BÖLME - BÖLÜNEBİLME Test -1

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BÖLME - BÖLÜNEBİLME Test -1"

Transkript

1 BÖLME - BÖLÜNEBİLME Test A saısının 6 ile bölümünden elde edilen bölüm 9 kalan olduğuna göre, A saısı A) 3 B) C) 7 D) 8 E) 9. x, N olmak üzere, x 6 ukarıdaki bölme işlemine göre x in alabileceği en küçük değer A) 38 B) 39 C) 1 D) 3 E). Toplamları 173 olan iki doğal saıdan büüğü küçüğüne bölündüğünde bölüm 9 kalan 13 olduğuna göre, bu saıların büüğü A) 16 B) 17 C) 18 D) 19 E) x, N olmak üzere, x x, N olmak üzere, x 9 ukarıdaki bölme işlemine göre nin alabileceği kaç farklı değer vardır? A) 10 B) 9 C) 8 D) 7 E) 6 ukarıdaki bölme işlemine göre, nin alabileceği kaç farklı tamsaı değeri vardır? A) B) C) 6 D) 7 E) 8 7. x,, z N olmak üzere, x 7 3 z 1 Yukarıdaki bölme işlemlerine göre x in z türünden eşiti aşağıdakilerden hangisidir? A) z + 7 B) 10z + 1 C) 10z + 17 D) 1z + 7 E) 1z + 1. x, N olmak üzere, x 8 8. x, N olmak üzere, x 7 x + 6 ukarıdaki bölme işlemine göre x in alabileceği en büük değer A) 7 B) 8 C) 9 D) 61 E) Yukarıdaki bölme işlemlerine göre x A) 106 B) 108 C) 11 D) 116 E) 10

2 BÖLME - BÖLÜNEBİLME Test xz7 dört basamaklı xz üç basamaklı doğal saı olmak üzere, xz7 xz 13. x9 üç basamaklı bir doğal saıdır. x9 3 9 verilen bölme işlemine göre bölüm ile kalanın toplamı Yukarıdaki bölme işlemine göre x. çarpımı A) 7 B) 8 C) 17 D) 18 E) 107 A) 1 B) 8 C) 36 D) E) 10. Bir A saısının 7 ile bölümünden kalan olduğuna göre, A saısının 19 ile bölümünden kalan 1. a, b, c N olmak üzere, a b 3 b c 6 A) B) 7 C) 11 D) 1 E) x,, z N olmak üzere, x 3 8 z 3 7 ukarıdaki bölme işlemlerine göre a nın alabileceği en küçük değer A) 6 B) 66 C) 67 D) 68 E) Bir bölme işleminde; bölen 1, bölüm 7 ve kalan 8 olduğuna göre, bölünen saı ukarıdaki bölme işlemlerine göre x in ile bölümünden A) 8 B) 86 C) 9 D) 9 E) 96 A) 9 B) 1 C) 13 D) 1 E) abab beş basamaklı ab iki basamaklı bir saıdır. abab ab 1. a, b, c doğal saılar olmak üzere, a b 6 b 7 c ukarıdaki bölme işlemlerine göre a saısının 1 ile bölümünden Yukarıdaki bölme işlemine göre, bölüm ile kalanın toplamı A) 101 B) 10 C) 1010 D) 101 E) 101 A) 7 B) 8 C) 9 D) 10 E) 11 1 E B 3 B E C 6 E 7 E 8 D 9 C 10 A 11 C 1 B 13 C 1 C 1 C 16 D 0

3 BÖLME - BÖLÜNEBİLME Test - 1. İki doğal saıdan biri diğerine bölündüğünde bölüm 13 kalan 7 dir. Bölünen ve bölenin toplamı 119 olduğuna göre, küçük olan saı A) 8 B) 9 C) 10 D) 11 E) 1. x, N olmak üzere, x 1 7 ukarıdaki bölme işlemine göre x in alabileceği en büük değer A) 8 B) 87 C) 89 D) 91 E) 93. x, N olmak üzere, x 6 ukarıdaki bölme işlemine göre x in alabileceği en küçük değer A) 160 B) 166 C) 170 D) 176 E) 180. a, b, c N olmak üzere, a b b c Yukarıdaki bölme işlemlerine göre, a nın c türünden değeri aşağıdakilerden hangisidir? A) 10c + B) 10c + 1 C) 1c + 1 D) 0c + 1 E) 0c x N, ab iki basamaklı doğal saı olmak üzere, x 3 6. x,, z N olmak üzere, x z 3 ab ukarıdaki bölme işlemine göre ab nin alabileceği kaç farklı değer vardır? A) 11 B) 1 C) 13 D) 1 E) 1 ukarıdaki bölme işlemlerine göre, x z 6 z işleminin sonucu A) 1 B) C) 3 D) E) 7 7 1

4 BÖLME - BÖLÜNEBİLME Test x iki basamaklı bir saıdır. 1. Dört basamaklı 16x saısı ile tam bölünebildiğine göre x in alabileceği değerler toplamı kaç- 9x 16 tır? Yukarıdaki bölme işlemine göre x in alabileceği değerler toplamı A) 8 B) 10 C) 1 D) 1 E) 18 A) B) 8 C) 10 D) 13 E) 1 8. x üç basamaklı bir doğal saıdır. a,z N olmak üzere, 13. Rakamları birbirinden farklı, altı basamaklı x6 saısı 6 ile tam bölünebildiğine göre, x+ toplamının alabileceği en büük değer x 1 a z A) 7 B) 10 C) 13 D) 1 E) 16 ukarıdaki bölme işlemlerine göre z nin alabileceği kaç farklı değer vardır? A) 6 B) 7 C) 8 D) 9 E) basamaklı 1x saısı 3 ile tam bölünebildiğine göre, x in alabileceği kaç farklı değer vardır? 1. Beş basamaklı 37x8 saısı 9 ile tam bölünebildiğine göre x A) B) 3 C) D) E) 6 A) B) 3 C) D) E) 6 1. Dört basamaklı 1x saısı 9 ile tam bölünebildiğine göre, x 10. Beş basamaklı 73xx saısı 3 ile tam bölünebildiğine göre x in alabileceği değerler toplamı A) 8 B) 7 C) D) 3 E) 1 A) 8 B) 10 C) 1 D) 1 E) Dört basamaklı x7 saısı 11 ile tam bölünebildiğine göre x 11. Altı basamaklı xxx saısı 3 ile tam bölünebildiğine göre nin alabileceği değerler toplamı A) 9 B) 10 C) 1 D) 1 E) 18 A) 8 B) 7 C) 6 D) E) 1 A C 3 C E E 6 D 7 E 8 B 9 C 10 D 11 D 1 C 13 A 1 D 1 B 16 A

5 BÖLME - BÖLÜNEBİLME Test Altı basamaklı 176 saısının e bölümündeki A) 0 B) 1 C) D) 3 E). x = 133 = 383 olduğuna göre, x + toplamının 9 ile bölümündeki A) B) C) 6 D) 7 E) 8. Beş basamaklı 817 saısının 6 a bölümündeki A) 1 B) C) 3 D) E) çarpımının 9 a bölümünde- 6. x = 6 = 317 olduğuna göre, ki 3 x A) 0 B) C) 3 D) E) 7 3. Beş basamaklı 376 saısının 9 a bölümündeki A) 3 B) C) 6 D) 7 E) 8 7. Altı basamaklı 1673 saısının 11 e bölümündeki A) B) C) 8 D) 9 E) 10. x = 7 = 13 olduğuna göre, x. çarpımının 9 ile bölümündeki A) 3 B) C) D) 6 E) basamaklı saısının 9 a bölümündeki A) B) 3 C) D) 6 E) 7

6 BÖLME - BÖLÜNEBİLME Test Altı basamaklı 716 saısının 1 e bölümündeki A) B) C) 8 D) 9 E) Dört basamaklı 3x saısının e bölümündeki kalan 3 olduğuna göre, x in alabileceği değerler toplamı A) 9 B) 10 C) 1 D) 1 E) Beş basamaklı 37 saısının 1 e bölümündeki A) 3 B) C) 9 D) 1 E) 1 1. Beş basamaklı x7 saısı 1 e tam bölünebildiğine göre x in alabileceği kaç farklı değer vardır? A) 3 B) C) 6 D) 7 E) Altı basamaklı 611 saısının 36 a bölümündeki A) 8 B) 11 C) 1 D) 0 E) 7 1. Beş basamaklı 37x6 saısı 36 a tam bölünebildiğine göre x in alabileceği değerler toplamı A) B) 7 C) 9 D) 10 E) Altı basamaklı 90x3 saısı e tam bölünebildiğine göre x in alabileceği değerler toplamı 1. Beş basamaklı 73x1 saısının 9 a bölümündeki kalan 7 olduğuna göre, x A) B) 3 C) D) E) 7 A) B) 6 C) 9 D) 11 E) 13 1 C E 3 D B E 6 A 7 A 8 B 9 A 10 D 11 B 1 B 13 D 1 C 1 E 16 E

7 BÖLME - BÖLÜNEBİLME Test - 1. Beş basamaklı 7x7 saısının 3 ile bölümünden elde edilen kalan 1 olduğuna göre, x in alabileceği değerler toplamı A) 9 B) 1 C) 1 D) 1 E) 18. Beş basamaklı 6x3 saısının 36 ile bölümünden kalan 13 olduğuna göre, x in alabileceği değerler toplamı A) 6 B) 8 C) 10 D) 1 E) 1. 9 a tam bölünen dört basamaklı x saısının ile bölümünden kalan 3 tür. Buna göre x in alabileceği değerler toplamı A) 6 B) 7 C) 9 D) 11 E) 1 6. Dört basamaklı 7x3 saısı e tam bölünmektedir. Buna göre, x in alabileceği değerler toplamı A) 10 B) 11 C) 1 D) 13 E) 1 3. Beş basamaklı 7x saısının 1 ile bölümünden kalan 7 olduğuna göre, x in alabileceği kaç farklı değer vardır? A) B) 6 C) 7 D) 9 E) Beş basamaklı x3 saısı e tam bölünmektedir. Buna göre, x in alabileceği değerler toplamı A) 11 B) 1 C) 13 D) 1 E) 1. Rakamları farklı, dört basamaklı 7x3 saısının 1 ile bölümünden kalan 1 olduğuna göre, x in alabileceği kaç farklı değer vardır? A) B) 3 C) D) E) 6 8. Rakamları farklı, basamaklı 9x saısının ile bölümünden kalan 38 olduğuna göre, x in değeri A) 0 B) C) D) 6 E) 8

8 BÖLME - BÖLÜNEBİLME Test - 9. Dört basamaklı 3x saısının 36 ile bölümünden elde edilen kalan olduğuna göre, x in alabileceği kaç farklı değer vardır? A) B) 3 C) D) E) Dört basamaklı 6x saısının e bölümünden kalan 3 olduğuna göre, x in alabileceği değerler toplamı A) 6 B) 7 C) 9 D) 10 E) Dört basamaklı, rakamları farklı 7x saısının 1 ile bölümünden kalan 7 olduğuna göre, x in alabileceği değerlerin toplamı A) B) 7 C) 8 D) 1 E) 1 1. Rakamları farklı, beş basamaklı 73x saısı 36 ile tam bölünebildiğine göre x in değeri A) 1 B) C) D) 6 E) Beş basamaklı 6x3 saısının 30 ile bölümünden elde edilen kalan 1 olduğuna göre, x in alabileceği kaç farklı değer vardır? A) 1 B) C) 3 D) E) 1. Beş basamaklı 6x3 saısının 90 a bölümünden kalan olduğuna göre, x in değeri A) 0 B) 1 C) 3 D) E) 6 1. Dört basamaklı x saısının ile bölümünden elde edilen kalan olduğuna göre, x in en büük değeri A) 1 B) 3 C) D) 8 E) basamaklı saısının 9 a bölümünden A) B) C) 6 D) 7 E) 8 1 D B 3 E B D 6 B 7 A 8 A 9 B 10 C 11 D 1 D 13 A 1 C 1 E 16 C 6

9 BÖLME - BÖLÜNEBİLME Test e tam bölünen dört basamaklı, rakamları farklı 9x saısının ile bölümünden kalan olduğuna göre, x in alabileceği kaç farklı değer vardır? A) B) 3 C) D) E) 6. e tam bölünen dört basamaklı x6 saısının 9 a bölümünden kalan 3 olduğuna göre, x in alabileceği değerler toplamı A) 1 B) 1 C) 18 D) 1 E). 11 e tam bölünen beş basamaklı 73x saısının ile bölümünden kalan 3,olduğuna göre, x in alabileceği değerlerin toplamı A) 8 B) 9 C) 10 D) 1 E) e tam bölünen, beş basamaklı 8x3 saısının 10 a bölümünden kalan 7, olduğuna göre, x in değeri A) B) 3 C) D) E) a tam bölünen, beş basamaklı x7 saısının 10 ile bölümünden kalan 3, olduğuna göre, x A) 1 B) C) 3 D) 6 E) 7 7. Beş basamaklı, rakamları farklı 73x saısının ile bölümünden kalan, 9 ile bölümünden kalan olduğuna göre, x in değeri A) 0 B) C) 3 D) E) 7. Beş basamaklı, rakamları farklı 83x6 saısının ile bölümünden kalan 1, 11 ile bölümünden kalan olduğuna göre, x A) 0 B) 1 C) D) E) e tam bölünen, dört basamaklı 6x saısının ile bölümünden kalan 3, olduğuna göre, x in alabileceği değerlerin toplamı A) 8 B) 9 C) 10 D) 11 E) 1

10 BÖLME - BÖLÜNEBİLME Test basamaklı saısının ile bölümünden kalan x, 9 ile bölümünden kalan olduğuna göre, x + toplamı A) B) C) 6 D) 7 E) x doğal saısının 9 ile bölümünden kalan 3, doğal saısının 9 ile bölümünden kalan olduğuna göre, x +x + toplamının 9 ile bölümünden A) B) 3 C) D) E) basamaklı saısının 8 ile bölümünden kalan x, 11 ile bölümünden kalan olduğuna göre, x. çarpımı A) 1 B) 1 C) 16 D) 0 E) 1. x doğal saısının 7 ile bölümünden kalan, doğal saısının 7 ile bölümünden kalan 6 olduğuna göre, x + 3x + toplamının 7 ile bölümünden A) 0 B) C) 3 D) E) basamaklı saısının 11 ile bölümünden kalan x, 8 ile bölümünden kalan olduğuna göre, x + toplamı A) 9 B) 10 C) 11 D) 1 E) x doğal saısının 13 ile bölümünden kalan 6, doğal saısının 13 ile bölümünden kalan 9 olduğuna göre, 3x + 7 toplamının 13 ile bölümünden A) B) 3 C) D) E) 7 1. basamaklı, 11 1 saısının ile bölümünden kalan x, 9 ile bölümünden kalan, olduğuna göre, x. çarpımı A) 0 B) C) 8 D) 3 E) x, N olmak üzere, x saısının rakamları toplamı 7, saısının rakamları toplamı 3 olduğuna göre, x + toplamının 9 a bölümündeki A) B) C) 6 D) 7 E) 8 1 B D 3 B D E 6 C 7 D 8 B 9 D 10 B 11 C 1 D 13 C 1 A 1 B 16 D 8

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

SAYILARIN ASAL ÇARPANLARINA AYRILMASI ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I Üniversite Hazırlık / YGS Kolay Temel Matematik 0 KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I. 8 ( 3 + ) A) 7 B) 8 C) 9 D) 0 E) 6. 3! 3 ( 3 3)": ( 3) A) B) 0 C) D) E) 3. 7 3. + 5 A) 6 B) 7 C) 8 D) 0

Detaylı

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor.

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor. Bölüm: Doğal Sayılar ve Tamsayılar Test: Temel Kavramlar. abc ve cba üç basamaklı doğal sayılardır. abc cba = 97 olduğuna göre, abc biçiminde yazılabilecek en küçük doğal sayının rakamları toplamı A) B)

Detaylı

MATEMATİK. Zihinden Toplama ve Çıkarma İşlemi 5. SINIF 3. 55 + 37 = (55+10)+10+10+7 = (65+10) + 10 + 7 = (75+10) + 7 = 85+7 =92

MATEMATİK. Zihinden Toplama ve Çıkarma İşlemi 5. SINIF 3. 55 + 37 = (55+10)+10+10+7 = (65+10) + 10 + 7 = (75+10) + 7 = 85+7 =92 5. SINIF KULA ARDICI VE SINAVLARA HAZIRLIK Zihinden Toplama ve Çıkarma İşlemi TEST-10 1. Aşağıdaki toplama işlemlerinden hangisi "onlukları ve birlikleri ayırarak ekleme" yöntemi ile yapılmıştır? A) 46

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir. -- Bu ders materyali 06.09.05 :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-00 Cevap: x- -x- x- =0 denklemini sağlayan x değeri kaçtır? UYGULAMA-00 Cevap: x x x 5 + = + denklemini

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır? Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994 Matematik Soruları ve Çözümleri 4.10 +.10 1. 4 10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 = 4 4 (40+

Detaylı

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır?

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır? Ö.S.S. 1994 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ 4.10 1. 4 10 +.10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 4 4 (40+ ).10 10 4 4 4 (98² 98²) 00.9.

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları...

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları... ÜNİTE Safa No............................................................ 79 98 Fonksionlar Konu Özeti...................................................... 79 Konu Testleri ( 8)...........................................................

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

barisayhanyayinlari.com

barisayhanyayinlari.com YGS MATEMATİK KONU ANLATIM FASİKÜLLERİ SERİSİ 1 ISBN 978-605-84147-0-9 Baskı Tarihi Ağustos 015 Baskı Yeri: İstanbul YAYINLARI İletişim tel: (538) 90 50 19 barisayhanyayinlari.com Benim için her şey bir

Detaylı

SAYILAR. Temel Kavramlar. 5) a, b, c birbirinden farklı rakamlar olmak üzere A = a + b c ifadesinin alabileceği en büyük değer kaçtır?

SAYILAR. Temel Kavramlar. 5) a, b, c birbirinden farklı rakamlar olmak üzere A = a + b c ifadesinin alabileceği en büyük değer kaçtır? Bu testi çözmen gereken dakika DGS'de bu testten çıkan soru sayısı Temel Kavramlar ) 6-(-) + 8.(-) işleminin sonucu kaçtır? A) -6 B) -0 C) -4 D) 4 E) 6 ) a, b, c birbirinden farklı rakamlar olmak üzere

Detaylı

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası SORU 1 525 + 2834 + 379 toplama işlemini alt alta yazarak yapınız. 525 2834 +379 3738 SORU 2 Manavdan kilogramı 4 TL olan armut

Detaylı

Sıfırdan farklı a, b, c tam sayıları için aşağıdaki özellikler sağlanır.

Sıfırdan farklı a, b, c tam sayıları için aşağıdaki özellikler sağlanır. SAYILAR TEORİSİ 1 Bölünebilme Bölme Algoritması: Her a ve b 0 tam sayıları için a = qb + r ve 0 r < b olacak şekilde q ve r tam sayıları tek türlü belirlenebilir. r sayısı a nın b ile bölümünden elde edilen

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM Sınavın bu bölümünden alacağınız standart puan, Sayısal DGS Puanınızın (DGS-SAY) hesaplanmasında ; Eşit

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 22 Nisan 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 22 Nisan 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal I / 22 Nisan 2007 Matematik Soruları ve Çözümleri 3 1 1. x pozitif sayısı için, 2 1 x 12 = 0 olduğuna göre, x kaçtır? A) 2

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 18. ULUSL NTLY MTEMTİK OLİMPİYTLRI BİRİNCİ ŞM SORULRI SINV TRİHİ VESTİ:30 MRT 2013 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav süresi 150 dakikadır. SINVL İLGİLİ

Detaylı

Bu ders materyali 22.05.2015 09:35:42 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Bu ders materyali 22.05.2015 09:35:42 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir. -1- Bu ders materyali.05.015 09:35:4 tarihinde matematik öğretmeni Ömer SENCAR tarafından SAYI KÜMESİ TAMAMLAYARAK BÖLÜNEBİLME KURALLARINI UYGULAMA SORU-1) "Rakamları kalansız bölünebilen sayılara TEKİN

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

Mehmet ŞAHİN. www.mehmetsahinkitaplari.org

Mehmet ŞAHİN. www.mehmetsahinkitaplari.org 0. Sınıf M AT E M AT İ K Mehmet ŞAHİN www.mehmetsahinkitaplari.org M.E.B Talim ve Terbiye Kurulu Başkanlığı nın 0..009 tarih ve 4 sayılı kararı ve 00-0 öğretim yılından itibaren uygulanacak programa göre

Detaylı

7 onluk + 4 birlikten oluşan sayı aşağıdakilerden hangisidir? A) 74 B) 47 C) 34 2)

7 onluk + 4 birlikten oluşan sayı aşağıdakilerden hangisidir? A) 74 B) 47 C) 34 2) MATEMATİK 2. SINIF 1. 7 onluk + 4 birlikten oluşan sayı aşağıdakilerden hangisidir? 74 47 34 2) 3. 48 sayısının onluk ve birliklerine ayrılışı hangi seçenekte doğru verilmiştir? 4 onluk + 8 birlik 8 onluk

Detaylı

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28)

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28) TEMEL KAVRAMLAR 6. a ve b birer do al say r. a b = 19 oldu una göre, a + b toplam (YANIT: 8) 1. ( 4) ( 1) 6 1 i leminin sonucu (YANIT: ). ( 6) ( 3) ( 4) ( 17) ( 5) :( 11) leminin sonucu (YANIT: 38) 7.

Detaylı

DERS 6. Çok Değişkenli Fonksiyonlarda Maksimum Minimum

DERS 6. Çok Değişkenli Fonksiyonlarda Maksimum Minimum DERS Çok Değişkenli onksionlarda Maksimum Minimum.. Yerel Maksimum Yerel Minimum. z denklemi ile tanımlanan iki değişkenli bir onksionu ve bu onksionun tanım kümesi içinde ab R verilmiş olsun. Tanım. Eğer

Detaylı

YGS MATEMATİK SORU BANKASI

YGS MATEMATİK SORU BANKASI YGS MATEMATİK SORU BANKASI Sebahattin ÖLMEZ www.limityayinlari.com Sınavlara Hazırlık Serisi YGS Matematik Soru Bankası ISBN: 978-60-48--9 Copyright Lmt Limit Yayınları Bu kitabın tüm hakları Lmt Limit

Detaylı

9) A B ve B A ise A=B dir. Birbirinin alt kümesi olan iki küme eşit kümedir.

9) A B ve B A ise A=B dir. Birbirinin alt kümesi olan iki küme eşit kümedir. CEVAPLAR .BÖLÜM - TEST ) {K.K.T.C nin g harfi ile başlayan ilçeleri} ) İlkbahar, yaz, sonbahar, kış mevsimlerinin bazıları ile oluşturulacak kümeler farklı olacağından, bir küme oluşturmazlar. ) Okulumuzdaki

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

ÇAĞLAR KOLEJİ INGILIZCE KASIM BÜLTEN

ÇAĞLAR KOLEJİ INGILIZCE KASIM BÜLTEN ÇAĞLAR KOLEJİ INGILIZCE KASIM BÜLTEN KISIKLI MAH. HANIMSETİ SK. NO:21, ÇAMLICA - ÜSKÜDAR / İSTANBUL İNFO@CAGLAROKULLARİ.COM 0216 505 38 52 İLKOKUL KASIM AYI KAZANIMLARI 1-A: Sınıf objelerini tanır. En

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

Meslek Yüksekokulları Đle Açıköğretim Önlisans Programları Mezunlarının Lisans Öğrenimine Dikey Geçiş Sınavı

Meslek Yüksekokulları Đle Açıköğretim Önlisans Programları Mezunlarının Lisans Öğrenimine Dikey Geçiş Sınavı Meslek Yüksekokulları Đle Açıköğretim Önlisans Programları Mezunlarının Lisans Öğrenimine Dikey Geçiş Sınavı Dikey Geçiş Sınavı / DGS / 15 Temmuz 007 Matematik Soruları ve Çözümleri 1. 4A < 457 olduğuna

Detaylı

ÖN SÖZ. Değerli Adaylar,

ÖN SÖZ. Değerli Adaylar, ÖN SÖZ eğerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme Sınavı(KPSS) na hazırlanmaktasınız ve buradaki başarınız gelecekteki iş yaşamınızı ciddi şekilde etkileyecek.

Detaylı

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme kpss 04 akıcı ayrıntılı güncel konu anlatımları örnekler yorumlar uyarılar pratik bilgiler ösym tarzında özgün sorular ve açıklamaları matematik sayısal akıl yürütme mantıksal akıl yürütme 0 kpss de 85

Detaylı

SAYFA 23/1. PLATİN-302 İcona Cam Mozaik 50X250-25X250 6 310,00 TL/m2 13 1 14,40. PLATİN-308 İcona Cam Mozaik 50X250-25X250 6 290,00 TL/m2 13 1 14,40

SAYFA 23/1. PLATİN-302 İcona Cam Mozaik 50X250-25X250 6 310,00 TL/m2 13 1 14,40. PLATİN-308 İcona Cam Mozaik 50X250-25X250 6 290,00 TL/m2 13 1 14,40 K /MM PLATİN-301 İcona Cam Mozaik 50X250-25X250 6 310,00 TL/m2 13 1 14,40 PLATİN-302 İcona Cam Mozaik 50X250-25X250 6 310,00 TL/m2 13 1 14,40 PLATİN-303 İcona Cam Mozaik 50X250-25X250 6 290,00 TL/m2 13

Detaylı

ALES ÇIKMIŞ SORULAR. Tamamı Çözümlü. ÖSYM'nin Sorduğu Tüm Sorular 2007. 2008. 2009. 2010. 2011. 2012 SÖZEL, EŞİT AĞIRLIK VE SAYISAL ADAYLAR İÇİN

ALES ÇIKMIŞ SORULAR. Tamamı Çözümlü. ÖSYM'nin Sorduğu Tüm Sorular 2007. 2008. 2009. 2010. 2011. 2012 SÖZEL, EŞİT AĞIRLIK VE SAYISAL ADAYLAR İÇİN ÖSYM'nin Sorduğu Tüm Sorular ALES Tamamı Çözümlü SÖZEL, EŞİT AĞIRLIK VE SAYISAL ADAYLAR İÇİN ÇIKMIŞ SORULAR 007. 008. 009. 010. 011. 01 Maıs Dahil İÇİNDEKİLER Safa ALES ve Kitabımız Hakkında... iii İçindekiler...

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

ÖZEL EGE LİSESİ 15. OKULLAR ARASI MATEMATİK YARIŞMASI 7. SINIF ELEME SINAVI SORULARI

ÖZEL EGE LİSESİ 15. OKULLAR ARASI MATEMATİK YARIŞMASI 7. SINIF ELEME SINAVI SORULARI . a ve b pozitif tam sayılar olmak üzere a 2b+2 2 b+4 yukarıdaki bölme işleminde, a nın alabileceği en küçük değer kaçtır?. 25 soruluk bir sınavda her doğru cevaba 5 puan verilirken, her yanlış cevaptan

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

C++ Operatörler (Operators)

C++ Operatörler (Operators) C++ Operatörler (Operators) Konular Operatörler o Aritmetiksel (Matematiksel) Operatörler o Karşılaştırma Operatörleri o Mantıksal Operatörler o Atama Operatörleri o Bit Düzeyinde Operatörler o Özel Amaçlı

Detaylı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı Özel KEV İlköğretim Okulu Fen ve Matematik Olimpiyatı DİKKT! CEVP KĞIDININ TEST -- BÖLÜMÜNE MTEMTİK SORULRI İŞRETLENECEKTİR. ) 3 basamaklı 4 tane sayının aritmetik ortalaması 400 dür. Bu dört sayının birler

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI. Sayfa1 9. Ulusal serimya İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI 2011 Sayfa2 1. Bir ABCD konveks dörtgeninde AD 10 cm ise AB CB? m( Dˆ ) 90, ( ˆ) 150 0 0 m C ve m Aˆ m Bˆ ( ) ( ) olarak

Detaylı

DGS 2009 (1) DGS Kitap Sayfa 247. Örnek 1

DGS 2009 (1) DGS Kitap Sayfa 247. Örnek 1 DGS 2009 (1) DGS Kitap Sayfa 247. Örnek 1 1. 2,10 sayısı hangi sayının % 35 i idir? A) 4,5 B) 5 C) 5,5 D) 6 E) 6,5 Örnek 1: 1200 sayısının % 30 u kaçtır? A) 200 B) 240 C) 300 D) 360 E) 480 DGS 2009 (3)

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

Diğer sayfaya geçiniz. 2013 - KPSS / GY - CS. 28. - 30. soruları aşağıdaki bilgilere göre birbirinden bağımsız olarak cevaplayınız. 29.

Diğer sayfaya geçiniz. 2013 - KPSS / GY - CS. 28. - 30. soruları aşağıdaki bilgilere göre birbirinden bağımsız olarak cevaplayınız. 29. 28. - 30. soruları aşağıdaki bilgilere göre birbirinden bağımsız olarak cevaplayınız. Ahmet, Hasan ve Zafer isimli üç kişi; A, B, C, D, E ve K vitamin değerlerinin tamamını ölçtürmüşlerdir. Vitaminlerin

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

8. SINIF MATEMATİK A. 4. Bir basketbol sahasında orta yuvarlak denilen 2 olan dairesel bölgenin

8. SINIF MATEMATİK A. 4. Bir basketbol sahasında orta yuvarlak denilen 2 olan dairesel bölgenin . (- 3) -2 saısı aşağıdaki saılardan hangisi ile çarpılırsa sonuç 3 olur? 3 3 B) 3 C) 3 2 D) ( ) - 3-3 4. Bir basketbol sahasında orta uvarlak denilen ve alanı 9, 72 m 2 olan dairesel bölgenin çapı kaç

Detaylı

6. 3x2-8x - 3 = O denkleminin negatif kökü asagidakilerden. 7. mx2 - (2m2 + i) x + 2m = O denkleminin köklerinden

6. 3x2-8x - 3 = O denkleminin negatif kökü asagidakilerden. 7. mx2 - (2m2 + i) x + 2m = O denkleminin köklerinden ikinci Dereceden Denklemler, tçözüm Kümesi, Köklerin Varligi. (m - 9) x + x - 6 = o denkleminin ikinci dereceden bir bilinmeyenli denklem olmasi için, m degeri asagidakilerden hangisi olamaz? A) - B) -

Detaylı

MATEMATİK. Değerlendirme 1. Doğal Sayılar. Yukarıdaki kelebekler bir desteden ne kadar azdır? A. 3 B. 7 C. 10

MATEMATİK. Değerlendirme 1. Doğal Sayılar. Yukarıdaki kelebekler bir desteden ne kadar azdır? A. 3 B. 7 C. 10 MATEMATİK Değerlendirme 1 MATEMATİK Doğal Sayılar Ad :... Soyad :... Sınıf/Nu. :... /... 1. Yapbozlarımla n sayısının modelini oluşturdum. 5. Konuşma balonundaki n yerine aşağıdakilerden hangisi yazılmalıdır?

Detaylı

DO A VE MATEMAT K. Kufllar n ve kurba alar n toplam say s n n 3 e bölümü kaçt r?

DO A VE MATEMAT K. Kufllar n ve kurba alar n toplam say s n n 3 e bölümü kaçt r? DO A VE MATEMAT K DO AL SAYILARLA BÖLME filem Afla daki sorular resme göre cevaplay n z. Kufllar n ve kurba alar n toplam say s n n 3 e bölümü kaçt r? A açtaki kufllar 2 dala eflit olarak konsayd, her

Detaylı

uzman yaklaşımı matematik Branş Analizi İlyas BAŞPINAR

uzman yaklaşımı matematik Branş Analizi İlyas BAŞPINAR Branş Analizi matematik 013 KPSS de uygulanan matematik testi ÖSYM nin 17 Nisan 013 te açıkladığı yeni içeriğe uygun olarak hazırlanmıştır. Bu nedenle, matematik testinin adaylar için sürprizler içermediği

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

SAYI VE KESĐR PROBLEMLERĐ

SAYI VE KESĐR PROBLEMLERĐ YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS 4 4 4 SAYI VE KESĐR PROBLEMLERĐ Bir sayının eksiği = x- Bir sayının 10 fazlası _x+10 Bir sayının katı :x Bir sayının / ün = Bir sayının 4/ inin 10 fazlası

Detaylı

1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ. 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199

1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ. 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199 1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199 2-Onlar basamağı 5, yüzler basamağı 2 ve binler basamağı 6

Detaylı

Örnek...3 : f : R R, f (x)=2 x fonksiyonuna ait tabloyu. Örnek...4 : Örnek...1 :

Örnek...3 : f : R R, f (x)=2 x fonksiyonuna ait tabloyu. Örnek...4 : Örnek...1 : LOGARİTMA a b =c eşitliğini düşünelim. Mümkün olan durum larda; Durum 1: a ve b biliniorsa c üs alma işlemile bulunabilir. Örneğin 2 5 =c ise c=32 dir. Örnek...3 : f : R R, f ()=2 fonksionuna ait tablou

Detaylı

Matematik. Körfez Yayınları. YGS - LYS Ön Hazırlık

Matematik. Körfez Yayınları. YGS - LYS Ön Hazırlık Matematik R İ T N R Ö SAYISAL K E YGS - LYS Ön Hazırlık Copyright Çağlayan Basım Yayın Dağıtım Ambalaj San. Tic. A.Ş. Bu kitabın tamamının ya da bir kısmının, kitabı yayımlayan şirketin önceden izni olmaksızın

Detaylı

SAYILAR - 3. 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685 tir. Bu üç sayıdan en küçüğü en az kaç olabilir?

SAYILAR - 3. 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685 tir. Bu üç sayıdan en küçüğü en az kaç olabilir? SAYILAR - 3 1) (x + y) ile (y + z) aralarında asal sayılardır. 7x + 3y = 4z olduğuna göre x - z farkı kaçtır? A) -3 B) -2 C) -1 D) 0 E) 1 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

YGS TEMEL MATEMA MA T TEMA T K KONU ANLATIMLI

YGS TEMEL MATEMA MA T TEMA T K KONU ANLATIMLI YGS TEMEL MATEMAT K KONU ANLATIMLI YGS KONU ANLATIMLI TEMEL MATEMAT K Bas m Yeri ve Y l stanbul / 0 Bask Cilt Ek Bil Matbaac l k Tel: 0 () 87 ISBN 978 60 70 6 Copyright Ayd n Bas n Yay n Matbaa Sanayi

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4 KÜMELER Test -1 1. A a,b,c,d kümesi için aşağıdakilerden hangisi yanlıştır? A) A B) a A C) d A D) {a, c} A E) {a} A 5. A a,b,c, 1,2, 5 kümesi için aşağıdakilerden hangisi doğrudur? A) s(a) = 6 B) b A C)

Detaylı

YGS Seti www.pianalitikyayinlari.com. YGS Matematik Soru Bankası. Yayýna Hazýrlýk Sürat Dizgi Grafik. Baský Tarihi Nisan 2012

YGS Seti www.pianalitikyayinlari.com. YGS Matematik Soru Bankası. Yayýna Hazýrlýk Sürat Dizgi Grafik. Baský Tarihi Nisan 2012 YGS Seti www.pianalitikyayinlari.om YGS Matematik Soru Bankası Copyright Sürat Basým Reklamýlýk ve Eðitim Araçlarý San. Ti. AÞ Bu kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin ön eden

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No MATEMATÝK - II POLÝNOMLAR - IV MF TM LYS1 04 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr

Detaylı

Meslek Yüksekokulları Đle Açıköğretim Önlisans Programları Mezunlarının Lisans Öğrenimine Dikey Geçiş Sınavı

Meslek Yüksekokulları Đle Açıköğretim Önlisans Programları Mezunlarının Lisans Öğrenimine Dikey Geçiş Sınavı Meslek Yüksekokulları Đle Açıköğretim Önlisans Programları Mezunlarının Lisans Öğrenimine Dikey Geçiş Sınavı Dikey Geçiş Sınavı / DGS / Temmuz 008 Matematik Soruları ve Çözümleri. a sıfırdan büyük bir

Detaylı

Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar;

Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar; I. SAYI SİSTEMLERİ Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar; i) İkili(Binary) Sayı Sistemi ii) Onlu(Decimal) Sayı Sistemi iii) Onaltılı(Heksadecimal) Sayı Sistemi iv) Sekizli(Oktal)

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

ORAN-ORANTI TEST 1. 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c)

ORAN-ORANTI TEST 1. 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c) 7BÖLÜM ORAN - ORANTI ORAN-ORANTI TEST 1 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c) ) Aşağıda okunuşları verilen oranları yazınız. a) 16 nın 14 e oranı b) 6 nın

Detaylı

TEMEL MATEMATİK TESTİ

TEMEL MATEMATİK TESTİ TEMEL MTEMTİK TESTİ 1. u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 010 YGS / MT 1. 0, 0,0 0,. + 1 ) 1 7 0 ) 1 + 1 1.. ( a+ 1) ( a )

Detaylı

1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. 2) Aşağıdaki ifadeleri matematiksel ifade olarak yazınız.

1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. 2) Aşağıdaki ifadeleri matematiksel ifade olarak yazınız. 9BÖLÜM DENKLEMLER DENKLEMLER TEST 1 1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. Sözel İfade Matematiksel İfade Orhan ın yaşının dört eksiği Bir sayının sekiz fazlası Cebimdeki

Detaylı

FORMÜL ADI (FONKSİYON) FORMÜLÜN YAZILIŞI YAPTIĞI İŞLEMİN AÇIKLAMASI

FORMÜL ADI (FONKSİYON) FORMÜLÜN YAZILIŞI YAPTIĞI İŞLEMİN AÇIKLAMASI 1 SIKÇA KULLANILAN EXCEL FORMÜLLERİ 1 AŞAĞI YUVARLAMA =aşağıyuvarla(c7;2) 2 YUKARI YUVARLAMA =yukarıyuvarla(c7;2) 3 YUVARLAMA =yuvarla(c7;2) 4 TAVANA YUVARLAMA =tavanayuvarla(c7;5) 5 TABANA YUVARLAMA =TABANAYUVARLA(E2;5)

Detaylı

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK Amaç: 1 den n ye kadar olan tamsayı ağırlıkları, toplamları n olan en az sayıda ağırlığı kullanarak tartmak. Giriş: Bu araştırmanın temelini Ulusal Bilgisayar

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim.

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim. Önsöz Değerli Öğrenciler, u fasikül ortaöğretimde başarınızı yükseltmeye, üniversite giriş sınavlarında yüksek puan almanıza yardımcı olmak için özenle hazırlanmıştır. Konular anlamlı bir bütün oluşturacak

Detaylı

Excel Çalışma Soruları

Excel Çalışma Soruları Excel Çalışma Soruları 1) Excel çalışma kitabında sütun ile satırın birleştiği bölüme verilen ad a) Sütun b) Satır c) İşlev d) Hücre 13-Excel deki bir tabloda en büyük değeri veren fonksiyon a) =Topla

Detaylı

EXCEL DE ARİTMETİKSEL İŞLEMLER

EXCEL DE ARİTMETİKSEL İŞLEMLER EXCEL DE ARİTMETİKSEL İŞLEMLER Toplama İşlemi. Bu İşlemleri yapmadan önce ( toplama- Çıkarma Çarpma-Bölme ve formüllerde) İlk önce hücre İçerisine = (Eşittir) işareti koyman gerekir. KDV HESAPLARI ÖRNEK;

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

5. SINIF COŞMAYA SORULARI

5. SINIF COŞMAYA SORULARI . BÖLÜM DİKKAT! Bu bölümde den a kadar puan değeri, olan sorular vardır. ) Her biri en az dört basamaklı üç tane doğal sayıdan, birincinin yüzler basamağı artırılır, ikincinin binler basamağı azaltılır

Detaylı

2008-2009 Ö RET M YILI ÖZEL EGE LKÖ RET M OKULU 4. SINIF MATEMAT K YILLIK PROJE PROJEY HAZIRLAYANLAR: SINIF :4 A

2008-2009 Ö RET M YILI ÖZEL EGE LKÖ RET M OKULU 4. SINIF MATEMAT K YILLIK PROJE PROJEY HAZIRLAYANLAR: SINIF :4 A 2008-2009 Ö RET M YILI ÖZEL EGE LKÖ RET M OKULU 4. SINIF MATEMAT K YILLIK PROJE PROJE KONUSU: LEMLER N G ZEM - MATEMAT KTE KULLANILAN LEM KOLAYLIKLARI PROJEY HAZIRLAYANLAR: SINIF :4 A Atakan Ç FTÇ Do a

Detaylı

DGS SAYISAL BÖLÜM. 1) 6,20 sayısı hangi sayının % 31 idir? A) 10 B) 15 C) 20 D) 25 E) 30. olduğuna göre, y kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

DGS SAYISAL BÖLÜM. 1) 6,20 sayısı hangi sayının % 31 idir? A) 10 B) 15 C) 20 D) 25 E) 30. olduğuna göre, y kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 DGS SAYISAL BÖLÜM Sınavın bu bölümünden alacağınız standart puan, Sayısal DGS Puanınızın (DGS-SAY) hesaplanmasında 3; Eşit Ağırlıklı DGS Puanınızın (DGS-E hesaplanmasında,8; Sözel DGS Puanınızın (DGS-SÖZ)

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

www.ilketkinlik.com www.ilketkinlik.com/blog www.muzikkitabisarkilari.com www.ingilizcedefteri.com Online Test www.ilketkinlik.com/sinavilketkinlikte

www.ilketkinlik.com www.ilketkinlik.com/blog www.muzikkitabisarkilari.com www.ingilizcedefteri.com Online Test www.ilketkinlik.com/sinavilketkinlikte www.ilketkinlik.com www.ilketkinlik.com/blog www.muzikkitabisarkilari.com www.ingilizcedefteri.com Online Test www.ilketkinlik.com/sinavilketkinlikte atomu ile ilgili şu bilgiler veriliyor; Kütle numarası

Detaylı

TMÖZ Türkiye Matematik Öğretmenleri Zümresi

TMÖZ Türkiye Matematik Öğretmenleri Zümresi YGS MATEMATİK DENEMESİ- Muharrem ŞAHİN TMÖZ Türkiye Matematik Öğretmenleri Zümresi Eyüp Kamil YEŞİLYURT Gökhan KEÇECİ Saygın DİNÇER Mustafa YAĞCI İ:K Ve TMÖZ üyesi 4 00 matematik ve geometri sevdalısı

Detaylı

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2 PROGRAMLAMA Bir problemin çözümü için belirli kurallar ve adımlar çerçevesinde bilgisayar ortamında hazırlanan komutlar dizisine programlama denir. Programlama Dili: Bir programın yazılabilmesi için kendine

Detaylı

1 kesrinin yüzde olarak karşılığı aşağıdakilerden hangisidir? 1. 8 A) % 1,25 B) % 1,8 C) % 12,5 D) % 18 E) % 25. Çözüm 1. = % x olsun.

1 kesrinin yüzde olarak karşılığı aşağıdakilerden hangisidir? 1. 8 A) % 1,25 B) % 1,8 C) % 12,5 D) % 18 E) % 25. Çözüm 1. = % x olsun. Meslek Yüksekokulları Đle Açıköğretim Önlisans Programları Mezunlarının Lisans Öğrenimine Dikey Geçiş Sınavı Dikey Geçiş Sınavı / DGS / 16 Temmuz 006 Matematik Soruları ve Çözümleri 1. 8 1 kesrinin yüzde

Detaylı

Hazırlayanlar Yavuz Tel, İlknur DİNÇSEVEN, Seda Gümüş, Hülya İmık. YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni

Hazırlayanlar Yavuz Tel, İlknur DİNÇSEVEN, Seda Gümüş, Hülya İmık. YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni YAYIN KURULU Hazırlayanlar Yavuz Tel, İlknur DİNÇSEVEN, Seda Gümüş, Hülya İmık YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak

Detaylı

MAFETYA MATEMATİK FEN VE TEKNOLOJİ YARIŞMASI İLKÖĞRETİM OKULLARI ARASI MAFETYA MATEMATİK FEN VE TEKNOLOJİ YARIŞMASI AÇIKLAMALAR

MAFETYA MATEMATİK FEN VE TEKNOLOJİ YARIŞMASI İLKÖĞRETİM OKULLARI ARASI MAFETYA MATEMATİK FEN VE TEKNOLOJİ YARIŞMASI AÇIKLAMALAR İLKÖĞRETİM OKULLARI ARASI AÇIKLAMALAR Bu sınav çoktan seçmeli 100 sorudan oluşmaktadır. Sınav süresi 150 dakikadır. Her soru eşit değerde olup puanlama yapılırken doğru cevaplarınızın sayısından yanlış

Detaylı

ELAZIĞ MESLEKİ EĞİTİM MERKEZİ MÜDÜRLÜĞÜ KALFALIK SORU BANKASI MATEMATİK

ELAZIĞ MESLEKİ EĞİTİM MERKEZİ MÜDÜRLÜĞÜ KALFALIK SORU BANKASI MATEMATİK MATEMATİK 1-)Ekmeğin tanesi 75 krş.tur.2ekmek alana 1 ekmek bedava olduğuna göre 30 ekmek için kaç tl ödenir? a)22,5 tl b)30 tl c)15tl d)10 tl 2-)3 kardeşin yaşları toplamı 45 tir.10 yıl sonra yaşları

Detaylı

Sayılar ve Altın Oranı. Mahmut Kuzucuoğlu. 16 Ağustos 2015

Sayılar ve Altın Oranı. Mahmut Kuzucuoğlu. 16 Ağustos 2015 Sayılar ve Altın Oranı Mahmut Kuzucuoğlu Orta Doğu Teknik Üniversitesi Matematik Bölümü matmah@metu.edu.tr İlkyar-2015 16 Ağustos 2015 Ben kimim? Denizli nin Çal ilçesinin Ortaköy kasabasında 1958 yılında

Detaylı