Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Dişli Takımları Elektromekaniksel Sistemler. Ders #5

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Dişli Takımları Elektromekaniksel Sistemler. Ders #5"

Transkript

1 Dr #5 Ooik onrol Fizikl Silrin Modllni Dişli Tkılrı Elkroknikl Silr Prof.Dr.Glip Cnvr 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr

2 Mknikl Silrin Trnfr Fonkiyonlrı Dişli Tkılrı Vili biikllri düşünli. Yokuş çıkrkn dh fzl ork vrn v dh yvş gidcğiiz vi gçirilir. Düz yold i dh z ork v dh hzl hız ypılbiln vi gçirilir. ıc, dişli kılrı biikl v yolu hız v orkn birini rcih dilrk şlşirir. Hr bir dişli çvrind lınn yol şi olduğundn: r θ r θ 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr

3 θ θ r r İki dişlinin çıl yr dğişirlri diş yılrı il r ornılıdır. Torklr rındki ilişki nıl? Eğr dişlilrin nrjiyi borb diğini v dpoldığını vryck olurk:. dişliy vriln nrji,. dişlidn lınn nrjiy şiir. Eğr dişlilrin nrjiyi borb diğini v dpoldığını vryck olurk:. dişliy vriln nrji,. dişlidn lınn nrjiy şiir. T θ T θ 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 3

4 T T θ θ 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 4

5 Dişlilrin knikl pdnlrı üri duruund: θ dki dişli kıız şdğr dvr: 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 5

6 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 6 Hrk dnkli: T D θ θ yi şdğr θ cinindn yzck olurk: T D θ Düznldiğiizd: T D θ

7 Dirl knikl pdnlr yukrıdki şkildki gibi dişli ornlrının kriy ornılı olrk diğr rf indirgnbilir. Aynı rnforörlrdki pdnlrın indirgni gibi. 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 7

8 Örnk: Siin, θ /T rnfr fonkiyonunu yzınız. Hr bir l için ırıyl çözüli grkn iki difrniyl dnkl ollı gibi görün d, l lnlrı dişli kındn dolyı linr birbirindn bğıız hrk dzlr. Bu bpl iin rblik drci birdir v bir n hrk dnkli vrdır. 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 8

9 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 9, D v T i dişlinin diğr rfın indirgyck olurk T D θ D T G θ

10 Dişli rni olı duruund: 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 0

11 Örnk: Siin, θ /T rnfr fonkiyonunu yzınız. 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr

12 Sidki dişli rninin dişlilri kyıpız dişlilr dğil. Hr birinin l v vizkoz ürüni vr. Trnfr fonkiyonunu ld k için büün pdnlrı giriş şf ın indirgyli. Dikk dilck olur büün pdnlr için dişli ornı ynı dğildir. Örnğin; D, / il indirgnirkn İl indirgnckir. Tü şdğr i: 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr

13 G θ T 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr D θ T D 3

14 Elkroknikl Silrin Trnfr Fonkiyonlrı ASA uçuş iülörü, robo kolun kullnıldığı bir lkro knik i 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 4

15 Moorlr lkroknik ilr n güzl örnkir. Grili girişi çıkış döny bir yr dğişiry bbiy vrir. Sbi ıknılı bir DC oor v rnfr fonkiyonu 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 5

16 DC kinnın nyik lnı bi ıknılr rındn ürilkdir. Dönn, hrkli pç ndüvi il dlndırılır v içindn i kıı kr. Mnyik ln içind bulunn v içindn kı kn ndüvi FBl i kuvvin ruz klır v dönr. Mnyik ln içind bulunn v dönn ndüvi uçlrınd Blv Grilii ndüklnir, bu grili r lkrooor kuvvi dı vrilir. v b dθ d Lpl dönüşüü ypığıızd: V θ Endüvi dvr dnkli i: b R I LI V E Moorun üriği ork : T I 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 6

17 I T Trnfr fonkiyonunu ld k üzr kı v grilii yrin yzlı; R L T bθ E Giriş v çıkış rındki rnfr fonkiyonu, θ /E, bulbilk için T yi θ cinindn yzlıyız. X Biri yükü döndürn oorun ipik şdğri ndüvidki şdğr l, dh onr bu ş dğr lin yük linid içrdiğini görcğiz. D ndüvidki şdğr önü lnı, dh onr bu ş dğr önü lnının yük önü lnını d içrdiğini görcğiz. 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 7

18 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 8 D T θ E D L R b θ θ X İfdini d yrin yzck olurk; Endüvi ndüknı, L yı, ndüvi dirnci, R, y gör küçük olduğunu vryrk; E D R b θ b R D R E θ α θ E Dh biç;

19 Eşdğr lnlr, v D yi inclyli; Sırıyl,D oorun L,D L yükün l v önü lnlrı v bu dğrlri bildiğiizi vrylı. Dişli kıını göz önünd bulundurrk ndüviy indirgnn şdğr l v önü lnı; L D D D L 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 9

20 Mknikl bilri incldik şidi rnfr fonkiyonundki lkrikl bilri nıl ld dcğiizi inclyli: Elkril bilr, çoğu zn dinor i il ld dilirlr. Dinoor ind i grili lınd oorun ork v hızı ölçülür. Bu i nly çlışlı: R L T bθ E olrk ld dilişi, ndüvi ndüknı, L yı, ndüvi dirnci, R, y gör küçük olduğunu vryrk; R θ T bω ω d rrlı hld bi dc grilid; R T ω b 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 0

21 b T ω R R ω 0 i; T 0 i; ω T ll bo R b Elkrikl kyılr: R T ll b ω bo 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr

22 Örnk: Yukrd vriln dc oorun ork-hız krkriiği yndki gibidir. Bu oorun θ L /E rnfr fonkiyonunu ld diniz. 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr

23 L R T ll D D D L b ω bo θ E / /0 olduğundn, θ L E Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr 3

DENEY 10 PM DC Servo Motor Karakteristikleri

DENEY 10 PM DC Servo Motor Karakteristikleri DNY 0 PM DC Srvo Moor rkrklr DNYİN AMACI. PM DC rvo oorlrın krkrk prrlrn nlk.. PM DC rvo oorlrın krkrk prrlrn ölçk. GİİŞ Dc rvo oor, konrol lr çlışlrınd, konrol orn uygun olrk konrol yönlr glşrk çn, konrol

Detaylı

formundadır. Burada verilen bir f fonksiyonu F fonksiyonuna dönüşür ve F fonksiyonuna f in fonksiyon dönüşümü denir. K(s,t) ye çekirdek denir.

formundadır. Burada verilen bir f fonksiyonu F fonksiyonuna dönüşür ve F fonksiyonuna f in fonksiyon dönüşümü denir. K(s,t) ye çekirdek denir. LPLCE DÖNÜŞÜMÜ Lpl dönüşümü yrdımı il ğ rflı difrniyl dnklmin ğ rfınd bulunn fonkiyonun ürkliliği bozul bil(bmk,impul fonkiyonu) difrniyl dnklmlr çözülbilkir. Bu ip dnklmlrl lkrik imlrini çözrkn krşılşılır.

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

2.3 Ötelemeli Mekanik Sistemlerin Transfer Fonksiyonları

2.3 Ötelemeli Mekanik Sistemlerin Transfer Fonksiyonları Bölü : Frekn-doeninde Modellee yf 4. Öteleeli Meknik Sitelerin rnfer Fonkiyonlrı Meknik itelerin dvrnışlrı kütle, yy ve vikoz ürtüne ile odelleneilir. ütle ve yy, elektrik devrelerindeki kondntör ve endüktör

Detaylı

Critical Firing Angle Determining for DC Motor Drive Fed by Controlled Rectifier by Using Neural Networks

Critical Firing Angle Determining for DC Motor Drive Fed by Controlled Rectifier by Using Neural Networks Dnili Doğruluu il Blnn DA Moor İçin Kriik Tikl Açıının Ypy Sinir Ağı Kullnılrk Blirlni Criil Firing Angl Drining for DC Moor Driv Fd y Conrolld ifir y Uing Nurl Nwork M. Zki BİGİN Aluğ NGİN Mühndilik Fküli,

Detaylı

Magnetic Materials. 4. Ders: Paramanyetizma-2. Numan Akdoğan.

Magnetic Materials. 4. Ders: Paramanyetizma-2. Numan Akdoğan. Mgntic Mtrils 4. Drs: Prmnytizm-2 Numn Akdoğn kdogn@gyt.du.tr Gbz Institut of Tchnology Dprtmnt of Physics Nnomgntism nd Spintronic Rsrch Cntr (NASAM) Kuntum mkniği klsik torinin özlliklrini dğiştirmdn,

Detaylı

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum.

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum. 9 BÖLÜM 7 SÜRELİ HAL HATALARI ontrol itmlrinin analizind v dizaynında üç özlliğ odaklanılır, bunlar ; ) İtniln bir gçici hal cvabı ürtmk. ( T, %OS, ζ, ω n, ) ) ararlı olmaı. ıaca kutupların diky knin olunda

Detaylı

UFUK ÖZERMAN- 2012-2013 Page 1

UFUK ÖZERMAN- 2012-2013 Page 1 - GÜZ P,Q,R fokiolrı poliom olmk üzr d d P Q R d d v P d d Q d P d R P p q dklmi içi P şrıı ğl = okı di ok dir, çözümlri di okıı civrıd şklid rrız. =+-+- +... = = okı; p=q/ P, q= R/ P fokiolrı okıd liik

Detaylı

Sistem Dinamiği ve Modellemesi. Doğrusal Sistemlerin Sınıflandırılması Doğrusal Sistemlerin Zaman Davranışı

Sistem Dinamiği ve Modellemesi. Doğrusal Sistemlerin Sınıflandırılması Doğrusal Sistemlerin Zaman Davranışı Sim Dinmiği v Modllmi Doğrul Simlrin Sınıflndırılmı Doğrul Simlrin Zmn Dvrnışı Giriş: Sim dinmiği çözümlmind, frklı fizikl özlliklr şıyn doğrul imlrin krkriiklrini blirlyn ml bğınılr rınd bnzrlik noloji

Detaylı

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0)

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0) DERS 4 Üstl v Logaritik Fonksionlar 4.. Üstl Fonksionlar(Eponntial Functions). > 0, olak üzr f ( ) = dnkli il tanılanan fonksiona taanında üstl fonksion (ponntial function with as ) dnir. Üstl fonksionun

Detaylı

BÖLÜM 4 LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ

BÖLÜM 4 LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ BÖLÜM LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ GİRİŞ Dnklm sismlrin linr cbir drsindn şin olmlısınız Anck bu ür dnklmlrd hrhngi bir difrnsiyl büyüklük vy ürv bulunmz Bşk bir dyişl cbirsl dnklm sismi, y (

Detaylı

DENEY 2: AM MODÜLASYON / DEMODÜLASYON

DENEY 2: AM MODÜLASYON / DEMODÜLASYON DENEY 2: AM MODÜLASYON / DEMODÜLASYON AMAÇ: Genlik odülyonu ve deodülyonun ilişkin teorik heplrın ypılı, odültör ve deodültör devrelerinin gerçeklenerek teel kvrlrın inelenei. MALZEMELER Oilokop, güç kyngı

Detaylı

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri DERS 9 Grafik Çizimi, Maksimum Minimum Problmlri Bundan öncki drst bir fonksiyonun grafiğini çizmk için izlnbilck yol v yapılabilck işlmlr l alındı. Bu drst, grafik çizim stratjisini yani grafik çizimind

Detaylı

3. Bir integral bantlı fren resmi çizerek fren kuvveti ve fren açma işinin nasıl bulunduğunu adım adım gösteriniz (15p).

3. Bir integral bantlı fren resmi çizerek fren kuvveti ve fren açma işinin nasıl bulunduğunu adım adım gösteriniz (15p). Ü L E Y M A N D E M Ġ R E L Ü N Ġ V E R Ġ T E Ġ M Ü H E N D Ġ L Ġ K F A K Ü L T E Ġ M A K Ġ N A M Ü H E N D Ġ L Ġ Ğ Ġ B Ö L Ü M Ü I. öğrtim II. öğrtim MAK-43 MT-Trnsport Tkniği ÖĞRENCĠ ADI OYADI NUMARA

Detaylı

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için DERS 9 Grafik Çizimi, Maksimum-Minimum Problmlri 9.. Grafik çizimind izlnck adımlar. y f() in grafiğini çizmk için Adım. f() i analiz diniz. (f nin tanım kümsi, f() in tanımlı olduğu tüm rl sayıların oluşturduğu

Detaylı

GEMO DS217A. Genel Özellikler: İLERİ / GERİ SAYICI

GEMO DS217A. Genel Özellikler: İLERİ / GERİ SAYICI İLERİ / GERİ SAYICI DS7A Gnl Özlliklr: x6 n, çift tli, çift kontklı, ilri/gri yıcı Fz frklı giriş il ilri/gri ym Şifr korumlı Sçilbilir ym frknı 0.0000 il 9.99999 rınd çilbiln klibryon çrpnı. il 5. bmk

Detaylı

300 = Ders notlarındaki ilgili çizelgeye göre; kömür için üst kaplama kalınlığı 4 mm, alt kaplama kalınlığı 2 mm olarak seçilmiştir.

300 = Ders notlarındaki ilgili çizelgeye göre; kömür için üst kaplama kalınlığı 4 mm, alt kaplama kalınlığı 2 mm olarak seçilmiştir. Soru-) Eğii, uzunluğu 50 olan dsandr y bant konvyör kurularak bununla saatt 300 ton tüvönan taş köürü taşınacaktır. Bant konvyörü boyutlandırınız. Kabullr: Bant hızı :,5 /s Köür yoğunluğu : 0,9 ton/ 3

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir.

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir. 7.SINIF: ÇOKGNLR oğrusl olmyn üç vey dh fzl noktnın birleşmesiyle oluşn kplı geometrik şekillere çokgen denir. n kenrlı bir çokgenin bir dış çısının ölçüsü 360/n dir. n kenrlı bir çokgenin bir iç çısının

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

DS-72A. Genel Özellikler: ĠLERĠ / GERĠ SAYICI

DS-72A. Genel Özellikler: ĠLERĠ / GERĠ SAYICI DS-7A ĠLERĠ / GERĠ SAYICI Gnl Özlliklr: x6 n, çift tli, çift kontklı, ilri/gri yıcı Fz frklı giriş il ilri/gri ym Şifr korumlı Sçilbilir ym frknı 0.0000 il 9.99999 rınd çilbiln klibryon çrpnı. il 5. bmk

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MATEMATİK DENEME ÇÖZÜMLERİ Dnm. ^ h ^ h ^h ^^h h ^^h h. ^ h ^ h ^ h Cvp C m. ^ h ^ h Cvp C 9 9 9, ulunur.. Cvp A Cvp B. İfdlri trf trf topllım.. n n n _ n n,,,,, için ifd tmsı olur. 9 ulunur. ^ h

Detaylı

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 7. Seviye Düzlemi

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 7. Seviye Düzlemi İTÜ Makina Fakültsi Ağırlığın Potansiyl Enrjisi W=, δh kadar yukarıya doğru yr dğiştirsin, Virtül iş, δu = Wδh= δh NOT: Eğr cisi aşağıya doğru δh yr dğişii yapıyorsa v +h aşağıya doğru is δu = Wδh= δh

Detaylı

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ 3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ BİRİNCİ BÖLÜM Aç, Kps, Dynk, Tnılr ve Kısltlr Aç MADDE 1 (1) Bu Tebliğin cı, IMT 2000/UMTS Altypılrının Kurulsı

Detaylı

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160 8 ÖSS. Bir çiftlikte 800 koun 00 inek ve 600 mnd vrdır. Bu hvnlrın tümü bir dire grfikle gösterilirse ineklerle ilgili dilimin merkez çısı kç derece olur? A) 60 B) 0 C) 0 D) 0 E) 60 6. 0 - =p olduğun göre

Detaylı

FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 5

FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 5 FIRT ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ EMÜ419 OTOMTİK KONTROL LORTURI DENEY 5 PID KONTROLÖR KRKTERİSTİKLERİNİN İNELENMESİ VE NLOG OLRK POZİSYON KONTROL SİSTEMLERİNDE

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

7.SINIF: PARALELKENARIN ve ÜÇGENİN ALANI

7.SINIF: PARALELKENARIN ve ÜÇGENİN ALANI 7.SINIF: PRLLKNRIN ve ÜÇGNİN LNI ikdörtgen şeklindeki ir krtonu şekildeki gii işretlenen yerden kesip diğer trf eklediğimizde krtonun eksilmediğini,sdece görüntüsünün değiştiğini görürüz. Prlelkenrd Yükseklik

Detaylı

Devre Teorisi Ders Notu Dr. Nurettin ACIR ve Dr. Engin Cemal MENGÜÇ BÖLÜM VI. DENGELENMİŞ ÜÇ FAZLI DEVRELER ( 3f )

Devre Teorisi Ders Notu Dr. Nurettin ACIR ve Dr. Engin Cemal MENGÜÇ BÖLÜM VI. DENGELENMİŞ ÜÇ FAZLI DEVRELER ( 3f ) Dr. urettin ACIR ve Dr. Engin Cel MEGÜÇ BÖÜM VI DEGEEMİŞ ÜÇ FAZI DEVREER ( 3 ) Elektriğin üreti, iletii ve dğıtıı genelde 3 devrelerde gerçekleştirilir. Detylı nlizi güç siste uznlrının konusu olkl irlikte,

Detaylı

DİNAMİK BÖLÜM 7 MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. Hız-zaman grafiğinin eğimi ivmeyi verir. L cisminin ivmesi, al = = 3a

DİNAMİK BÖLÜM 7 MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. Hız-zaman grafiğinin eğimi ivmeyi verir. L cisminin ivmesi, al = = 3a DİNAİ BÖÜ 7 ODE SORU 1 DE SORUARIN ÇÖZÜER h z 1 h z V V V θ V V 0 t t t, ve cisilerinin iveleri; V V V t 0 t V 0 V t 0 t zn 0 θ t zn Hız-zn rğinin eğii iveyi verir V V V cisinin ivesi, t t V cisinin ivesi,

Detaylı

VİNÇTE ÇELİK KONSTRÜKSİYON

VİNÇTE ÇELİK KONSTRÜKSİYON 0 Haziran www.guvn-kua.h VİNÇTE ÇEİ ONSTRÜSİON ÖZET _09 M. Güvn UT Smbollr v anaklar için "_00_ClikonsruksionaGiris.do" a bakınız. oordina ksnlri "GENE GİRİŞ" d blirildiği gibi DIN 8800 T gör alınmışır.

Detaylı

PARK VE BAHÇELER MÜDÜRLÜĞÜ

PARK VE BAHÇELER MÜDÜRLÜĞÜ PRK V BÇLR MÜDÜRLÜĞÜ LKTRİK V SU RIZLRI İŞ KIŞ ŞMSI PRKLRDN VY BLDİY BİRİMLRİNDN SU İL İLGİLİ RIZ BİLGİSİ GLMSİ PRKLRDN LKTRİK RIZSI BİLGİSİ GLMSİ SU RIZ KİBİN BİLGİ VRİLMSİ SU İŞLRİ MÜDÜRLÜĞÜ LKTRİK BİRİMİ

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

Eğitim-Öğretim Güz Yarıyılı Diferansiyel Denklemler Dersi Çalışma Soruları

Eğitim-Öğretim Güz Yarıyılı Diferansiyel Denklemler Dersi Çalışma Soruları - Eğiim-Öğrim Güz rıılı Difril Dklmlr Dri Çlışm Sorlrı 6 // Aşğıd vril kvv rilrii kıklık rıçplrıı lirliiz. = = di ok civrıd kvv rii rdımıl vril difril dklmlri çözüüz. - -= - + -= - + += dklmii kil oklrıı

Detaylı

ELM207 Analog Elektronik

ELM207 Analog Elektronik ELM7 Alog Elkroik Giriş Bir Fourir srisi priyodik bir ) oksiyouu, kosiüs v siüslri sosuz oplmı biçimid bir çılımdır. ) cos b si ) Bşk dyişl, hrhgi bir priyodik oksiyo sbi bir dğr, kosiüs v siüs oksiyolrıı

Detaylı

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ DENEY NO: 4 THÉENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DERE PARAMETRELERİ Mlzeme ve Cihz Litei:. 330 direnç det. k direnç 3 det 3.. k direnç det 4. 3.3 k direnç det 5. 5.6 k direnç det 6. 0 k direnç det

Detaylı

[BC] // [AD] [AC] ve [BD] AD =6 br BC =10 br. olduğuna göre, EF MN k a ç birimdir? Ayr ı c a. [AC] ve [BD] EF =6 br BC =8 br.

[BC] // [AD] [AC] ve [BD] AD =6 br BC =10 br. olduğuna göre, EF MN k a ç birimdir? Ayr ı c a. [AC] ve [BD] EF =6 br BC =8 br. YU ( YU TII ORT T YU LI İİZR YU İ YU ) YU TII ORT T Y l n ı z ik i k e n r ı b i r b i r i n e p r l e l l n d ö r t g e n e Y U d e n i r. [ ] / / [ ] i s e y m u k t u r. y m u ğ u n d, ve L kenr rt

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 3. Konu NEWTON UN HAREKET YASALARI ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 3. Konu NEWTON UN HAREKET YASALARI ETKİNLİK VE TEST ÇÖZÜMLERİ 11. SINIF KONU ANLAIMLI 1. ÜNİE: KUVVE VE HAREKE. Konu NEWON UN HAREKE YASALARI EKİNLİK VE ES ÇÖZÜMLERİ Newton un Hreket Ylrı 1. Ünite. Konu (Vektörler) 5. tepki kuvveti A nın Çözüleri 1. I II III etki

Detaylı

Işığın Yansıması ve Düzlem Ayna Çözümleri

Işığın Yansıması ve Düzlem Ayna Çözümleri 2 şığın Ynsımsı ve Düzlem Ayn Çözümleri 1 Test 1 1. 38 38 52 52 Ynsıyn ışının yüzeyin normli ile yptığı çıy ynsım çısı denir. Bu durumd ynsım çısı şekilde gösterildiği gibi 38 dir. 4. şıklı cisminin ve

Detaylı

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c.

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c. Syıl Devreler (Lojik Devreleri) Tümleştirilmiş Kominezonl Devre Elemnlrı Syıl itemlerin gerçekleştirilmeinde çokç kullnıln lojik devreler, klik ğlçlrın ir ry getirilmeiyle tümleştirilmiş devre olrk üretilirler

Detaylı

ÇAPRAZ AKIŞLI ISI DEĞİŞTİRİCİ

ÇAPRAZ AKIŞLI ISI DEĞİŞTİRİCİ ÇAPRAZ AKIŞLI ISI DEĞİŞTİRİCİ MAK-LAB012 1. DENEY DÜZENEĞİNİN TANITILMASI Düznk sas olarak dikdörtgn ksitli bir kanaldan ibarttir. 1 hp gücündki lktrik motorunun çalıştırdığı bir vantilatör il kanal içind

Detaylı

DESTEK DOKÜMANI. Mali tablo tanımları menüsüne Muhasebe/Mali tablo tanımları altından ulaşılmaktadır.

DESTEK DOKÜMANI. Mali tablo tanımları menüsüne Muhasebe/Mali tablo tanımları altından ulaşılmaktadır. Mali Tablolar Mali tablo tanımları mnüsün Muhasb/Mali tablo tanımları altından ulaşılmatadır. Mali tablolarla ilgili yapılabilc işlmlr ii gruba ayrılır. Mali Tablo Tanımları Bu bölümd firmanın ullanacağı

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

ÜÇGENDE BENZERLİK. Benzerlik. Benzerlik Oranı. Uyarı

ÜÇGENDE BENZERLİK. Benzerlik. Benzerlik Oranı. Uyarı ÜÇN NZRLİK enzerlik eometride benzerlik kvrmı görsel olrk birbiri ile ynı oln şekiller için kullnılır. enzer iki şeklin krşılıklı kenrlrı rsınd sbit bir orn vrdır. iz bu bölümde sdece üçgenler rsındki

Detaylı

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması Bulanık Dntlyicilr Bilgi Tabanı (Uzman) Anlık (Kskin) Girişlr Bulandırma Birimi Bulanık µ( ) Karar Vrm Kontrol Kural Tabanı Bulanık µ( u ) Durulama Birimi Anlık(Kskin) Çıkış Ölçklm (Normali zasyon) Sistm

Detaylı

TEST 16-1 KONU DÜZLEM AYNA. Çözümlerİ ÇÖZÜMLERİ

TEST 16-1 KONU DÜZLEM AYNA. Çözümlerİ ÇÖZÜMLERİ OU 6 Ü Çözümler. TST 6-,7 ÇÖÜR,6 5. Bir cismin görüntüsünün nerede görüneceğini bkn kişinin bulunduğu yer belirlemez. nin görüntüsü nolu noktd olduğu için her iki gözlemci ynı yerde görür. V 3,5 6. 7 kez

Detaylı

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir. ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

{ } { } Ters Dönüşüm Yöntemi

{ } { } Ters Dönüşüm Yöntemi KESĐKLĐ DAĞILIMLARDAN RASGELE SAYI ÜRETME Trs Dönüşüm Yöntmi F dağılım fonksiyonuna sahip bir X rasgl dğişknin dağılımından sayı ürtmk için n çok kullanılan yöntmlrdn biri, F dağılım fonksiyonunun gnllştirilmiş

Detaylı

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise,

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise, BÖÜM DİNAMİ AIŞIRMAAR ÇÖZÜMER DİNAMİ 1 4kg 0N yty M düzle rsınd : rsınd cisin ivesi /s olduğundn cise uygulnn kuvvet, 1 4 0 N olur M rsınd : M rsınd cisin ivesi /s olduğundn cise etki eden sürtüne kuvveti,

Detaylı

ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ

ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ Onuncu Ulual Kimya Mühndiliği Kongri, 3-6 Eylül 2012, Koç Ünivriti, İtanbul ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ Abdulwahab GIWA, Sülyman KARACAN

Detaylı

ASİT-BAZ TEORİSİ. (TİTRASYON) Prof. Dr. Mustafa DEMİR. M.DEMİR(ADU) ASİT-BAZ TEORİSİ (titrasyon) 1

ASİT-BAZ TEORİSİ. (TİTRASYON) Prof. Dr. Mustafa DEMİR. M.DEMİR(ADU) ASİT-BAZ TEORİSİ (titrasyon) 1 ASİT-BAZ TEORİSİ (TİTRASYON) Prof. Dr. Mustf DEMİR M.DEMİR(ADU) 009-05-ASİT-BAZ TEORİSİ (titrsyon) 1 Arhenius (su teorisi) 1990 Asit: Sud iyonlştığınd iyonu veren, bz ise O - iyonu veren mddelerdir. Cl,NO,

Detaylı

Örnek...4 : Örnek...5 : Örnek...6 : Örnek...7 : ( 3x2 + x 3) dx=? Örnek...1 : Örnek...2 : Örnek...8 : ln2 (e 2x +e x )dx=? ln1. Örnek...

Örnek...4 : Örnek...5 : Örnek...6 : Örnek...7 : ( 3x2 + x 3) dx=? Örnek...1 : Örnek...2 : Örnek...8 : ln2 (e 2x +e x )dx=? ln1. Örnek... KURALLARI. f ( )= f ( ). f ( )= Örnk... : ( + 7+ )=? 7. k. f ( ) =k. f ( ) Örnk... : sin =?. (f ( )±g ( ))= f ( )± g( ). c f ( )= f ( )+f ( ), c c< 6. (-).min(f())< f ( )=

Detaylı

( ) ( ) Be. β - -bozunumu : +β - + ν + Q - Atomik kütleler cinsinden : (1) β + - bozunumu : nötral atom negatif iyon leptonlar

( ) ( ) Be. β - -bozunumu : +β - + ν + Q - Atomik kütleler cinsinden : (1) β + - bozunumu : nötral atom negatif iyon leptonlar 6.. BETA BOZUUU Çkirdğin pozitif vya ngatif lktron yayması vya atomdan bir lktron yakalaması yolu il atom numarası ± 1 kadar dğişir. β - -bozunumu : ( B 4 4 ( B 4 nötral atom Atomik kütllr insindn : (

Detaylı

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC ÜÇGNLR TRİGONOMTRİK ÖZLLİKLR. Kosinüs Teoremi: Herhngi ir üçgeninin, kenr uzunluklrı,, ise; = +... os = +... os = +... os İspt: Şekilde görüldüğü üçgeni, köşesi ile orijin, kenrı ile ekseni ile çkışk şekilde

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

TEST 12-1 KONU ELEKTRİK AKIMI. Çözümlerİ ÇÖZÜMLERİ

TEST 12-1 KONU ELEKTRİK AKIMI. Çözümlerİ ÇÖZÜMLERİ OU 1 T Çözümlr TST 1-1 ÇÖÜ 5. 6 4 1. irncin boyuna bağlı olup olmadığını araştırdığı için ksitlri aynı, boyları farklı tllr kullanılmalıdır. Tllr aynı cins olmalı. u durumda v nolu tllr olmalıdır. 1. -

Detaylı

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 007 SORULARI Doğuş Ünivrsitsi Matmatik Kulübü tarafından düznlnn matmatik olimpiyatları, fn lislri takım yarışması sorularından bazıları

Detaylı

KAYNAKLI BAĞLANTILAR (Örnekler)

KAYNAKLI BAĞLANTILAR (Örnekler) KAYNAKLI AĞLANTILAR (Örneler) ÖRNEK 1: 50 N lu bir ü, şeilde görüldüğü gibi, 00 li çeli nl nlnış bğlntı prçsı rcılığı ile trıltdır. Kn üzerinde oluşn siu gerilei esplınız. [ ] A 0.707 5 190 180 irincil

Detaylı

Sistem Dinamiği ve Modellemesi

Sistem Dinamiği ve Modellemesi 8..0 Sit Diiği v Modlli Doğrul Sitlri Z Dvrışı II. Mrtbd Gili Sitlr Giriş: Sit diiği çözülid, frlı fizil özllilr tşıy doğrul itlri rtritilrii blirly tl bğıtılr rıd bzrli (oloji) urulbili ouud itlri blirli

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Hzirn 007 Mtemtik I Sorulrı ve Çözümleri.. 7 işleminin sonucu kçtır? A) B) 9 C) D) E) Çözüm. 7..9.. + işleminin sonucu kçtır? 4 8 A) 8 B) 8 C) 8 D) 4 E) 4 Çözüm + 4 8 8 4+

Detaylı

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü DERS NOTU 10 (Rviz Edildi, kısaltıldı!) ENFLASYON İŞSİZLİK PHILLIPS EĞRİSİ TOPLAM ARZ (AS) EĞRİSİ TEORİLERİ Bugünki drsin içriği: 1. TOPLAM ARZ, TOPLAM TALEP VE DENGE... 1 1.1 TOPLAM ARZ EĞRİSİNDE (AS)

Detaylı

Vektör - Kuvvet. Test 1 in Çözümleri 5. A) B) C) I. grubun oyunu kazanabilmesi için F 1. kuvvetinin F 2

Vektör - Kuvvet. Test 1 in Çözümleri 5. A) B) C) I. grubun oyunu kazanabilmesi için F 1. kuvvetinin F 2 7 Vektör - uvvet 1 Test 1 in Çözümleri 5. A) B) C) 1. 1 2 I. grubun oyunu kznbilmesi için 1 kuvvetinin 2 den büyük olmsı gerekir. A seçeneğinde her iki grubun uyguldığı kuvvetler eşittir. + + + D) E) 2.

Detaylı

Asenkron Makinanın Alan Yönlendirme Kontrolünde FPGA Kullanımı ALAN İ., AKIN Ö.

Asenkron Makinanın Alan Yönlendirme Kontrolünde FPGA Kullanımı ALAN İ., AKIN Ö. Asnkron Makinanın Alan Yönlndirm Kontrolünd FPGA Kullanımı ALAN İ., AKIN Ö. ABSTRACT In this study, th fasibility of usag of fild programmabl gat arrays (FPGA) in th fild orintd control (FOC) of induction

Detaylı

KÜRESEL AYNALAR. 1. Çukur aynanın odağı F, merkezi M (2F) dir. Aşağıdaki ışınlar çukur aynada yansıdıktan sonra şekillerdeki gibi yol izler.

KÜRESEL AYNALAR. 1. Çukur aynanın odağı F, merkezi M (2F) dir. Aşağıdaki ışınlar çukur aynada yansıdıktan sonra şekillerdeki gibi yol izler. . BÖLÜ ÜRESEL AYNALAR ALŞRALAR ÇÖZÜLER ÜRESEL AYNALAR. Çukur ynnın odğı, merkez () dr. Aşğıdk ışınlr çukur ynd ynsıdıktn sonr şekllerdek b yol zler. / / 7 / / / / / 8 / / / / / 9 / / / / N 0 OPİ . Çukur

Detaylı

BÖLÜM 3 LAMİNER SINIR TABAKANIN DİFERANSİYEL DENKLEMLERİ VE TAM ÇÖZÜMLERİ

BÖLÜM 3 LAMİNER SINIR TABAKANIN DİFERANSİYEL DENKLEMLERİ VE TAM ÇÖZÜMLERİ BÖLÜM 3 LAMİNER SINIR TABAKANIN DİFERANSİYEL DENKLEMLERİ VE TAM ÇÖZÜMLERİ - Nair Stos dnlmlri - Nair Stos dnlmlrinin tam çözümlri - Daimi, ii-botl, laminr sınır tabaa dnlmlri - Daimi, ii-botl, laminr sınır

Detaylı

Pontiklerin altında hacim koruma

Pontiklerin altında hacim koruma Pontilrin ltınd hcim orum Gitlich Biomtril ürünlri il - Sırt Korum çözümlri Dh fzl bilgi için www.gitlich-biomtril.com Sırt Korum - Bitç Sırt orum diş çimi onrı lvolr ırtın ontürünü orum için uygulnn bir

Detaylı

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN 1)KESĐK PĐRAMĐT: Bir pirmit, tbn prlel bir düzlem ile kesildiğinde, tbn düzlemi ile kesit üzei rsınd kln kısım kesik pirmit denir. KESĐK PĐRAMĐDĐN YANAL YÜZ ALANI: Bir düzgün kesik pirmidin nl lnı, lt

Detaylı

Enerji Dönüşüm Temelleri. Bölüm 3 Bir Fazlı Transformatörler

Enerji Dönüşüm Temelleri. Bölüm 3 Bir Fazlı Transformatörler Enrji Dönüşüm Tmllri Bölüm 3 Bir Fazlı Transformatörlr Birfazlı Transformatorlar GİRİŞ Transformatörlrin grçk özllik v davranışlarını daha kolay anlamak için ilk aşamada idal transformatör üzrind durulacaktır.

Detaylı

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ T SKRY ÜNİERSİTESİ TEKNOLOJİ FKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELM202 ELEKTRONİK-II DERSİ LBORTUR FÖYÜ DENEYİ YPTIRN: DENEYİN DI: DENEY NO: DENEYİ YPNIN DI v SOYDI: SINIFI: OKUL NO: DENEY GRUP

Detaylı

DERS 7. Türev Hesabı ve Bazı Uygulamalar II

DERS 7. Türev Hesabı ve Bazı Uygulamalar II DERS 7 Türv Hsabı v Bazı Uygulamalar II Bu rst bilşk fonksiyonlarının türvi il ilgili zincir kuralını, üstl v logaritmik fonksiyonların türvlrini, ortalama v marjinal ortalama ğrlri; rsin sonuna oğru,

Detaylı

Çubukta açılan delikler

Çubukta açılan delikler YTÜ İş Müh. Böl. Çlik Ypıl I D Nolı Y. Doç. D. Dvim ÖZHENDEKCİ ÇEKME ÇUBUKLRI Ki zou olk ylız l oğulu çmy muz kl ll çm çuuklı i; kf ili çm çuuklı, il, kıl, v. u ü şıyıı ll ö öilili. Çm çuuklı y çok çlı

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

KATI BASINCI. 3. Cis min ağır lı ğı G ise, olur. Kap ters çev ril di ğin de ze mi ne ya pı lan ba sınç, Şekil-I de: = P = A = 3P.A

KATI BASINCI. 3. Cis min ağır lı ğı G ise, olur. Kap ters çev ril di ğin de ze mi ne ya pı lan ba sınç, Şekil-I de: = P = A = 3P.A BÖÜ TI BSINCI IŞTIRR ÇÖZÜER TI BSINCI Cis min ğır lı ğı ise, r( r) 40 & 60rr 4rr zemin r r Şekil-I de: I p ters çev ril di ğin de ze mi ne y pı ln b sınç, ı rr 60rr rr 60 N/ m r zemin r + sis + + 4 4 tı

Detaylı

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q Elektrosttik(Özet) Coulomb Yssı Noktsl bir q yükünün kendisinden r kdr uzktki bir Q yüküne uyguldığı kuvvet, şğıdki Coulomb yssı ile ifde edilir: F = 1 qq ˆr (1) r2 burd boşluğun elektriksel geçirgenlik

Detaylı

FARKLI SICAKLIKLARDAKİ GÖZENEKLİ İKİ LEVHA ARASINDA AKAN AKIŞKANIN İKİNCİ KANUN ANALİZİ

FARKLI SICAKLIKLARDAKİ GÖZENEKLİ İKİ LEVHA ARASINDA AKAN AKIŞKANIN İKİNCİ KANUN ANALİZİ FARKLI ICAKLIKLARDAKİ GÖZEEKLİ İKİ LEVHA ARAIDA AKA AKIŞKAI İKİCİ KAU AALİZİ Fthi KAMIŞLI Fırat Ünivrsit Mühndislik Fakültsi Kimya Mühndisliği Bölümü, 39 ELAZIĞ, fkamisli@firat.du.tr Özt Farklı sıcaklıklara

Detaylı

İntegralin Uygulamaları

İntegralin Uygulamaları Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini

Detaylı

Mühendisler İçin DİFERANSİYEL DENKLEMLER

Mühendisler İçin DİFERANSİYEL DENKLEMLER Mühndislr İçin DİFERANSİYEL DENKLEMLER Doç. Dr. Tahsin Engin Prof. Dr. Yunus A. Çngl Sakara Ünivrsitsi Makina Mühndisliği Bölümü Elül 8 SAKARYA - - Mühndislr İçin Difransil Dnklmlr İÇİNDEKİLER BÖLÜM BİRİNCİ

Detaylı

TĐCARĐ MATEMATĐK - 1.3. Oranlı Bölme ve = orantıları veriliyor. Buna göre a+b=? 15 bulunur.

TĐCARĐ MATEMATĐK - 1.3. Oranlı Bölme ve = orantıları veriliyor. Buna göre a+b=? 15 bulunur. Örnek.0.: 6 TĐCARĐ MATEMATĐK -.. Ornlı Bölme 8 ve ornılrı verilior. Bun göre +? Çöüm: Yine ornının. öelliği rı ir şekilde iki ornı d ugulnırs;.6. 0..8 0 0 Bun göre; ++0 Örnek.0.: ornısındn, 6 ornısı elde

Detaylı

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır? 987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı

Detaylı

Anaparaya Dönüş (Kapitalizasyon) Oranı

Anaparaya Dönüş (Kapitalizasyon) Oranı Anaparaya Dönüş (Kapitalizasyon) Oranı Glir gtirn taşınmazlar gnl olarak yatırım aracı olarak görülürlr. Alıcı, taşınmazı satın almak için kullandığı paranın karşılığında bir gtiri bklr. Bundan ötürü,

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ POLARİZE ELEKTRON-GAMA ÇARPIŞMASINDA ÜÇLÜ AYAR BOZONU ETKİLEŞMELERİ.

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ POLARİZE ELEKTRON-GAMA ÇARPIŞMASINDA ÜÇLÜ AYAR BOZONU ETKİLEŞMELERİ. ANKAA ÜNİVESİTESİ FEN BİİMEİ ENSTİTÜSÜ DOKTOA TEİ POAİE EEKTON-GAMA ÇAPIŞMASINDA ÜÇÜ AYA BOONU ETKİEŞMEEİ İnanç ŞAHİN FİİK ANABİİM DAI ANKAA 005 Hr hakkı aklıdır Prof. Dr. Satılış ATAĞ danışanlığında İnanç

Detaylı

www.elitalyansresidence.com yaşamın tüm renklerine Tek Hayalle... elit alyans

www.elitalyansresidence.com yaşamın tüm renklerine Tek Hayalle... elit alyans www.litlynsrsidnc.com yşmın tüm rnklrin Tk Hyll... lit lyns R E S I D E N C E lit lyns R E S I D E N C E ti s i P üş rı nl l A t ı ktiv A r po rüy ü Y v u S yşmın tüm rnklrini kucklyın... Yni v modrn

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

ÜÇGENDE AÇI-KENAR BAĞINTILARI

ÜÇGENDE AÇI-KENAR BAĞINTILARI ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs,

Detaylı

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN ÖZEL EGE ORTAOKULU ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN HAZIRLAYAN ÖĞRENCĠLER: Olçr ÇOBAN Sevinç SAYAR DANIġMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI... 2 2. GĠRĠġ... 2 3.

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03 ELEĐ MOOLA ve SÜÜCÜLEĐ DES 03 Özer ŞENYU Mrt 0 ELEĐ MOOLA ve SÜÜCÜLEĐ DA MOOLANN ELEĐ DEE MODELLEĐ E AAEĐSĐLEĐ ENDÜĐ DEESĐ MODELĐ Endüviye uygulnn gerilim (), zıt emk (E), endüvi srgı direni () ile temsil

Detaylı

1.Düzlemde Eğik ve Dik Koordinat Sistemi

1.Düzlemde Eğik ve Dik Koordinat Sistemi Düzlemde Eğik ve Dik Koordin Sisemleri -Düzlem Anliik Geomeri-Bki Krlığ.Düzlemde Eğik ve Dik Koordin Sisemi Bu bölüme Anliik Geomerinin kuruluşun emel eşkil eden ve dın Nok-Vekör eşlemesi dieceğimiz düzlemin

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

LYS1 / 3.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ

LYS1 / 3.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ . `n 5j- `n- j - n - n vey n- n n 8. 8 8 LYS /.NM MTMTİK TSTİ ÇÖZÜMLRİ evp: evp:. - f p$ f - p f p 9 - - 5! 5 -! 5 5 5. 8... 5 5. 5.. y 8 8 5 5... z < y < z _. ` j. $ ` j ` ise y. ` j y $ ` j ` j yk. `

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı