log4a. 7. x,y R olmak üzere; log. 5 5 0 olduğuna göre, değeri kaçtır? A) 5 B) 0 C) 6 8 E) 6. loga loga log5a loga eşitliğini sağlaan a değeri kaçtır? 5 A) 5 5 B) 5 5 C) 5 E) 5. loga logb logc ifadesinin eşiti aşağıdakilerden a c A)

Detaylı

Kareli kaðýda çizilmiþ olan. ABC üçgenin BC kenarýna ait yüksekliði kaç birimdir?

Kareli kaðýda çizilmiþ olan. ABC üçgenin BC kenarýna ait yüksekliði kaç birimdir? 8. SINI ÜÇGN YRII NR TTi YÜSÝ üçgenin köþesinden kenarýna ait dikme inþa ediniz. yný iþlemi köþesinden kenarýna ve köþesinden kenarýna da uygulayýnýz. areli kaðýda çizilmiþ olan üçgenin kenarýna ait yüksekliði

Detaylı

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir.

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. 3 2x +1 = 27 olduðuna göre, x kaçtýr? A) 0 B) 1 C) 2 D) 3 E) 4 4. Yukarýda

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY ERSHNELERÝ SINIF ÝÇÝ ERS NLTIM FÖYÜ ERSHNELERÝ Konu ers dý lüm Sýnv F No. MTEMTÝK - II TRÝGNMETRÝ - V MF TM LYS1 ers nltým fleri ðrenci trfýndn dersten sonr tekrr çlýþýlmlýdýr. dý Sodý :... u kitpçýðýn

Detaylı

EŞİTSİZLİK SİSTEMLERİ Test -1

EŞİTSİZLİK SİSTEMLERİ Test -1 EŞİTSİZLİK SİSTEMLERİ Test -1 1. 9 5. 69 A) (, ] B) (, ) C) (, ) D) [, ] E) [, ) A) B) {} C) {, } D) R E) R {}. 5 6. 1 A) (, 5) B) [, 5] C) (, 5) D) (5, ) E) (, ) A) (, 1] B) (, ) C) [1, ) D) (, ] [1,

Detaylı

Cebir Notları. Karmaşık sayılar TEST I. Gökhan DEMĐR, 2006

Cebir Notları. Karmaşık sayılar TEST I. Gökhan DEMĐR,  2006 MC Karmaşık saılar www.matematikclub.cm, 006 Cebir Ntları Gökhan DEMĐR, gdemir@ah.cm.tr TEST I. i 897 + i 975 + i 997 i 995 tplamının snucu i B) i C) i D) i E) 5i 8. Z = i nin kutupsal biçimi (cs0 + isin0)

Detaylı

TEMEL KAVRAMLAR TEST / 1

TEMEL KAVRAMLAR TEST / 1 TEMEL KAVRAMLAR TEST / 1 1. Aþaðýdakilerden kaç tanesi rakam deðildir? I. 0 II. 4 III. 9 IV. 11 V. 17 5. Aþaðýdakilerden hangisi birbirinden farklý iki rakamýn toplamý olarak ifade edilemez? A) 1 B) 4

Detaylı

Geometri Çalýþma Kitabý

Geometri Çalýþma Kitabý YGS GMTRÝ ÇLIÞM ÝTI YGS Geometri Çalýþma itabý opyright Sürat asým Reklamcýlýk ve ðitim raçlarý San. Tic. Þ u kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin önceden izni olmaksýzýn elektronik,

Detaylı

( KARMAŞIK SAYI MODÜL VE ÖZELLİKLERİ İKİ KARMAŞIK SAYI ARASI UZAKLIK DÜZLEMDE BELİRTTİĞİ BÖLGELER ) 1) z = z = i.z = z =... 2) z 1.

