III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER"

Transkript

1 Bölüm 1 III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER 1.1 YÜZEYLER:TANIM VE ÖRNEKLER Bu kesimin amacı R 3 de yüzeyler teorisini incelemek ve bunun içinde manifoldlar teorisinin gerekli kısmını aktarmaktır. başlangıç için önce bir yüzeyin basit bir yaması kavramı verilecek, sonra da yüzeyin formal tanımı verilecektir. Tanım R 2 nin kapalı bir dikdörtgen bölgesiyle sürekli 1 : 1 tekabül içinde olan R 3 ün bir alt cümlesine bir yüzeyin basit yaması denir. v f x3 D C D C A B A B u x2 x1 Şekil 1.1: 1

2 2 III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER Bir yüzeyin bir basit yaması, pozisyon vektörleri r =r(u,v) =x 1 i +x2 j +x3 k (1) şeklindeki 1 : 1 ve sürekli vektör değerli fonksiyonu ile verilen noktaların cümlesidir. Bir yüzeyin bir basit yaması için basit bir örnek olarak şu örneği verelim. B = [a,b] [c,d] üzerinde tanımlı bir sürekli fonksiyonf olsun. Bu durumda pozisyon vektörleri f :B R 3 r =x 1 i +x2 j +f(x1,x 2 ) k (2) ile verilen noktaların cümlesi bir yüzeyin bir basit yamasıdır. Tanım R 3 ün noktalarının bir cümlesiζ olsun.ζ irtibatlı,ζ nin her P noktasının biru komşuluğu var veu nun kapanışı bir basit yama iseζ ye adi (ordinary) yüzey denir ve S ile gösterilir. Bu tanım topolojik açıdan verilmiştir ve diferensiyel geometri açısından yeterli ve kullanışlı değildir. (1) eşitliğine geri dönelim. Tanım r :G ζ, G ={(u,v)} R 2 kapalı dikdörtgen bölge parametrik temsili verildiğinde, 1 )r,güzerinde birebirdir, 2 )r,güzerindes>1 sınıfındandır, 3 ) r r vektörel çarpımı G nin hiçbir noktasında sıfır değildir şartları sağlanıyorsa r ye s sınıfından kabul edilebilir bir temsil denir. Bu durumda, (r,g, R 3 ) veyar(g) R 3 bir diferensiyellenebilir yüzey denir. 3 ) şartının bir alternetifi rank [ x1 x 1 x 2 x 2 x 3 x 3 ] p = 2, p G olarak da verilir. r :G ζ

3 1.1 YÜZEYLER:TANIM VE ÖRNEKLER 3 bir diğer temsil verver temsilleri r =r (u,v ) (3) u 1 =φ 1 (u,v) u 2 =φ 2 (u,v) (4) şeklindeki 1 : 1 transormasyonlarıyla birbirine bağlı olsunlar, buradaφ 1 ve φ 2 fonksiyonlarır 1 sınıfından ve görüntülerig olsun. (4) eşitlikleriyle verilen transformasyonlara r sınıfından düzgün (proper) veya allowable denir. Bir transformasyonun uygun (allowable) olması için gerek ve yeter şart (u,v ) (u,v) = φ 1 φ 2 Jakobiyen matrisinin G nin her noktasında sıfırdan farklı olmasıdır. r r vektörel çarpımının sıfır olduğu noktalara,r ile verilen parametrizasyona bağlı olarak, yüzeyin singüler noktası denir. r r vektörel çarpımının sıfırdan farklı olduğu noktaya yüzeyin regüler noktası adı verilir. Örnek φ 1 φ 2 r(u,v) = (a cosu,asinu,v), G = (0, π ) (0, 1) 2 ile verilen noktalar cümlesini ele alalım. Bu noktalar cümlesi kartezyen koordinatlarda denklemi x 2 +y 2 =a 2, (x,y,z) R 3 olan dik dairesel silindirdir. r r hesaplanırsa veya [ ] x y z rank x y z = 2 olduğu tesbit edilirse r(u, v) nin bir yüzey yaması olduğu görülür. Örnek r : [0, 2π] [0, 2π] R 3, r(u,v) = (cosusinv, cosucosv, sinu) bir diferensiyellenebilir yüzeydir.

4 4 III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER Örnek r(u,v) = ((c +a cosv) cosu, (c +a cosv) sinu,asinv), u,v [0, 2π) (Torus tüpünün merkezinden deliğin merkezine olan uzaklık c ve tüpün yarıçapı a olsun.) bir diferensiyellenebilir yüzeydir. Örnek r(u,v) = (a sinucosv,bsinusinv,ccosu) (elipsoid) bir diferensiyellenebilir yüzeydir.

5 1.1 YÜZEYLER:TANIM VE ÖRNEKLER 5 Örnek r(u,v) = (au cosv,bu sinv,u 2 ) (eliptik paraboloid) bir diferensiyellenebilir yüzeydir. Örnek r(u,v) = (au coshv,bu sinhv,u 2 ) (hiperbolik paraboloid) bir diferensiyellenebilir yüzeydir.

6 6 III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER 1.2 PARAMETRE EĞRİLERİ, TEĞET DÜZLEM, NORMAL ve VEKTÖR ALANLARI G R 2 üzerinde tanımlı r :G S yüzeyi verilsin. u = v = u(t) v(t) G de bir eğri olsun. Bu durumda, r =r(u(t),v(t)) tek parametreye bağlı olması, diferensiyelleneblir olması ve S üzerinde olması sonucu olarak,s yüzeyi üzerinde bir eğridir.u =u(t) vev=v(t) eğrilerini özel seçelim. u =sabit veya v =sabit alınırsa, parametrik eğriler elde edilir. r =r(u,c) r =r(c,v) } v z u y x Şekil 1.2: v sabit iken u parametredir. Eğri, v sabit eğrisi veya u parametre eğrisi olarak adlandırılır. Benzer şekilde, u sabit iken v parametredir. Eğri, u sabit eğrisi veya v parametre eğrisi olarak adlandırılır.

7 1.2 PARAMETRE EĞRİLERİ, TEĞET DÜZLEM, NORMAL ve VEKTÖR ALANLARI7 Yüzeyin bir regüler noktasındar 1 r 2 0 olduğundan, farklı ailelerin parametre eğrileri birbirine değmez. Parametre eğrileri için bir p S noktasında r 1,r 2 = 0, r 1 = r, r 2 = r ise eğriler ortogonaldirler. Genel bir yüzey üzerinde iki noktap veqalınsın ve bu noktaların eğrisel koordinatları (u,v) ve (u +,v +) olsunlar.p veqnun pozisyon vektörleri de r ve r +δ r ile gösterilsin. z P Q y x Şekil 1.3: PQ,Q P iken teğet doğrultusunu verir. dr = r du + r dv şeklinde belli olan ve P noktasında eğrinin teğet vektörü olan dr vektörüne yüzeyin teğet vektörü denir.dr, lineer bağımsız olan r 1 = r, r 2 = r vektörlerinin bir lineer kombinasyonudur ve bu iki vektör bir düzlem belirler. Bu düzleme S yüzeyinin P noktasındaki teğet düzlemi denir. Bu düzlemin normali (birim) N = r 1 r 2 r 1 r 2 dir.p =r(u 0,v 0 ) vex = (x,y,z) temsilci nokta olmak üzere, yüzeyin teğet düzlem denklemi (X P,r 1 (u 0,v 0 ),r 2 (u 0,v 0 )) = 0

8 8 III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER veya açık olarak det x x 0 y y 0 z z 0 x 1 x 1 x 2 x 2 x 3 x 3 (u 0,v 0 ) = 0 şeklindedir, burada;r 1 (u 0,v 0 ) = ( x 1 r(u 0,v 0 ) = (x 0,y 0,z 0 ) dır. Örnek 1.2.1, x 2, x 3 ),r 2(u 0,v 0 ) = ( x 1 r(u,v) = (cosucosv, sinucosv, sinv), x 2, x 3 ), birim küre yüzeyininp = r( π 2, 0) noktasındaki teğet düzlem denklemini yazarak düzlemin normalini bulunuz. r( π, 0) = (0, 1, 0) 2 r 1 ( π 2, 0) = ( sinπ 2 cos 0, cosπ cos 0, 0) = ( 1, 0, 0) 2 r 2 ( π 2, 0) = ( cosπ 2 sin 0, sinπ sin 0, cos 0) = (0, 0, 1) 2 olmak üzere,p =r( π 2, 0) noktasındaki teğet düzlem denklemi (X r( π 2, 0),r 1( π 2, 0),r 2( π 2, 0)) = 0 dir ve açık şekliyle det x 0 y 1 z = 0 y = 1 düzlemi elde edilir. Teğet düzlem denkleminin normali olarak bulunur. ( 1, 0, 0) (0, 0, 1) N = ( 1, 0, 0) (0, 0, 1) = (0, 1, 0)

