ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi"

Transkript

1 ÜNTE: RASYONEL SAYILAR ONU: Rasyonel Sayılar ümesinde Çıkarma şlemi ÖRNE SORULAR VE ÇÖZÜMLER. işleminin sonucu B) D) ki rasyonel sayının farkını bulmak için çıkan terimin toplama işlemine göre tersi alınarak eksilenle toplanır. işleminde eksilen, çıkandır. ün toplama işlemine göre tersi + () + + () 8 tür II. YOL: Parantez önündeki işaretler dağıtılır ve parantezler kaldırılır (Mutlak değerce büyük sayıdan küçük sayı çıkarılır büyük () sayının işareti alınır.) (). işleminin sonucu B) D) Bir tam sayıdan bir rasyonel sayıyı çıkarmak için önce payda eşitlenir. Sonra çıkanın toplama işlemine göre tersi alınır ve eksilen ile toplanır. () () + + LÖĞRETM 8 MATEMAT

2 . 0 Yukarıdaki sayı doğrusu üzerinde gösterilen işlem + ( ) + B) + ( + ) ( ) + D) + ( + ) + 0 Ardışık iki tam sayının arası iki eş parçaya bölündüğü için payda olur. Önce birim sağa sonra birim sola gidilerek sonuca ulaşılmıştır. O halde sayı doğrusu üzerinde gösterilen işlem; ( + ) dır.. Aşağıdaki ifadelerden kaç tanesi doğrudur? l. + ll. lll. 0 0 IV B) D) l. + eşitliği yanlıştır çünkü + + tür. ll. lll. 0 eşitliği doğrudur. 0 eşitliği yanlıştır çünkü tir. IV eşitliği yanlıştır çünkü çıkarma işleminin değişme özelliği yoktur tür tür. l., lll., IV. ifadeler yanlış, ll. ifade doğrudur. MATEMAT LÖĞRETM

3 B) 0 0 işleminin sonucu nedir? D) (Payda eşitlenir, Ekok (,, 0) 0) 0 () () () () 8 (şaretler aynı olduğu için sayılar toplanır ve işaret aynen yazılır.) (Tam sayılı kesre çevrilir.) Aşağıdaki ifadelerden hangisi ya da hangileri doğrudur? l. ll. lll. + + Yalnız l B) l ve ll l ve lll D) l, ll ve lll l. ll. lll. + eşitliği doğrudur. + + () () + eşitliği yanlıştır çünkü eşitliği doğrudur. l. ve lll. ifadeler doğru, ll. ifade yanlıştır. (Tam sayılı kesri bileşik kesre çevirelim.),, () + () () () 8 + LÖĞRETM 0 MATEMAT

4 . 0 + a ve + 0 b ise a + b toplamının sonucu B) D) 0 + a a 0 + (Sıfır, toplama işlemine göre etkisiz elemandır.) a b + 0 b + a + b + + () () eşitliğine göre a kaçtır? a 0 8 B) 0 D)..... (Parantez içindeki işlemler yapılır.) a 0 a..... (Sadeleştirmeler yapılır.) a 0 a 0 a 0 dir. MATEMAT LÖĞRETM

5 . l. ki rasyonel sayının farkı yine bir rasyonel sayıdır. ll. Rasyonel sayılarda çıkarma işleminin değişme özelliği yoktur. lll. sayısının çıkarma işlemine göre tersi tür. Yukarıdaki ifadelerden hangisi ya da hangileri doğrudur? l B) l ve ll ll D) l, ll ve lll + işleminin sonucu. ( ) B) D) O U. işleminin sonucu kaçtır? B) D). + işleminin sonucu B) D). - 0 L S T. + işleminin sonucu 0 B) 0 0 D) 0 Yukarıdaki sayı doğrusu üzerinde gösterilen işlem aşağıdakilerden hangisidir? B) + D) 8. işleminin sonucu B) D).. + işleminin sonucu kaçtır? - B) - - D) -.. işleminin sonucu B) - D) - LÖĞRETM MATEMAT

6 0.. + Δ. + Δ. eşitliğini sağlayan Δ sayısı B) D). işleminin sonucu için aşağıdakilerden hangisi doğrudur? En küçük pozitif tam sayıdır. B) ten büyüktür. Tam kısmı tür. D) Negatif rasyonel sayıdır.. rasyonel sayısının çarpma işlemine göre tersi a, toplama işlemine göre tersi b ise a b ifadesinin sonucu B) işleminin sonucu nedir? B) 8 8 D) D) O U L eşitsizliğini sağlayan en küçük a tam sayısı kaçtır?. ( ) < a. işleminin sonucu B) 8 D) S T - B) 0 D). + + işleminin sonucu B) D). Bir miktar ceviz çocuğa paylaştırılıyor. Birinci çocuğa cevizlerin i, ikinci çocuğa i ve üçüncü çocuğa i veriliyor. 8 Dördüncü çocuğa verilen cevizlerin kesir değeri nedir? 8 B) D) işleminin sonucu B) 8 D) MATEMAT LÖĞRETM

7 . 0 + işleminin çözümü aşağıda verilmiştir. l. adım: ll. adım: lll. adım: + + IV. adım: +. a eşitliğinde a sayısı B) D) şlemin çözümü yapılırken kaçıncı adımdan itibaren hata yapılmıştır? l. B) ll. lll. D) IV.. Bir memur maaşının ünü ev kirasına, kalanın ünü mutfak masrafına ayırıyor. Geriye 0 YTL si kaldığına göre memurun maaşının tamamı kaç YTL dir? O 0 B) 00 0 D) Δ 0 eşitliğinde Δ yerine 00 aşağıdaki rasyonel sayılardan hangisi yazılmalıdır? 00 B) 00 0 D) U L S T işleminin sonucu aşağıdakilerden hangisidir? 0 B) 0 D). m eşitliğinde m sayısı B). a b, a. b - ise işleminin sonucu aşağıdakilerden b a hangisidir? D) - B) 0 D) LÖĞRETM MATEMAT

8 ÜNTE: RASYONEL SAYILAR ONU: Rasyonel Sayılar ümesinde Bölme şlemi ve Özellikleri ÖRNE SORULAR VE ÇÖZÜMLER. 8 : işleminin sonucu B) D) Bir rasyonel sayıyı sıfırdan farklı bir rasyonel sayıya bölmek için bölünen rasyonel sayı, bölen rasyonel sayının çarpma işlemine göre tersi ile çarpılır. Yani birinci kesir aynen yazılır, ikinci kesir ters çevrilir, çarpılır. a c Q, Q ve c 0 koşulu ile b d a c a d axd : x dir. b d b c bxc 8 : 8 x (sadeleştirme yapılır.) işleminin sonucu. : ( + ) B) D) 0 Aynı işaretli iki rasyonel sayının bölümü pozitif, ters işaretli iki rasyonel sayının bölümü negatif rasyonel sayıdır. (+) : (+) (+) (+) : (-) (-) (-) : (-) (+) (-) : (+) (-) Bir rasyonel sayı bir tam sayıya veya bir tam sayı bir rasyonel sayıya bölünürken tam sayının paydası alınır. : ( + ) x + 0 MATEMAT LÖĞRETM

9 . : işleminin sonucu kaçtır? - B) - D) Bölme işlemi yaparken önce tam sayılı kesirler bileşik kesre çevrilir. 8 : : (kinci kesir ters çevrilip, çarpma işlemi yapılır.) 8 x x + (Sadeleştirme yapılır.) ((-) ile (-) nin çarpımı (+) dır.). : a ve : b ise a.b işleminin sonucu B) D) Bir rasyonel sayının + e bölümü, o rasyonel sayının kendisine eşittir. a : a x a + sayısının sıfırdan farklı bir rasyonel sayıya bölümü, bölen rasyonel sayının çarpma işlemine göre tersine eşittir. b : b x b a.b x LÖĞRETM MATEMAT

10 . Aşağıdaki işlemlerden hangisi ya da hangileri doğrudur? l. : ( ) + ll. ( ) : + lll. : 0 0 IV. 0 : + 0 l ve ll B) l ve lll ll ve lll D) l ve IV l. : ( ) + eşitliği doğrudur çünkü : ( ) + ll. ( ) : eşitliği yanlıştır çünkü ( ) x + dir. : + ( )x + dir. lll. : 0 0 eşitliği yanlıştır çünkü bir bölme işleminde bölen sıfır olamaz. Bölen sıfır ise o bölme işlemi a tanımsızdır. b 0 olmak üzere a : b c dir. tanımsızdır. 0 IV. 0 : + 0 eşitliği doğrudur çünkü bir bölme işleminde bölünen sıfır ise bölüm sıfırdır. 0 b 0 olmak üzere 0 dır. b Δ. + : Yukarıdaki eşitlikte Δ yerine gelebilecek uygun sayı B) D) alansız bir bölme işleminde; Bölünen bölen x bölüm Bölünen : bölen bölüm Δ + : bölünen : bölen bölüm Δ + x bölünen bölen x bölüm Δ + + Δ tür. MATEMAT LÖĞRETM

11 . Aşağıdaki ifadelerden hangisi yanlıştır? Rasyonel sayılar kümesi sıfır hariç bölme işlemine göre kapalıdır. B) Rasyonel sayılar kümesinde bölme işleminin değişme özelliği yoktur. Rasyonel sayılar kümesinde bölme işleminin birleşme özelliği yoktur. D) Rasyonel sayılar kümesinde bölme işleminin birim elemanı + dir. apalılık özelliği vardır. Örnek: Q, Q Değişme özelliği yoktur. 0 Örnek: : x : x 0 Birleşme özelliği yoktur. Örnek: : : : x : : x : 0 : : 0 x x Rasyonel sayılar kümesinde bölme işleminin birim elemanı + dir. ifadesi yanlıştır çünkü rasyonel sayılar kümesinde bölme işleminin birim elemanı yoktur : + işleminin sonucu 0 B) 0 D) : + (Önce bölme işlemi yapılır.) + + x + (Sadeleştirme yapılır.) + + (şaretler parantez içine dağıtılır ve parantezler kaldırılır.) + (Payda eşitlenir.) (0) 0 0 () () LÖĞRETM 8 MATEMAT

12 + : işleminin sonucu nedir? - B) - - D). ( ). : işleminin sonucu 0 B) D). Aşağıdaki ifadelerden hangisi tanımsızdır? : ( ) + : B) ( ) 0 : + D) : 0 O U.. : işleminin sonucu 8 B) D) L S T. : + işleminin sonucu B). + : işleminin sonucu 8 B) D) D) 8. : : işleminin sonucu nedir? 8.. : işleminin sonucu B) D) 0 B) 0 D) MATEMAT LÖĞRETM

13 . : m eşitliğine göre aşağıdakilerden hangisi yazılabilir? : m B) x m : m D) m :. (-) : (-). işleminin sonucu - B) - D). : a + eşitliğini sağlayan a değeri 0. : +. işleminin 8 sonucu O B) D) B) D) U L S. :. : işleminin sonucu T [ ].. ( ) : ( + ) işleminin sonucu - B) - D) 0 0 B) D). : : : işleminin sonucu 0 B) D). : ise Δ yerine gelebilecek Δ uygun sayı - B) - D) LÖĞRETM 80 MATEMAT

14 . + : Δ : + eşitliğinde Δ - B). + : işleminin sonucu sayısının kaç katıdır? - B) - D) D) a 8. + x eşitliğinde a yerine gelebilecek uygun sayı aşağıdakilerden hangisidir? 8 B) D) 0. inin i 8 olan sayı kaçtır? 8 80 B) 0 0 D) 00. işleminin sonucu O U L S 0 B) D) T. 00 metre uzunluğundaki bir top kumaşın 8 ünün i kaç metredir? 0 B) 0 D) 0 0. a : ve : b ise a.b 0 çarpımı B) - D) -. : + + sayısının katı - B) 0 D). Bir turist grubunun i bayandır. Gruptaki bayanların sayısı 0 olduğuna göre turist grubunda kaç kişi vardır? B) D) MATEMAT 8 LÖĞRETM

15 ÜNTE: RASYONEL SAYILAR ONU: Çok Büyük Sayılar (0 un Pozitif uvvetleri) ve Çok üçük Sayılar (0 un Negatif uvvetleri) ve Bu Sayılarla Yapılan şlemler ÖRNE SORULAR VE ÇÖZÜMLER sayısı aşağıdakilerden hangisine eşittir? x 0 8 B) 0 x 0, x 0 8 D), x 0 0, 00, 000. şeklindeki sayıları 0 un kuvveti olarak yazmak için den sonraki sıfırların sayısı 0 a üs olarak yazılır. Örnek: x x 0 dir. x 0 sayısı seçeneklerde bulunmadığı için sayı düzenlenir. sayısı 0 ile bölünür ve, elde edilir. O halde 0 sayısının üssü artar. x 0, x 0 8 dir. Çok büyük sayılar düzenlenirken katsayı 0 un kuvvetleriyle çarpılır, 0 un üssü azalır. (0,x0 0 x 0 ) 0 un kuvvetlerine bölünürken 0 un üssü artar. (, x 0 0, x 0 ) sayısının bilimsel gösterimi 0, x 0 B), x 0 8 x 0 D) x 0 a x 0 m sayısında a çarpanı ile 0 arasında ( dahil) ve m tam sayı ise bu gösterime bilimsel gösterim denir. O halde bilimsel gösterim; m pozitif tam sayı, a gerçek sayı ve a < 0 ise a x 0 m dir x 0 ( sayısı ile 0 arasında değildir.), x 0 8 (, < 0 ve 8 Z) işleminin sonucu B) 0 00 D) 000 LÖĞRETM 8 MATEMAT

16 0 un tam kuvveti olan iki sayı çarpılırken; üsler toplanır ve toplamın sonucu 0 un üssü olarak yazılır.(üslü sayılarda çarpma işlemi yapılırken tabanlar aynı ise üsler toplanır.) 0 a x 0 b 0 a+b Örneğin; 0 x dir. 0 un tam kuvveti olan iki sayı bölünürken bölünen sayının üssünden bölen sayının üssü çıkarılır ve fark 0 un üssü olarak yazılır. (Üslü sayılarda bölme işlemi yaparken tabanlar aynı ise üsler çıkarılır.) a 0 ab 0 ve 0 a : 0 b 0 a b b Örneğin; 0 0 tir ,8 x 0 m ise m sayısı B) D) ,8 x 0 m x 0 (Sayının sonundaki sıfırların sayısı 0 un kuvvetidir.),8 sayısını elde etmek için 8 sayısı 00 e bölünür. Yani basamak sola gidilir, o halde üs sayı büyür, 0 iken 0 olur. 8 x 0,8 x 0,8 x 0,8 x 0 m ise m dır.. ( x 0 ) + ( x 0 ) + 0 işleminin sonucu x 0 B), x 0, x 0 D) 0 0 un tam kuvveti olan sayılar toplanırken, önce kuvvetler (üsler) eşit değilse, eşitlenir sonra katsayılar toplanır ve bulunan toplam, 0 un kuvveti olan sayıya çarpan olarak yazılır. ( x 0 ) + ( x 0 ) + 0 ( x 0 ) + ( x 0 ) + ( x 0 ) 0 x ( + + ) (0 ortak paranteze alınır, katsayılar toplanır.) x 0, x 0 x 0 seçeneklerde olmadığı için sayısını 0 a böldük ve 0 in üssü arttı, 0 oldu. x 0, x 0 dır. MATEMAT 8 LÖĞRETM

17 . (0, x 0 8 ) (, x 0 ) işleminin sonucu x 0 8 B) x 0 x 0 D) x 0 0 un kuvvetlerini bulunduran (a x 0 m ) şeklindeki sayılar çıkarılırken; önce kuvvetler (üsler) eşit değilse, eşitlenir sonra katsayılar çıkarılır ve bulunan fark 0 un kuvveti olan sayıya çarpan olarak yazılır. 0, x 0 8 x 0 0 x 0 (Virgül sağa kaydıkça yani sayı 0 un kuvvetleri ile çarpıldıkça kuvvet azalır.), x 0 x 0 (Bir basamak sağa kaydı, üs azaldı.) (0, x 0 8 ) (, x 0 ) (0 x 0 ) ( x 0 ) 0 x (0 ) (0 ortak paranteze alınır, katsayılar çıkarılır.) x 0. 0,x0 0,x0 xx0 xx0 işleminin sonucu 0 B) D) un kuvvetlerini bulunduran sayılar çarpılırken; katsayıların çarpımı katsayı olarak 0 un kuvvetlerinin toplamı da 0 a üs olarak yazılır. 0, x 0 x x 0 (0, x ) x (0 x 0 ) x 0 + x 0 0, x 0 x x 0 (0, x ) x (0 x 0 ) 0, x 0 + 0, x 0 0 x 0 0,x0 xx0 x0 0 (Bölünenin üssünden bölenin üssü çıkarılır.) 0,x0 xx0 x ,0 x 0-0, x 0 -m ise m sayısı B) 8 D) 0 (a x 0 m ) sayısında a sayısı 0 un kuvvetleri ile çarpılırken 0 un üssü olan m sayısı azalır. 0,0 sayısı 0 ile çarpılırsa 0, sayısı elde edilir. O halde 0 un üssü azalır. 0 -, 0-8 olur. 0,0 x 0-0, x 0-8 dir. 0, x 0-8 0, x 0 -m ise m 8 dir.. Hidrojen gazının yoğunluğu 0,0000 g/cm tür. Buna göre hidrojen gazının yoğunluğunun bilimsel gösterimi.0 B) 0,.0 0,.0 - D).0 - ÖĞRETM 8 MATEMAT

18 Çok küçük sayılarda bilimsel gösterim: m pozitif tam sayı, a gerçek sayı ve a < 0 olmak üzere a x 0 -m dir. 0,0000 x 0 - a x 0 -m ise a, m tir. 0. x 0 - +, x 0 - işleminin sonucu x 0 - B) x 0-8 x 0 - D) x 0 - Çok küçük sayılarda toplama veya çıkarma işlemi yapmak için önce 0 un kuvvetleri eşitlenir sonra katsayılar arasındaki işlem yapılır ve katsayı olarak yazılır. Sayıları 0 un kuvveti biçiminde düzenlerken; katsayı 0 un kuvvetleriyle çarpılırsa 0 un üssü azalır, katsayı 0 un kuvvetleriyle bölünürse 0 un üssü artar. Örnek;, x 0 - x 0 - (0 ile çarpıldı üs azaldı.) 00 x 0 - x 0 - (0 ile bölündü üs arttı.) x 0 - +, x 0 - x x 0 - ( + ) x 0-00 x 0 - x 0 - (,x0 )x(x0 ). ax0 0 0,x0 ise a sayısı x 0 - B) x 0 - x 0 D) x 0 Çok küçük sayılar çarpılırken; kat sayıların çarpımı katsayı olarak, 0 un kuvvetlerinin toplamı da 0 a üs olarak yazılır. (Çarpma işleminde tabanlar aynı ise üsler toplanır.) 0 - x 0-0 (-) + (-) 0-8 dir. Bölme işleminde ise 0 un kuvvetlerinin farkı 0 a üs olarak yazılır. (Bölme işleminde bölünenin üssünden bölenin üssü çıkarılır.) 8 0 ( 8) ( ) tir. 0 (,x0 )x(x0 ) (x0 )x(x0 ) (x)x(0 x0 ) 0x0 ( ) ( ) + x0 x0 0 0,x0 x0 x0 x0 x0.,.0 0,.0 + 0, işleminin sonucu 0, B) 0 D) 00 Önce 0 un kuvvetleri eşitlenir, sonra toplama ve daha sonra bölme işlemi yapılır.,.0 + 0, ( + ) , ( + ).0.0 (Bölme işleminde üsler çıkartılır.) 0.0 ( ) ( ) MATEMAT 8 LÖĞRETM

19 . Aşağıdaki eşitliklerden hangisi yanlıştır? 0 000, x 0 B), x 0-0,0, x 0 - D) 0 0, x 0 -., x 0 8 0, x 0 m eşitliğinde m yerine hangi sayı gelmelidir? B) 8 0 D). Aşağıdakilerden hangisi bilimsel gösterimdir?.0 - B) 0.0-0,.0 - D).0 -., x 0 -, x 0 n eşitliğinde n yerine hangi sayı gelmelidir? - B) - - D) sayısının bilimsel gösterimi x 0 B) 0, x 0, x 0 8 D), x 0-8 O U L S T 8., işleminin sonucu 0 B) 0 0 D) , işleminin sonucu 0,.0 B),.0.0 D).0. 0,000 x 0 -, x 0 a ise a - B) - - D) -8., a.0 8 ise a sayısı 0,0 B) 0,, D) sayısı kaç basamaklıdır? B) 0 D) LÖĞRETM 8 MATEMAT

20 . a x 0 b 0,0000 ise aşağıdakilerden hangisi doğrudur? a ise b - dır. B) a ise b + dır. a 0, ise b - dır. D) a 0, ise b + dır.. 0,0 x x 0-8 0,00 x 0 - işleminin sonucu aşağıdakilerden hangisidir?, x 0 - B), x 0 - x 0 - D) x işleminin sonucu nedir?.0 B).0 0 D) 0. 8x0 0,x0 işleminin sonucu x0 0 B) 0 00 D) 00 O U L S T A ise A için 0 aşağıdakilerden hangisi doğrudur? işleminin sonucu basamaklı bir sayıdır. B) basamaklı bir sayıdır. ye bölümünden kalan dir. D) e tam bölünür. 0 B) 0 - D) 0 -.,.0-0,.0 - işleminin sonucu.0-0 B) D).0-8. x0 + 0,0x0 işleminin sonucu 0,x0 B) 0 D) 0 MATEMAT 8 LÖĞRETM

21 : işleminin sonucu ,0x0 0, n tam sayısı kaçtır? n x0 eşitliğini sağlayan 0,0 B) 0, 0 D) 00 - B) - D) işleminin sonucu.0. 0,x0,x0 işleminin sonucu 0,x0 + x0 0 B) 0 D) 8 B) D) O U L S T , işleminin.0 sonucu 0 x 0 - B) x ,00 a x 0 - ve 0,0000 x 0 b ise a : b işleminin sonucu aşağıdakilerden hangisidir? -8 B) - D) 8 x 0 - D) x , işleminin sonucu 0,.0 B) 0 D) LÖĞRETM 88 MATEMAT

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif tamsayılar

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ 1 SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

ÜSLÜ SAYILAR. AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama

ÜSLÜ SAYILAR. AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama KURAL: Bir sayının belli bir sayıda yan yana çarpımının kolay yoldan gösterimine üslü sayılar denir. Örneğin 5 sayısının

Detaylı

ÜSLÜ SAYILAR SİBEL BAŞ AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF

ÜSLÜ SAYILAR SİBEL BAŞ AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF ÜSLÜ SAYILAR SİBEL BAŞ 20120907010 AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF 1 ANLATIMI ÜSLÜ SAYILAR KONU Üslü sayılar konu anlatımı içeriği; Üslü sayıların gösterimi, Negatif üslü

Detaylı

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi...

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi... İÇİNDEKİLER HARFLİ İFADELER Harfli İfadeler ve Elemanları... 1 Benzer Terim... Harfli İfadenin Terimlerini Toplayıp Çıkarma... Harfli İfadelerin Terimlerini Çarpma... Harfli İfadelerde Parantez Açma...

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3)": ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3): ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4 Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I Kolay Temel Matematik. 8 ( + ) A) 7 B) 8 C) 9 D) 0 E) 6.! ( )": ( ) A) B) 0 C) D) E). 7. + 5 A) 6 B) 7 C) 8 D)

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

7 2 işleminin sonucu kaçtır? A) 7 B) 6 C) 5 D) 4 E) 3. Not : a buluruz. Doğru Cevap : E şıkkı

7 2 işleminin sonucu kaçtır? A) 7 B) 6 C) 5 D) 4 E) 3. Not : a buluruz. Doğru Cevap : E şıkkı ) 3 4 5 3 0 A) B) 6 C) 5 D) 4 E) 3 0 Not : a 0 3 4 5 3 4 5 3 3 3.3.3... ÜSLÜ SAYILAR QUİZİ VE CEVAPLARI 6 4 4 3 buluruz. Doğru Cevap : E şıkkı 0 ) n bir doğal saı olmak üzere, ( ) ( ) n ( ) n n n A) 4

Detaylı

1-)BİLİNMESİ GEREKEN ÜSLÜ İFADELER VE DEĞERLERİ

1-)BİLİNMESİ GEREKEN ÜSLÜ İFADELER VE DEĞERLERİ 1-)BİLİNMESİ GEREKEN ÜSLÜ İFADELER VE DEĞERLERİ * 2 0 = * 3 0 = * 4 0 = * 5 0 = * 2 1 = * 3 1 = * 4 1 = * 5 1 = * 2 2 = * 3 2 = * 4 2 = * 5 2 = * 2 3 = * 3 3 = * 4 3 = * 5 3 = * 2 4 = * 3 4 = * 4 4 = *

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik 1. Ünite: Geometriden Olasılığa 1. Bölüm: Yansıyan ve Dönen Şekiller, Fraktallar Yansıma, Öteleme, Dönme Fraktallar 2. Bölüm: Üslü Sayılar Tam

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c 138. a ve b gerçel sayılardır. a < a, 6a b 5= 0 b ne olabilir? (11) 4 5 8 11 1 139. < 0 olmak üzere, 4 3. =? ( 3 ) a 1 140. < a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9,4,7 3,

Detaylı

Örnek...4 : P(x) = 3x + 2 ve Q(x)= x 2 +4x -3 polinomları için a) P(x). Q(x) b)x.p(x) 2.Q(x) işlem lerini ya pınız.

Örnek...4 : P(x) = 3x + 2 ve Q(x)= x 2 +4x -3 polinomları için a) P(x). Q(x) b)x.p(x) 2.Q(x) işlem lerini ya pınız. POLİNOMLARDA Polinomlarda To plama ve Çıkarma P(x) ve Q(x) iki polinom olsun. P(x) + Q(x) veya P(x) Q(x) işlemi yapılırken eşit dereceli terimlerin katsayıları işlemine göre toplanır veya çıkarılır. Örnek...1

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde ezberbozan serisi MATEMATİK GEOMETRİ KPSS 2017 SORU BANKASI eğitimde tamamı çözümlü 30. Kerem Köker Kenan Osmanoğlu Levent Şahin Uğur Özçelik Ahmet Tümer Yılmaz Ceylan KOMİSYON KPSS EZBERBOZAN MATEMATİK

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

KESİRLER BİRİM KESİRLERİ SIRALAMA. Birim kesirlerde paydası büyük olan kesir daha küçüktür.

KESİRLER BİRİM KESİRLERİ SIRALAMA. Birim kesirlerde paydası büyük olan kesir daha küçüktür. BİRİM KESİRLERİ SIRALAMA Bir bütünün eş parçalarından her birine kesir denir. Payı olan kesirlere birim kesir denir. Birim kesirlerde paydası büyük olan kesir daha küçüktür.,, 8 kesirlerini sıralayınız.

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

ECEM ERDURU GAMZE SERİN ZEHRA SABUR EMİNE ÖLMEZ. o TAMSAYILAR KONUSU ANLATILMAKTADIR

ECEM ERDURU GAMZE SERİN ZEHRA SABUR EMİNE ÖLMEZ. o TAMSAYILAR KONUSU ANLATILMAKTADIR ECEM ERDURU GAMZE SERİN ZEHRA SABUR EMİNE ÖLMEZ o TAMSAYILAR KONUSU ANLATILMAKTADIR Sıfırın sağındaki sayılar pozitif tam sayılar, sıfırın solundaki sayılar negatif tam sayılardır. Pozitif tam sayılar,

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

3 7 üs(kuvvet) 5 2 ( 4 3 ( 7 5 (

3 7 üs(kuvvet) 5 2 ( 4 3 ( 7 5 ( Bu konuda üslü sayılarla ilgili kazanımları maddeler halide işleyeceğiz Normalde 8 sınıf matematik kazanımları üslü sayılar konusunda negatif üs kavramı ile başlamasına rağmen bu çalışma kağıdında 6sınıf

Detaylı

MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA

MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA 3. Ondalık Sayılarda İşlemler: Toplama - Çıkarma: Ondalık kesirler toplanırken, virgüller alt alta gelecek şekilde yazılır ve doğal sayılarda toplama-çıkarma

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır?

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır? BÖLME İŞLEMİ VE ÖZELLİKLERİ A, B, C, K doğal sayılar ve B 0 olmak üzere, BÖLÜNEN A B C BÖLEN BÖLÜM Örnek...4 : x sayısının y ile bölümündeki bölüm 2 ve kalan 5 tir. y sayısının z ile bölümündeki bölüm

Detaylı

MODÜLER ARİTMETİK. Örnek:

MODÜLER ARİTMETİK. Örnek: MODÜLER ARİTMETİK Bir doğal sayının ile bölünmesinden elde edilen kalanlar kümesi { 0,, } dir. ile bölünmesinden elde edilen kalanlar kümesi { 0,,, } tür. Tam sayılar kümesi üzerinde tanımlanan {( x, y)

Detaylı

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz.

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz. MATEMATİK ASAL ÇARPANLARA AYIRMA A S A L Ç A R P A N L A R A A Y I R M A T a n ı m : Bir tam sayıyı, asal sayıların çarpımı olarak yazmaya, asal çarpanlarına ayırma denir. 0 sayısını asal çarpanlarına

Detaylı

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 1. ve y aralarında asal iki doğal sayıdır. 7 y 11 olduğuna göre, y farkı 5. 364 sayısının en büyük asal böleni A) 3 B) 7 C) 11 D) 13 E) 17 A) B) 3 C) 4

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

TAM SAYILAR. Tam Sayılarda Dört İşlem

TAM SAYILAR. Tam Sayılarda Dört İşlem TAM SAYILAR Tam Sayılarda Dört İşlem Pozitif ve negatif tam sayılar konu anlatımı ve örnekler içermektedir. Tam sayılarda dört işlem ve bu konuyla ilgili örnek soru çözümleri bulunmaktadır. Grup_09 29.11.2011

Detaylı

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES)

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) 00000000001 AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) plam cevaplama süresi 150 akikadır. (,5 saat) SAYISAL BÖLÜM SAYISAL - 1 TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal

Detaylı

ÇARPANLAR VE KATLAR I sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden A) B) C) D)

ÇARPANLAR VE KATLAR I sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden A) B) C) D) 8. Sınıf MATEMATİK ÇARPANLAR VE KATLAR I. Aşağıdakilerden hangisi 6 nın çarpanlarından biridir? A) 3 B) 6 C) 8 D) TEST. 360 sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden hangisidir? A) 3. 3.

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

TEMEL KAVRAMLAR A: SAYI Sayıları ifade etmeye yarayan sembollere rakam denir. Ör: 0,1,2,3,4,5,6 Rakamların çokluk belirtecek şekilde bir araya getirilmesiyle oluşturulan ifadeler ifadesine sayı denir.

Detaylı

www.derssunumlari.com

www.derssunumlari.com . BÖLÜM: KESİRLER HER YERDE Kesirleri Karşılaştıralım, Toplayalım ve Çıkaralım 7 7 7 ile kesirlerini karşılaştırınız ve bu 8 8 kesirleri sayı doğrusunda gösteriniz. 8 Pay üï Payda : Bir bütünün kaç parçaya

Detaylı

Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. b Payda

Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. b Payda Matematik6 Bir Bakışta Matematik Kazanım Defteri Özet bilgi alanları... Kesirlerle İşlemler KESİR ve KESİRLERDE SIRALAMA Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. Bir kesirde

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır.

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır. Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I YGS Temel Matematik. 8 + 4. + 8 : 4 işleminin sonucu A) 8 B) 9 C) D) 5 E) 8 5. a ve b birer pozitif tam sayıdır.

Detaylı

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde 1. Aşağıdaki kümelerden hangisi sonsuz küme belirtir? A) A = { x 4 < x < 36,x N} B) B = { x 19 < x,x asal sayı} C) C = { x x = 5k,0 < x < 100,k Z} D) D = { x x = 5, x Z} E) E = { x x < 19,x N}. A, B ve

Detaylı

Rasyonel Sayılarla İşlemler. takip edilir.

Rasyonel Sayılarla İşlemler. takip edilir. Matematik Bir Bakışta Matematik Kazanım Defteri Rasyonel Sayılarla İşlemler Özet bilgi alanları... RASYONEL SAYILARLA ÇOK ADIMLI İŞLEMLER Çok adımlı işlemlerde şu sıra takip edilir : Parantez içindeki

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 10 Mayıs Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 10 Mayıs Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / 0 Mayıs 009 Matematik Soruları ve Çözümleri. ( ) 4 işleminin sonucu kaçtır? A) B) C) 4 D) E) 6 Çözüm ( ) 4 ( ) 4 4 6.

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

MERKEZİ ORTAK SINAV KAZANDIRAN MATEMATİK FÖYÜ

MERKEZİ ORTAK SINAV KAZANDIRAN MATEMATİK FÖYÜ MERKEZİ ORTAK SINAV KAZANDIRAN MATEMATİK FÖYÜ ÖRNEK: 18 sayısının pozitif çarpanları nelerdir? Çarpımları 18 olan sayılar arayalım. 18 = 1. 18 18 =. 9 18 =. 6 Her doğal sayı iki doğal sayının çarpımı şeklinde

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır. Sevgili Öğrenciler, Matematik ilköğretimden üniversiteye kadar çoğu öğrencinin korkulu rüyası olmuştur. Buna karşılık, istediğiniz üniversitede okuyabilmeniz büyük ölçüde YGS ve LYS'de matematik testinde

Detaylı

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA İÇİNDEKİLER Matematiğe Giriş... Temel Kavramlar... Bölme - Bölünebilme Kuralları... 85 EBOB - EKOK... Rasyonel Sayılar... Basit Eşitsizlikler... 65 Mutlak

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme kpss 04 akıcı ayrıntılı güncel konu anlatımları örnekler yorumlar uyarılar pratik bilgiler ösym tarzında özgün sorular ve açıklamaları matematik sayısal akıl yürütme mantıksal akıl yürütme 0 kpss de 85

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer FİZİK İÇİN MATEMATİK tyuiopasdfghjklzxcvbnmqwerty --------------------------------------- uiopasdfghjklzxcvbnmqwertyui

Detaylı

2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM

2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM 2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM DOĞAL SAYILAR ve DÖRT İŞLEM TEST 1 1) Güzelyurt ta oturan bir aile piknik için arabayla Karpaz a gidip, geri dönüyor. Bu yolculuk sonunda arabanın km göstergesini kontrol

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu 016-017 Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları 1) 3. [15 3(8: )] 9 =? a) 16 b) 14 c) 0 d) 14 e) 16 6)

Detaylı

her biri 3 1 biçiminde de gösterilebilir. 5 dir.

her biri 3 1 biçiminde de gösterilebilir. 5 dir. Bölüm KESİRLER. Kesir ve Kesir Çeşitleri Kesir Kavramı Şekildeki bütün dört eş parçaya bölünmüş bun- lardan biri taranmıştır. Taralı kısım bu dört eş paydan biridir. Bu büyüklüğü sayılarla biçiminde gösterir;

Detaylı

Çözüm : * ebob = = * ekok = = * ve 36 sayılarının ebob ve ekok u kaçtır?

Çözüm : * ebob = = * ekok = = * ve 36 sayılarının ebob ve ekok u kaçtır? 1) 24 ve 36 sayılarının ebob ve ekok u kaçtır? 24 36 2 * ebob = 2.2.3 =12 12 18 2 * ekok = 2.2.2.3.3 = 72 6 9 2 3 9 3 * 1 3 3 1 Ebob ( 24, 36 ) = 12 ( * lı olanların çarpımı) Ekok ( 24, 36 ) = 72 ( Hepsinin

Detaylı

TAM SAYILARDA ÇARPMA BÖLME İŞLEMLERİ ESRA ÇAKIR

TAM SAYILARDA ÇARPMA BÖLME İŞLEMLERİ ESRA ÇAKIR Kazanım: Tam sayılarla çarpma ve bölme işlemleri yapar. Tam sayılarla işlemler yapmayı gerektiren problemleri çözer. HATIRLATMA :TAM SAYILARDA TOPLAMA İŞLEMİ Aynı işaretli tam sayılar toplanırken işaretleri

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

1 ÜNİTE SAYILAR VE İŞLEMLER

1 ÜNİTE SAYILAR VE İŞLEMLER 1 ÜNİTE SAYILAR VE İŞLEMLER TAM SAYILARLA ÇARPMA VE BÖLME İŞLEMLERİ 7.1.1.1. Tam sayılarla çarpma ve bölme işlemlerini yapar. 7.1.1.2. Tam sayılarla işlemler yapmayı gerektiren problemleri çözer. 7.1.1.3.

Detaylı

EĞİTİM BİLİMLERİ MERKEZİ

EĞİTİM BİLİMLERİ MERKEZİ EĞİTİM BİLİMLERİ MERKEZİ 0 EBİM KPSS Kurslarının öğretmen adaylara armağanıdır. SAYILAR Z{,-,-,-,0,,,, } Z - {,-,-,-} negatif tam sayılar kümesi {0} (elemanı 0 olan bir küme) Z + {,,,,n,n+, } pozitif

Detaylı

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE 2011 ARDIŞIK SAYILAR lab2_pc32 BERRIN_ESMA_OZGE 29.11.2011 İçindekiler bu konu 4. Sınıf müfredatında yer almaktadır... 2 ardisik sayılarda dört işlem... Hata! Yer işareti tanımlanmamış. ardisik sayilarda

Detaylı

ÇARPANLAR VE KATLAR. Başarı Başaracağım Diye Başlayanındır. 1

ÇARPANLAR VE KATLAR. Başarı Başaracağım Diye Başlayanındır. 1 ÇARPANLAR VE KATLAR Başarı Başaracağım Diye Başlayanındır. 1 ÖRNEK 1 48 sayısının çarpanlarını bulalım. 1.Gökkuşağı yöntemi 48 sayısının çarpanlarını küçükten büyüğe sıralayarak eşleştiriniz. 48 çarpanlarını

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) :5-3 = = 11 ( C )

Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) :5-3 = = 11 ( C ) Önce ÇARPMA ve Bölme, sonra Toplama ve Çıkarma. 3.4+10:5-3 = 12+2-3 = 11 ( C ) Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) 72:24+64:16 = 3+4 = 7 ( B

Detaylı

11. RASYONEL SAYILARIN SIRALANMASI

11. RASYONEL SAYILARIN SIRALANMASI 11. RASYONEL SAYILARIN SIRALANMASI SIRALAMA SEMBOLLERİ Sıralama sembolleri, sayıların sıralanma şeklini gösterirler. Yani, sıralama sembolleri sayıların küçükten büyüğe veya büyükten küçüğe doğru sıralanmasını

Detaylı

BÖLME - BÖLÜNEBİLME Test -1

BÖLME - BÖLÜNEBİLME Test -1 BÖLME - BÖLÜNEBİLME Test -1 1. A saısının 6 ile bölümünden elde edilen bölüm 9 kalan olduğuna göre, A saısı A) 3 B) C) 7 D) 8 E) 9. x, N olmak üzere, x 6 ukarıdaki bölme işlemine göre x in alabileceği

Detaylı

MATEMATİK SORULARI 1) 66 ile 6 doğal sayıları arasında kaç tane doğal sayı vardır? a) 55 b) 56 c) 59 d) 60 2) sayısında 3 rakamlarının basamak

MATEMATİK SORULARI 1) 66 ile 6 doğal sayıları arasında kaç tane doğal sayı vardır? a) 55 b) 56 c) 59 d) 60 2) sayısında 3 rakamlarının basamak MATEMATİK SORULARI ) 66 ile 6 doğal sayıları arasında kaç tane doğal sayı vardır? a) b) 6 c) 9 d) 60 2) 2 sayısında rakamlarının basamak değerleri toplamı kaçtır? a) 00 b)2 c)000 d)00000 ) 208 sayısının

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER HEDEFLER İÇİNDEKİLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER Özdeşlikler Birinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemler Yüksek Dereceden Denklemler Eşitsizlikler

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

6BÖLÜM ONDALIK SAYILAR

6BÖLÜM ONDALIK SAYILAR 6BÖLÜM ONDALIK SAYILAR ONDALIK SAYILAR TEST ) Aşağıdaki kesirleri ondalık sayıya çeviriniz. a) 3 b) 2 c) 9 d) 4 5 25 20 2) Aşağıdaki ondalık sayıların basamaklarındaki rakamların sayı ve basamak değerlerini

Detaylı

1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ. 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199

1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ. 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199 1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199 2-Onlar basamağı 5, yüzler basamağı 2 ve binler basamağı 6

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme kpss 04 akıcı ayrıntılı güncel konu anlatımları örnekler yorumlar uyarılar pratik bilgiler ösym tarzında özgün sorular ve açıklamaları matematik sayısal akıl yürütme mantıksal akıl yürütme 0 kpss de 85

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

4BÖLÜM. ASAL SAYILAR, BÖLÜNEBİLME ve ÇARPANLARA AYIRMA

4BÖLÜM. ASAL SAYILAR, BÖLÜNEBİLME ve ÇARPANLARA AYIRMA 4BÖLÜM ASAL SAYILAR, BÖLÜNEBİLME ve ÇARPANLARA AYIRMA ASAL SAYILAR, BÖLÜNEBİLME ve ÇARPANLARA AYIRMA TEST 1 1) Aşağıdaki sayılardan kaç tanesi 80 sayısının çarpanıdır? 1,2,3,4,5,6,7,8,9,10,12,15,18,20,25,30,40,45,80

Detaylı

Sıfırın sağındaki sayılar pozitif tam sayılar, sıfırın solundaki sayılar negatif

Sıfırın sağındaki sayılar pozitif tam sayılar, sıfırın solundaki sayılar negatif TAM SAYILAR NEDİR? Sıfırın sağındaki sayılar pozitif tam sayılar, sıfırın solundaki sayılar negatif tam sayılardır.pozitif tam sayılar,negatif tam sayılar ve sıfır sayısının birleşmesi sonucu tam sayılar

Detaylı

MODÜLER ARİTMETİK Test -4

MODÜLER ARİTMETİK Test -4 MODÜLER ARİTMETİK Test -4 1. A doğal sayısının 7 ye bölümündeki kalan 4, B doğal sayısının 7 ye bölümündeki kalan 5 tir. Buna göre, A toplamının 7 ye bölümündeki kalan 3B A) 0 B) 1 C) D) 3 E) 4 5. I. 1

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER. ÜNİTE DENKLEM VE EŞİTSİZLİKLER Gerçek Sayılar... 4 Doğal Sayılarda İşlemler... 4 Tam Sayılar... 4 Rasyonel Sayılar... 5 İrrasyonel Sayılar... 5 Gerçek (Reel) Sayılar... 6 9 Konu

Detaylı

4 BÖLÜNEBÝLME KURALLARI ve BÖLME ÝÞLEMÝ

4 BÖLÜNEBÝLME KURALLARI ve BÖLME ÝÞLEMÝ ÖLÜNÝLM KURLLRI ve ÖLM ÝÞLMÝ YGS MTMTÝK. Rakamları farklı beş basamaklı 8y doğal sayısı 3 ile tam bölünebildiğine göre, + y toplamı kaç farklı değer alabilir?(). ltı basamaklı y tek doğal sayısının hem

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I Üniversite Hazırlık / YGS Kolay Temel Matematik 0 KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I. 8 ( 3 + ) A) 7 B) 8 C) 9 D) 0 E) 6. 3! 3 ( 3 3)": ( 3) A) B) 0 C) D) E) 3. 7 3. + 5 A) 6 B) 7 C) 8 D) 0

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13 TANIM Z tam sayılar kümesinde tanımlı ={(x,y): x ile y nin farkı n ile tam bölünür} = {(x,y): n x-y, n N + } bağıntısı bir denklik bağıntısıdır. (x,y) ise x y (mod

Detaylı

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Đşlem ĐŞLEM A ve A x A nın bir alt kümesinden A ya her fonksiyona ikili işlem denir. Örneğin toplama, çıkarma, çarpma birer işlemdir. Đşlemler

Detaylı

üslü sayılar temel kurallar-1

üslü sayılar temel kurallar-1 üslü sayılar temel kurallar- Kazanım :Üslü ifadelerle ilgili temel kuralları anlar, birbirine denk ifadeler oluşturur. Üslü Sayılarda Çarpma İşlemi. 0. 0 işleminin sonucunun 00 olduğunu biliyoruz.bu. =....

Detaylı

Tek Doğal Sayılar; Çift Doğal Sayılar

Tek Doğal Sayılar; Çift Doğal Sayılar Bölüm BÖLÜNEBİLME VE ÇARPANLARA AYIRMA. Bölünebilme Kuralları Bir a doğal sayısı bir b sayma sayısına bölündüğünde bölüm bir doğal sayı ve kalan sıfır ise, a doğal sayısı b sayma sayısına bölünebilir.

Detaylı

matematik sayısal ve mantıksal akıl yürütme

matematik sayısal ve mantıksal akıl yürütme çöz kazan matematik sayısal ve mantıksal akıl yürütme kpss 2015 ÖSYM sorularına en yakın tek kitap tamamı çözümlü geometri 2014 kpss de 94 soru yakaladık soru bankası Kenan Osmanoğlu, Kerem Köker KPSS

Detaylı

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir.

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. 1 B)ÇARPANLARA AYIRMA VE ÖZDEŞLİKLER: Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. Çarpanlara Ayırma Yöntemleri: 1)Ortak Çarpan Parantezine Alma:

Detaylı