( KARMAŞIK SAYI MODÜL VE ÖZELLİKLERİ İKİ KARMAŞIK SAYI ARASI UZAKLIK DÜZLEMDE BELİRTTİĞİ BÖLGELER ) 1) z = z = i.z = z =... 2) z 1. BİR KARMAŞIK SAYININ MUTLAK DEĞERI (MODÜLÜ) Karmaşık düzlemde, bir karmaşık sayıya karşılık gelen noktanın (A noktasının), başlangıç noktasına uzaklığına bu sayının mutlak değeri (modülü) denir ve z şeklinde

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

Geometri Çalýþma Kitabý

Geometri Çalýþma Kitabý LYS GMTRÝ ÇLIÞM ÝTI LYS Geometri Çalýþma itabý opyright Sürat asým Reklamcýlýk ve ðitim raçlarý San. Tic. Þ u kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin önceden izni olmaksýzýn elektronik,

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

1995 ÖYS. 1. a b c d ve a, b, c, d tek sayılar olmak üzere, abcd dört basamaklı en büyük sayıdır? Bu sayı aşağıdakilerden hangisine kalansız

1995 ÖYS. 1. a b c d ve a, b, c, d tek sayılar olmak üzere, abcd dört basamaklı en büyük sayıdır? Bu sayı aşağıdakilerden hangisine kalansız 99 ÖYS. a b c d ve a, b, c, d tek saılar olmak üzere, abcd dört basamaklı en büük saıdır? Bu saı aşağıdakilerden hangisine kalansız bölünebilir? 7. (99) 99 in 9 ile bölümünden kalan C) D) E) 6 C) 9 D)

Detaylı

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular LYS LYS 6 Sınavlara en akın özgün sorular MATEMATİK- SORU BANKASI çözümlü sorular ıldızlı testler M. Ali BARS M. Ali Bars LYS Matematik Soru Bankası ISBN 978-65-8-7-9 Kitapta er alan bölümlerin tüm sorumluluğu

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri 1. KOMPLEKS SAYILAR 1.1. Kompleks Sayıların Cebirsel ve Geometrik Özellikleri Tanım 1. x, y R olmak üzere (x, y) sıralı ikililerine kompleks sayı denir. Burada x, z nin reel kısmı, ve y, z nin imajiner

Detaylı

YAZILIYA HAZIRLIK TESTLERÝ TEST / 1

YAZILIYA HAZIRLIK TESTLERÝ TEST / 1 YAZILIYA HAZIRLIK TESTLERÝ TEST / 1 1. Yandaki tablonun kutucuklarýna terimler yazýlmýþtýr. Buna göre, aþaðýdakilerden hangisi yanlýþtýr? x x 4 x 3x 6x 5. P(x). Q(x) çarpým polinomunun derecesi 5 tir.

Detaylı

MODÜLER ARÝTMETÝK TEST / 1

MODÜLER ARÝTMETÝK TEST / 1 MODÜLER ARÝTMETÝK TEST / 1 1. m Z, x y(mod m) ise xy=m.k, k Z olduðuna göre, aþaðýdaki eþitliklerden hangisi yanlýþtýr? 5. 3x+1 2(mod 7) olduðuna göre, x in en küçük pozitif tam sayý deðeri kaçtýr? A)

Detaylı

1. BÖLÜM. 4. Bilgi: Bir üçgende, iki kenarýn uzunluklarý toplamý üçüncü kenardan büyük, farký ise üçüncü kenardan küçüktür.

1. BÖLÜM. 4. Bilgi: Bir üçgende, iki kenarýn uzunluklarý toplamý üçüncü kenardan büyük, farký ise üçüncü kenardan küçüktür. 8. SINIF COÞMY SORULRI 1. ÖLÜM DÝKKT! u bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 3. 1. 1 1 1 1 1 1 D E F 1 1 1 C 1 ir kenarý 1 birim olan 24 küçük kareden oluþan þekilde alaný 1 birimkareden

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

Kanguru Matematik Türkiye 2017

Kanguru Matematik Türkiye 2017 4 puanlýk sorular 1. þaðýdaki þekilde kenar uzunluklarý 4 ve 6 olan iki eþkenar üçgen ve iç teðet çemberleri görülmektedir. ir uðurböceði üçgenlerin kenarlarý ve çemberlerin üzerinde yürüyebilmektedir.

Detaylı

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK TÜRKİY GNLİ SINVI LYS - 1 7 MYIS 017 LYS 1 - TSTİ 1. u testte 80 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz. + k+ n 15 + 10 1. : = + 6 16 + 8 0 + 8 olduğuna

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 01

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 01 LİSANS YERLEŞTİRME SINAVI- MATEMATİK-GEOMETRİ SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI BU SORU KİTAPÇIĞI LYS- MATEMATİK TESTİ SORULARINI İÇERMEKTEDİR. . Bu testte 5 soru vardýr. MATEMATİK TESTİ. Cevaplarýnýzý,

Detaylı

1996 ÖYS. 2 nin 2 fazlası kız. 1. Bir sınıftaki örencilerin 5. örencidir. Sınıfta 22 erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır?

1996 ÖYS. 2 nin 2 fazlası kız. 1. Bir sınıftaki örencilerin 5. örencidir. Sınıfta 22 erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır? 996 ÖYS. Bir sınıftaki örencilerin nin fazlası kız örencidir. Sınıfta erkek öğrenci olduğuna göre, kız öğrencilerin saısı kaçtır? 8 C) 6 D) E) 6. Saatteki hızı V olan bir hareketti A ve B arasındaki olu

Detaylı

4. 5. x x = 200!

4. 5. x x = 200! 8. SINIF COÞMY SORULRI 1. ÖLÜM 3. DÝKKT! u bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 1. adým (2) 2. adým (4) 1. x bir tam sayý ve 4 3 x 1 7 5 x eþitsizliðinin doðru olmasý için x yerine

Detaylı

5. 2x 2 4x + 16 ifadesinde kaç terim vardýr? 6. 4y 3 16y + 18 ifadesinin terimlerin katsayýlarý

5. 2x 2 4x + 16 ifadesinde kaç terim vardýr? 6. 4y 3 16y + 18 ifadesinin terimlerin katsayýlarý CEBÝRSEL ÝFADELER ve DENKLEM ÇÖZME Test -. x 4 için x 7 ifadesinin deðeri kaçtýr? A) B) C) 9 D). x 4x ifadesinde kaç terim vardýr? A) B) C) D) 4. 4y y 8 ifadesinin terimlerin katsayýlarý toplamý kaçtýr?.

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MTEMTİK TESTİ. Bu testte soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. d + n - d + n d - + n- d + + n işleminin sonucu kaçtır?., R olmak üzere, + +

Detaylı

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ 1 E) x x. x x = x

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ 1 E) x x. x x = x Ö.S.S. MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. olduğuna göre, kaçtır? A B C D E Çözüm. -. : ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A B C D E Çözüm :... :....... . olduğuna göre, - ifadesinin

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

A A A A) 2159 B) 2519 C) 2520 D) 5039 E) 10!-1 A)4 B)5 C)6 D)7 E)8. 4. x 1. ,...,x 10. , x 2. , x 3. sýfýrdan farklý reel sayýlar olmak üzere,

A A A A) 2159 B) 2519 C) 2520 D) 5039 E) 10!-1 A)4 B)5 C)6 D)7 E)8. 4. x 1. ,...,x 10. , x 2. , x 3. sýfýrdan farklý reel sayýlar olmak üzere, ., 3, 4, 5, 6, 7, 8, 9 ve 0 sayýlarý ile bölündüðünde sýrasýyla,, 3, 4, 5, 6, 7, 8, ve 9 kalanlarýný veren en küçük tamsayý aþaðýdakilerden hangisidir? A) 59 B) 59 C) 50 D) 5039 E) 0!- 3. Yasin, annesinin

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II II. DERECEDEN DENKLEMLER - I MF TM LYS 05 Ders anlatým föyleri öðrenci tarafýndan dersten sonra

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva BÖLÜM Taşkın, Çetin, Abdullaeva FONKSİYONLAR.. FONKSİYON KAVRAMI Tanım : A ve B boş olmaan iki küme a A ve b B olmak üzere ( ab, ) sıralı eleman çiftine sıralı ikili denir. ( ab, ) sıralı ikilisinde a

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Çarpanlara Ayırma 5 52 Polinomlar 53 100 İkinci Dereceden Denklemler 101 120 Karmaşık Sayılar

Detaylı

BÖLME ve BÖLÜNEBÝLME TEST / 6

BÖLME ve BÖLÜNEBÝLME TEST / 6 BÖLME ve BÖLÜNEBÝLME TEST / 6 1. A sayýsýnýn B ile bölümünden bölüm 4, kalan 3 tür. B sayýsýnýn C ile bölümünden bölüm 6, kalan 5 tir. Buna göre, A sayýsýnýn 12 ile bölümünden kalan A) 7 B) 8 C) 9 D) 10

Detaylı

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ BÖLÜM - KOMPLEKS (KARMAŞIK) SAYILAR - KARMAŞIK SAYILAR VE ÖELLİKLERİ ax + bx +c ikinci derece denkleminin < iken reel köklerinin olmadığını biliyoruz. Örneğin x + denkleminin reel sayılar kümesinde çözümü

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

BÖLÜM 3 FONKSÝYONLARIN LÝMÝTÝ. ~ Limitlerin Tanýmý ve Özellikleri. ~ Alýþtýrmalar 1. ~ Özel Tanýmlý Fonksiyonlarýn Limitleri

BÖLÜM 3 FONKSÝYONLARIN LÝMÝTÝ. ~ Limitlerin Tanýmý ve Özellikleri. ~ Alýþtýrmalar 1. ~ Özel Tanýmlý Fonksiyonlarýn Limitleri BÖLÜM FONKSÝYONLARIN LÝMÝTÝ Limitlerin Tanýmý ve Özellikleri Alýþtýrmalar Özel Tanýmlý Fonksionlarýn Limitleri (Saðdan ve Soldan Limitler) Alýþtýrmalar Trigonometrik Fonksionlarýn Limitleri Alýþtýrmalar

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

YAZILIYA HAZIRLIK SORULAR ve ÇÖZÜMLERİ

YAZILIYA HAZIRLIK SORULAR ve ÇÖZÜMLERİ _ i f: _-, A $ R, f() + - fonksionunun görüntü kümesini bularak grafiðini çiziniz - i _- i + _-i- ( - i -8- f _ i + - ( i + - b r - - - a - i _- i + _i - -- - + - _ + i - biçiminde azýlýrsa; TN_, - i olureksenleri

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MATEMATİK TESTİ. Bu testte 5 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. - - ^- h + c- m - (-5 )-(- ) işleminin sonucu kaçtır? A) B) C) D) 5 E).

Detaylı

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir? MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden

Detaylı

BAĞINTI - FONKSİYON Test -1

BAĞINTI - FONKSİYON Test -1 BAĞINTI - FONKSİYON Test -. A,,,4,5 B,, olduğuna göre, AB kümesinin eleman saısı A) 8 B) C) D) 4 E) 5 5. A ve B herhangi iki küme AB,a,,a,,a,,b,,b,,b olduğuna göre, s(a) + s(b) toplamı A) B) 4 C) 5 D)

Detaylı

Üçgenler Geometrik Cisimler Dönüþüm Geometrisi Örüntü ve Süslemeler Ýz Düþümü

Üçgenler Geometrik Cisimler Dönüþüm Geometrisi Örüntü ve Süslemeler Ýz Düþümü Üçgenler Geometrik isimler önüþüm Geometrisi Örüntü ve Süslemeler Ýz üþümü 119 120 Üçgenler Üçgenler 4 cm 2 cm 2 cm Yukarýdaki çubuklarýn uzunluklarý 4 cm, 2 cm ve 2 cm dir. u üç çubuðun uç noktalarýný

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

İKİNCİ DERECEDEN FONKSİYONLAR VE GRAFİKLERİ

İKİNCİ DERECEDEN FONKSİYONLAR VE GRAFİKLERİ İKİNCİ DERECEDEN FONKSİYONLAR VE GRAFİKLERİ TANIM: a, b, c R ve a olmak üzere, f : R R, = f ( ) = a + b + c fonksionuna, ikinci dereceden bir bilinmeenli fonksion denir. { } (, ) : = f ( ) R kümesinin

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik. BÖLÜM: KARMAŞIK SAYILAR ALIŞTIRMALAR Bu başlık altında her bölüm kazanımlara ayrılmış, kazanımlar tek tek çözümlü temel alıştırmalar ve sorular ile taranmıştır. Özellikle bu kısmın

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)

Detaylı

2. ARTAN VE AZALAN FONKSÝYONLAR

2. ARTAN VE AZALAN FONKSÝYONLAR Artan ve Azalan Fonksionlar. ARTAN VE AZALAN FONKSÝYONLAR ii) Teorem : f : (a, b) R, = f() fonksionu (a, b) için sürekli ve türevlenebilen bir fonksion olsun. ) (a, b) için f ý () > 0 f() fonksionu bu

Detaylı

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E)

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E) 77 ÜSS. ifadesi aşağıdakilerden hangisine eşittir?. C) 4 E). Şekilde a+b+c+d açılarının toplamı kaç dik açıdır? (açılar pozitif önlüdür.) 4 C) 6 7 E) 8 Verilen şekilde açıların ölçüleri verilmiştir. En

Detaylı

DOÐAL SAYILAR ve SAYILARIN ÇÖZÜMLENMESÝ TEST / 1

DOÐAL SAYILAR ve SAYILARIN ÇÖZÜMLENMESÝ TEST / 1 DOÐAL SAYILAR ve SAYILARIN ÇÖZÜMLENMESÝ TEST / 1 1. x ve y farklý rakamlar olduðuna göre, x+y toplamý en çok 5. a bir doðal sayý olmak üzere aþaðýdakilerden hangisi a 2 +1 ifadesinin deðeri olamaz? A)

Detaylı

4. p' / q / 1 p / 0, q / p 0 r / 1 r / 1. p Q r / 0 Q 1 / 1. Cevap B. 5. Yazı gelmesinin deneysel olasılığı 7 + = = 27 bulunur.

4. p' / q / 1 p / 0, q / p 0 r / 1 r / 1. p Q r / 0 Q 1 / 1. Cevap B. 5. Yazı gelmesinin deneysel olasılığı 7 + = = 27 bulunur. MTEMTİK ENEMESİ. a. b + a. b.. saısının.. 6 çarpanından biri olan a, ten büük olması gerektiğinden,,,, olamaz. 6 değer alabilir.. EKOK ( K, 6 ).... 7 6.. K 7. (.. ) K < 6 olacak şekilde { 7, 7., 7., 7.,

Detaylı

Öğrenci Seçme Sınavı (Öss) / 15 Haziran Matematik II Soruları ve Çözümleri 1 E) x x. x x = x

Öğrenci Seçme Sınavı (Öss) / 15 Haziran Matematik II Soruları ve Çözümleri 1 E) x x. x x = x Öğrenci Seçme Sınavı (Öss) / 5 Haziran 8 Matematik II Soruları ve Çözümleri. olduğuna göre, kaçtır? A) B) C) D) E) Çözüm.. : ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A) B) C) D) E)

Detaylı

3. Tabloya göre aþaðýdaki grafiklerden hangi- si çizilemez?

3. Tabloya göre aþaðýdaki grafiklerden hangi- si çizilemez? 5. SINIF COÞMY SORULRI 1. 1. BÖLÜM DÝKKT! Bu bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. Kazan Bardak Tam dolu kazandan 5 bardak su alýndýðýnda kazanýn 'si boþalmaktadýr. 1 12 Kazanýn

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF-TM) LYS GEOMETRÝ - 14 ÜÇGENDE ALAN - I

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF-TM) LYS GEOMETRÝ - 14 ÜÇGENDE ALAN - I ÝRY RSHNLRÝ SINI ÝÇÝ RS UYGULM ÖYÜ (M-TM) RSHNLRÝ LYS GOMTRÝ - 1 ÜÇGN LN - I ers nltým föyleri öðrenci trfýndn dersten sonr tekrr çlýþýlmlýdýr. dý Soydý :... u kitpçýðýn her hkký sklýdýr. Tüm hklrý bry

Detaylı

Kanguru Matematik Türkiye 2018

Kanguru Matematik Türkiye 2018 3 puanlýk sorular 1. Ailemdeki her çocuðun en az iki erkek kardeþi ve en az bir kýz kardeþi vardýr. Buna göre ailemdeki çocuk sayýsý en az kaç olabilir? A) 3 B) 4 C) 5 D) 6 E) 7 2. Þekildeki halkalarýn

Detaylı