9 1.3 BİRİNCİ TEMEL FORM BİRİNCİ TEMEL FORM Öncelikle aşağıdaki şekli inceleyelim ve şekildeki verilere göre hareket edelim. P r1 dr Teðet düzlem r2 a(t) den; ve Şekil 1.4: P noktasındaki teğet vektörün büyüklüğünün karesi ( dr dt )2 = r 1,r 1 ( du dr dt =r du 1 dt +r dv 2 dt dt )2 + 2 r 1,r 2 du dt dv dt + r 2,r 2 ( dv dt )2 E = r 1,r 1, F = r 1,r 2, G = r 2,r 2 kısaltmasıyla, ( dr dt )2 =E( du dt )2 + 2F du dv dt dt +G(dv dt )2 olarak hesaplanır. Ayrıca, dr nin eğri üzerindeki komşu iki nokta arasındaki eğrisel uzaklık olduğu dikkate alınırsa, ; integral değeri, s(t) = t t 0 r (σ) 2 dσ P Q yayının uzunluğunu verecektir. (dr) 2 =E(du) 2 + 2Fdudv +G(dv) 2

10 10 III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER ifadesinin, eğrinin yay parametresinden bağımsız olduğu dikkate alınırsa, bundan böyle P ve Q arasındaki eğrisel yay uzunluğu, ile verilecektir. (ds) 2 Tanım 1.3.1E(du) 2 +2Fdudv+G(dv) 2 kuadratik formuna yüzeyin birinci temel formu denir.e,f vegye yüzeyin 1. temel formunun katsayıları adı verilir. Kuadratik form pozitif tanımlıdır. Ayrıca, dır. Şöyle ki; E> 0, G>0 veeg F 2 = r 1 r 2 2 > 0 E = r 1,r 1 >0, E = r 1,r 1 = 0 r 1 = 0 G = r 2,r 2 >0, G = r 2,r 2 = 0 r 2 = 0 (İç-çarpım özelliği). EG F 2 = r 1 r 2 2 = r 1 r 2,r 1 r 2 = r 1,r 1 r 2,r 2 r 1,r 2 2 = r 1 2 r 2 2 r 1 2 r 2 2 cos 2 θ = r 1 2 r 2 2 (1 cos 2 θ) = r 1 2 r 2 2 sin 2 θ>0 (r 1 r 2 ) H = EG F 2 değişimi yapıldığında yüzeyin birim normali N = r 1 r 2 r 1 r 2 =r 1 r 2 H eşitliği ile verilebilir. Yüzey üzerinde farklı üç noktap,p 1 vep 2 ve bu noktalarp P 1,P P 2 den geçen farklı iki eğri üzerinde olsunlar vep deki (du, dv), (δu, δv) teğet doğrultuları ile karakterize edilsinler.

11 1.3 BİRİNCİ TEMEL FORM 11 P1 P P2 Şekil 1.5: ile Bu eğriler arasındaki α açısı iç-çarpım ve vektörel çarpım notasyonları cosα = N sinα = dr,δr dr δr dr δr dr δr olarak bellidir. dr yerine ds ve δr yerine δs alınarak, açık hesaplama yapılırsa, r 1 du +r 2 dv,r 1 δu +r 2 δv cosα = E(du) 2 + 2Fdudv +G(dv) 2 E(δu) 2 + 2Fδuδv +G(δv) 2 = r 1,r 1 duδu + r 1,r 2 (duδv +dvδu) + r 2,r 2 dvδv = Eduδu +F(duδv +dvδu) +Gdvδv ve benzer işlemler tekrarlanırsa eşitlikleri elde edilir. sinα =H(duδv δudv)

12 12 III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER 1.4 YÜZEY ALANI Bir yüzey iki boyutlu bir geometrik nesnedir ve üzerinde iki boyutlu diferensiyel element (alan elementi) tanımlanabilmelidir. Bunun için aşağıdaki şekilde de görüldüğü gibi u,u +δu,v,v +δv eğrileri ile sınırlı sonsuz küçük paralelogramı ele alalım. (u,v+dv) (u+du,v+dv) (u,v) (u+du,v) Şekil 1.6: Vektörel cebirden bilindiği gibi, bu paralelogramın alanı da = dr δr = EG F 2 duδv δudv dir. Burada, dr ve δr yerine, parametre eğrilerinin teğet vektörleri alınırsa, d r = (du, 0), δr = (0,dv) olacağından, da = EG F 2 dudv ve sonuç olarak paralelogramın alanı, iki katlı integral notasyonlarında; EG F A = 2 dudv olarak elde edilir.

13 1.4 YÜZEY ALANI 13 Örnek Yüzey olarakxoy düzlemini ele alalım. Bilindiği gibi parametre eğrileri, x = sabit ve y = sabit eğrileridirler. Düzlem yüzey olarak r : R 2 (u,v) R 3 r(u,v)=(u,v,0) olarak verilebilir.p = (1, 1),P 1 = (4, 1),P 2 = (1, 3) alınsın. Paralelogramı oluşturan eğriler aşağıdaki gibidir. v u Şekil 1.7: ve Yüzey için olup, ikinci temel form r 1 = δr = (1, 0, 0) δu r 2 = δr = (0, 1, 0) δv E = r 1 2 = 1,G = r 2 2 = 1,F = r 1,r 2 = 0 ds =du 2 +dv 2 ve yüzey elementi EG F 2 = = 1 olup, sınırları verilen yüzey bölgenin alanı; olarak elde edilir. A = dudv = 6br 2

14 14 III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER Örnek r : [0, 2π] [0, 1] (u,v) R 3 r(u,v)=(cos u,sin u,v) şeklinde verilen dik dairesel silindir yüzeyinin alanını hesaplayalım. r 1 = ( sinu, cosu, 0) r 2 = (0, 0, 1) E = r 1,r 1 = 1 G = r 2,r 2 = 1 F = r 1,r 2 = 0 Bu verilere bağlı olarak, alan; A = 2π dudv = 2πbr 2

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Öğr. Gör. Volkan ÖĞER MAT 1010 Matematik II 1/ 172 Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası)

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu

Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu JEODEZİ9 1 Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu u ve v Gauss parametrelerine bağlı olarak r r ( u, v) yer vektörü ile verilmiş bir Ω yüzeyinin, u*, v* Gauss parametreleri ile verilmiş

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

TEMEL İŞLEMLER KAVRAMLAR

TEMEL İŞLEMLER KAVRAMLAR EM 420 Yüksek Gerilim Tekniği TEMEL İŞLEMLER VE KAVRAMLAR YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. Not: Tüm slaytlar listelenen ders kaynaklarından alıntı yapılarak ve faydalanılarak

Detaylı

Name: Diferensiyel Geometri Spring 2014

Name: Diferensiyel Geometri Spring 2014 Çalışma soruları Tanim [Basit egri] α : (a, b) R 3 egrisi verilsin. Farkli t 1, t 2 (a, b) noktalari icin α(t 1 ) α(t 2 ) oluyorsa α egrisine basit egri adi verilir (kendisini kesmeyen egriye basit egri

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler İÇİNDEKİLER Kuadratik Yüeler Uada İkinci Dereceden Yüeler 1 0.1. Elipsoid 2 0.2. Hiperboloid 4 0.2.1. Tek Kanatlı Hiperboloid 4 0.2.2. Çift Kanatlı Hiperboloid 4 0.3. Paraboloid 5 0.3.1. Eliptik Paraboloid

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ,

A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ, Vektör Analizi(Özet) Bir vektörün büyüklüğü(boyu) Birim vektör A A = A 2 + A 2 y + A 2 z (1) A â A (2) İki vektörün skaler(nokta) çarpımı Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

FİNAL SORULARI GÜZ DÖNEMİ A A A A A A A

FİNAL SORULARI GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ FİNAL SORULARI 25-26 GÜZ DÖNEMİ ADI SOYADI :... NO :... SINAV TARİHİ VE SAATİ : A A A A A A A Bu sınav 4 sorudan oluşmaktadır ve sınav süresi 9 dakikadır.

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS Bir Dönemde Okutulan Ders Saati MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1 Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2 Fonksiyonlar,

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Şekil 23.1: Düzlemsel bölgenin alanı

Şekil 23.1: Düzlemsel bölgenin alanı Bölüm Belirli İntegral Şekil.: Düzlemsel bölgenin alanı Düzlemde kare, dikdörtgen, üçgen, çember gibi iyi bilinen geometrik şekillerin alanlarını bulmak için uygun formüller kullanıyoruz. Ama, uygulamada

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E 3-BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI.

BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E 3-BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI. BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E -BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI Hasibe ŞENOL 16104210046 Danışman: Yrd. Doç. Dr. Murat BABAARSLAN YOZGAT 201 ÖZET

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH) Dersi Final Sınavı.Ö. 02.0.207 Ad Soyad : (25p) 2(25p) 3(25p) 4(25p) Toplam Numara : İmza : Kitap ve notlar kapalıdır. Yalnızca kalem, silgi, sınav kağıdı

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI BAŞKANLIĞI YÜKSEK LİSANS PROGRAMI

AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI BAŞKANLIĞI YÜKSEK LİSANS PROGRAMI YÜKSEK LİSANS PROGRAMI BİRİNCİ YIL BİRİNCİ YARIYIL MAT-5501 UZMANLIK ALAN DERSİ Z 8 0 8 0 9 MAT-5601 TEZ HAZIRLIK ÇALIŞMASI Z 0 1 1 0 1 20 1 21 12 30 İKİNCİ YARIYIL MAT-5502 UZMANLIK ALAN DERSİ Z 8 0 8

Detaylı

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ I ARASINAV SORULARININ ÇÖZÜMLERİ - 6 GÜZ DÖNEMİ ADI SOYADI :... NO :... A A A A A A A SINAV TARİHİ VE SAATİ : Bu sınav 4 sorudan oluşmaktadır ve sınav

Detaylı

MADDESEL NOKTANIN EĞRİSEL HAREKETİ

MADDESEL NOKTANIN EĞRİSEL HAREKETİ Silindirik Koordinatlar: Bazı mühendislik problemlerinde, parçacığın hareketinin yörüngesi silindirik koordinatlarda r, θ ve z tanımlanması uygun olacaktır. Eğer parçacığın hareketi iki eksende oluşmaktaysa

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM UD VEKTÖRLER ve DĞRU DÜLEM. ir küpün ayrıtlarını taşıyan doğrular kaç farklı doğrultu oluşturur? ) ) ) D) 7 E) 8. ir düzgün altıgenin en uzun köşegeni ile aynı doğrultuda kaç farklı kenar vardır?. şağıdaki

Detaylı

Bilgisayar Grafikleri

Bilgisayar Grafikleri Bilgisayar Grafikleri Konular: Cismin Tanımlanması Bilindiği gibi iki boyutta noktalar x ve y olmak üzere iki boyutun koordinatları şeklinde ifade edilirler. Üç boyutta da üçüncü boyut olan z ekseni üçücü

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Diferensiyel Denklemler I Uygulama Notları

Diferensiyel Denklemler I Uygulama Notları 2004 Diferensiyel Denklemler I Uygulama Notları Mustafa Özdemir İçindekiler Temel Bilgiler...................................................................... 2 Tam Diferensiyel Denklemler........................................................4

Detaylı

EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ KASIM EKİM 2017-2018 EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ 1 4 TÜREV 12.1.1.1. Bir fonksiyonun bir noktadaki limiti, soldan limiti

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın,

Detaylı

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Yazar Doç.Dr. Hüseyin AZCAN ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; Küresel Koordinatlar Silindirik Koordinatları Dönel Yüzeylerin Elde Edilmesi

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

VEKTÖRLER SORULAR 1.) 3.) 4.) 2.)

VEKTÖRLER SORULAR 1.) 3.) 4.) 2.) VETÖRER SORUR 1.) 3.) ynı düzlemde bulunan, ve vektörleri için verilen; I. = II. II = II III. = 2 Şekildeki aynı düzlemli vektörlerle tanımlanmış + + = D işleminin sonucunda elde edilen D vektörünün büyüklüğü

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500 984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Harita Projeksiyonları Bölüm Prof.Dr. İ. Öztuğ BİLDİRİCİ Amaç ve Kapsam Harita projeksiyonlarının amacı, yeryüzü için tanımlanmış bir referans yüzeyi üzerinde belli bir koordinat sistemine göre tanımlı

Detaylı

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Newton un II. yasası Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Bir cisme F A, F B ve F C gibi çok sayıda kuvvet etkiyorsa, net kuvvet bunların

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Amper Kanunu Manyetik Vektör Potansiyeli Maxwell in diverjans eşitliği Endüktans 1 Amper Kanununun İntegral Formu 2 Amper Kanununun İntegral Formu z- ekseni boyunca uzanan çok uzun

Detaylı

Hacimler ve Çift Katlı İntegraller. Kapalı bir. alalım ve önce f(x, y) 0 varsayalım. f nin grafiği, denklemi z = f(x, y) olan bir yüzeydir.

Hacimler ve Çift Katlı İntegraller. Kapalı bir. alalım ve önce f(x, y) 0 varsayalım. f nin grafiği, denklemi z = f(x, y) olan bir yüzeydir. Hacimler ve C ift Katlı Integraller Hacimler ve Çift Katlı İntegraller Kapalı bir R = [a, b] [c, d] = {(x, y) R 2 a x b, c y d} dikdörtgeninde tanımlı iki değişkenli bir f fonksiyonunu göz önüne alalım

Detaylı

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi ENİNE DEMET DİNAMİĞİ Prof. Dr. Abbas Kenan Çiftçi Ankara Üniversitesi 1 Dairesel Hızlandırıcılar Yönlendirme: mağnetik alan Odaklama: mağnetik alan Alan indisi zayıf odaklama: 0

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

DUAL BİRİM KÜRE VE STUDY DÖNÜŞÜMÜ

DUAL BİRİM KÜRE VE STUDY DÖNÜŞÜMÜ Bölüm 1 DUAL BİRİM KÜRE VE STUDY DÖNÜŞÜMÜ 1.1 Dal Birim Küre ve Stdy Dönüşümü 1 R reel sayılar cümlesini göstermek üere, : R R R R, (a,b)(c,d) = (ac,ad +bc) olarak tanımlanan işleme dal çarpım adı verilir

Detaylı

Hacimler ve Çift Katlı İntegraller

Hacimler ve Çift Katlı İntegraller Hacimler ve Çift Katlı İntegraller Kapalı bir Hacimler ve Çift Katlı İntegraller R [a, b] [c, d] {(x, y) R 2 a x b, c y d} dikdörtgeninde tanımlı iki değişkenli bir f fonksiyonunu göz önüne alalım ve önce

Detaylı

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk Doğrusal Demet Işıksallığı Fatma Çağla Öztürk İçerik Demet Yönlendirici Mıknatıslar Geleneksel Demir Baskın Mıknatıslar 3.07.01 HPFBU Toplantı, OZTURK F. C. Demet Yönlendirici Mıknatıslar Durgun mıknatıssal

Detaylı

Projeksiyon Kavramı. Meridyenler ve paraleller eşitliklere göre düzleme aktarılır. 1) m : harita üzerinde paralelleri çizen yarıçap

Projeksiyon Kavramı. Meridyenler ve paraleller eşitliklere göre düzleme aktarılır. 1) m : harita üzerinde paralelleri çizen yarıçap Projeksiyon Kavramı Meridyenler ve paraleller eşitliklere göre düzleme aktarılır. 1) m : harita üzerinde paralelleri çizen yarıçap ) α: harita üzerinde meridyenler arasındaki açıyı ifade eder. m = α =

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ

DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ DİNMİK DERS NOTLRI Kaynaklar: Engineering Mechanics: Dynamics,, SI Version, 6th Edition, J. L. Meriam,, L. G. Kraige Vector Mechanics for Engineers: : Dynamics, Sith Edition, Beer and Johnston Doç.Dr.

Detaylı

DİNAMİK Ders_3. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

DİNAMİK Ders_3. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ DİNAMİK Ders_3 Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2016-2017 GÜZ EĞRİSEL HAREKET: SİLİNDİRİK BİLEŞENLER Bugünün Hedefleri:

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3 1.3. Kompleks Düzlemin Topolojisi Tanım 1. D ε (z 0 ) = {z C : z z 0 < ε} kümesine z 0 ın bir ε komşuluğu denir. Tanım 2. Bir A C kümesi verilsin. z 0 ın sadece A nın elemanlarından oluşan bir komşuluğu

Detaylı

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 996 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Bir sınıftaki örencilerin nin fazlası kız örencidir. Sınıfta erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır? A) B) 8 C) 6 D) E) Çözüm Toplam öğrenci

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7 998 ÖYS. Üç basamaklı bir doğal sayısının 7 katı, iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir? orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. bir üçgen =

Detaylı

JDF 242 JEODEZİK ÖLÇMELER 2. HAFTA DERS SUNUSU. Yrd. Doç. Dr. Hüseyin KEMALDERE

JDF 242 JEODEZİK ÖLÇMELER 2. HAFTA DERS SUNUSU. Yrd. Doç. Dr. Hüseyin KEMALDERE JDF 242 JEODEZİK ÖLÇMELER 2. HAFTA DERS SUNUSU Yrd. Doç. Dr. Hüseyin KEMALDERE 3 boyutlu uzayda Jeoit Z Y X Dünyaya en uygun elipsoid modeli ve yer merkezli dik koordinat sistemi Ülkemizde 2005

Detaylı

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2.

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2. LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS na) HAZIRLIK İÇİN Konu anlatımlı Örnek çözümlü Test çözümlü Test sorulu Deneme sınavlı GEOMETRİ-2 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Noktasal Yüke Etki eden Manyetik Kuvvet Akım Elemanına Etki Eden Manyetik Kuvvet Biot-Savart Kanunu Statik Manyetik Alan Statik manyetik alan, sabit akımdan veya bir sürekli mıknatıstan

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10 LİSNS YRLŞTİRM SINVI- MTMTİK-GOMTRİ SINVI MTMTİK TSTİ SORU KİTPÇIĞI 0 U SORU KİTPÇIĞI LYS- MTMTİK TSTİ SORULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik

Detaylı

ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ

ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ 1 ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ Fazör: Zamanla değişen gerilim ve akımın gösterildiği vektörlerdir. Vektör büyüklüğü maksimum değere eşit alınmayıp en çok kullanılan etkin değere eşit alınır.

Detaylı

DİNAMİK (3.hafta) EĞRİSEL HAREKET-2: Kutupsal /Polar Koordinatlar (r,θ) A-Polar Koordinatlarda (r,θ) Hareket Denkemleri

DİNAMİK (3.hafta) EĞRİSEL HAREKET-2: Kutupsal /Polar Koordinatlar (r,θ) A-Polar Koordinatlarda (r,θ) Hareket Denkemleri DİNAMİK (3.hafta) EĞRİSEL HAREKET-2: Kutupsal /Polar Koordinatlar (r,θ) Şekildeki gibi dönen bir çubuk üzerinde ilerleyen bilezik hem dönme hareketi hemde merkezden uzaklaşma hareketi yapar. Bu durumda

Detaylı

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x)

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x) 6 II. DERECEDEN FNKSÝYNLR (Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MTEMTÝK 1. f(). f() 6 8 T Yukarıda grafiği verilen = f() parabolünün denklemi nedir?( = 6) Yukarıda grafiği verilen

Detaylı

6 2. Bir fonksiyonun bir noktadaki sürekliliği kavramını açıklar. Süreklilik

6 2. Bir fonksiyonun bir noktadaki sürekliliği kavramını açıklar. Süreklilik AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 201-2017 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 12.SINIFLAR İLERİ DÜZEY ÜNİTELENDİRİLMİŞ YILLIK PLANI AY: TÜREV (70) LİMİT VE SÜREKLİLİK (14) 1. Bir fonksiyonun bir

Detaylı

TEMEL ELEKTROT SİSTEMLERİ Silindirsel Elektrot Sistemi

TEMEL ELEKTROT SİSTEMLERİ Silindirsel Elektrot Sistemi Aralarında yalıtkan madde (dielektrik) bulunan silindir biçimli eş eksenli yada kaçık eksenli, iç içe yada karşılıklı, paralel ve çapraz elektrotlar silindirsel elektrot sistemlerini oluştururlar. Yüksek

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları HEDEFLER İÇİNDEKİLER TÜREV VE TÜREV ALMA KURALLARI Türev Türev Alma Kuralları MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu üniteyi çalıştıktan sonra Burada türevin tanımı verilecek, Geometride bir eğrinin bir noktadaki

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı