Mikroişlemcilerde Aritmetik

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Mikroişlemcilerde Aritmetik"

Transkript

1 Mikroişlemcilerde Aritmetik Mikroişlemcide Matematiksel Modelleme Mikroişlemcilerde aritmetik işlemler (toplama, çıkarma, çarpma ve bölme) bu iş için tasarlanmış bütünleşik devrelerle yapılır. Bilindiği gibi, her sayı istenen her tabana göre yazılabilir ve her aritmetik işlem seçilen her tabana göre yapılabilir. Bilgisayarda işlemler için 2 tabanının seçilme nedeni, 2 tabanına göre temsilin devrelere en uygun olmasıdır. Çünkü bir devrede akım varsa onu 1 ile, akım yoksa 0 ile göstermek işin pratiğini kolaylaştırır. Aslında, günümüz bilgisayarları çalışırken bir devrede ya 12 Voltluk akım ya da 5 Voltluk akım bulunur. Devrede 12V akım varsa o devreyi 1 ile gösteriyoruz. Devrede 5V akım varsa o devreyi 0 ile gösteriyoruz. Böylece bilgisayarın işlem yapan bütünleşik devreleri ile sayıların 2 tabanlı aritmetik sistemle temsili arasında bire-bir bir bağıntı kurulur. Bu bağıntı, matematiksel modellemenin en önemli uygulamalarından birisidir. Çünkü bu modelleme, bilgisayarın bütünleşik devrelerini 2 tabanlı aritmetik sistem ile temsil etme olanağını sağlar. Böylece, 2 tabanlı aritmetiğin sağlamlığı ve güvenirliği bilgisayar sistemlerine taşınmış olur. Sayma Aritmetiğin Temelidir İlkokuldaki aritmetik bilgilerinizi anımsayınız. Birer birer artan yönde saymayı biliyorsanız toplamayı biliyorsunuz demektir. Çünkü toplama işlemi artan yönde saymanın kısa yoludur. Eğer toplama işlemini biliyorsanız çarpma işlemini biliyorsunuz demektir. Çünkü çarpma işlemi toplamanın kısa yoludur. Benzer olarak, birer bire azalan sırada saymayı biliyorsanız çıkarma işlemini biliyorsunuz demektir. Çünkü çıkarma işlemi azalan yönde saymanın kısa yoludur. Eğer çıkarma işlemini biliyorsanız bölme işlemini biliyorsunuz demektir. Çünkü bölme işlemi çıkarmanın kısa yoludur. O halde sayma işlemini biliyorsak aritmetiği biliyoruz demektir. 1

2 Demek ki aritmetik yapacak bütünleşik devreler sayma işlemini yapabilecek şekilde tasarlanırsa, bütün matematiksel işlemleri yapabileceklerdir. Bunun için, 2 li sayma sistemindeki temsili kullanırsak, artan yönde sayma işlemini yapan devrelerin şu işlemleri yapması yetecektir: = = = 10 Sonuncu işlemi alışık olduğumuz = 0 elde 2 var biçiminde de ifade edebiliriz. İşlemcilerde sayma işlemini yapan bütünleşik devreler bunu yapabilecek biçimde tasarlanmıştır. Azalan yönde sayma (dolayısıyla çıkarma ve bölme işlemleri) için ayrıca devre tasarımına gerekseme duymamak, ve o işlemleri yukarıdaki özeliklere sahip devrelere yaptırmak işlemcinin tasarımını oldukça basitleştirecektir. Gerçekten 2 tabanlı aritmetikte negatif sayıların ikiler tümleyenlerini (twos complement) kullanarak çıkarma işlemini toplama işlemine dönüştürmek mümkündür. Böylece, yukarıya doğru sayabilen bütünleşik devrelerle, bütün aritmetik işlemlerini yapabileceğiz. Bilgisayarda işlemcinin yazmaçları (registers) 4, 8, 16, 32 ya da 64 bitlik hücrelerden oluşur. Bunlar veri tutan bellek alanlarıdır. İşlemlerin nasıl yapıldığını göstermek için kaç bitlik hücreyi kullandığımız önem taşımaz. Yöntem aynıdır. Tabii, büyük yazmaçlar sistemin daha hızlı işlemesini sağlar. İşlemlerde basitliği sağlamak için 8-bitlik hücrelerden oluşan bir sistemi düşüneceğiz. Diğerleri için de benzer işlemler geçerlidir. Bilgisayar işlemcisi çıkarma işlemini yaparken toplama işlemine indirger. Böylece toplama yapmak için tasarlanan devreler, aynı zamanda çıkarma işlemini de yapabilir. Şimdi bunun nasıl olduğunu açıklayacağız. Birler Tümleyeni (Ones Complement) İşaret Biti B-bitlik bir hücrede en yüksek bite (en soldaki bit) işaret biti denilir. Bu hanede 0 varsa sayı pozitif, 1 varsa sayı negatif sayılır. 8-bitlik yazmaçta sayısı pozitiftir sayısı negatiftir Evirtim: Bir sayının 2 tabanlı temsilindeki 1 ler 0 ve 0 lar 1 yapılarak elde edilen yeni sayıya, söz konusu sayının evriği denilir. 2

3 Birler Tümleyeni: Bir sayının evriğine o sayının birler tümleyeni denilir. Mikroişlemciler NOT operatörü ile evirtim işlemini kolayca yapar; yani sayının birler tümleyeni kolayca bulunur. (7) 10 = ~(7) 10 = (evrik = birler tümleyeni) ~203 = İkiler Tümleyeni (Twos Complement) Bir sayının 2 tabanlı temsilindeki evriğine (birler tümleyeni) 1 eklenerek elde edilen yeni sayıya, söz konusu sayının ikiler tümleyeni denilir. (7) 10 = ~(7) 10 = (evrik) ~(7) = (ikiler tümleyeni) Bu örnekte bazı ilginç özelikleri görebiliriz. [(2 8-1) 7] = [(128-1) 7] = 120 = 120 = = ~(7) 2 [(2 8-1) 7] + 1 = [(128-7] = 121 = = ~(7) = 7 nin ikiler tümleyeni Sayı + (ikiler tümleyeni) = [~(7) + 1] = = (0) 10 Toplama işlemini yaparken 8-bitten fazla gelen en soldaki bitleri (taşan bitler) atıyoruz. Sonuncu eşitlik, pozitif bir sayının negatifinin ikiler tümleyeni biçiminde temsil edilebileceğini söylüyor. O halde, bu özeliği kullanarak çıkarma işlemini toplama işlemine dönüştürebiliriz. 8-bitlik hücre yerine öteki seçenekleri de içine alan şu kuralları söyleyebiliriz: 3

4 1. B-bitlik yazmaçta 2 tabanına göre yazılı pozitif bir N sayısının evriği (birler tümleyeni) dir. (2 B 1) - N (1) 2. B-bitlik yazmaçta 2 tabanına göre yazılı pozitif bir N sayısının negatifi, söz konusu sayı ile toplandığında 0 eden sayıdır. Yukarıdaki sonuncu eşitlikten anlaşıldığı gibi, pozitif bir sayının negatifinin B-bitlik yazmaçtaki temsili, sayının evriğine 1 eklenerek bulunur; bu demektir ki, sayının negatifi, B-bitlik hücrede sayının ikiler tümleyenidir. [(2 B 1) N] + 1 = [2 B N] (2) Çıkarma İşlemi Şimdi çıkarma işlemini toplama işlemine dönüştüren kuralı önce örneklerle açıklayalım: 23 = = ~7 = (birler tümleyeni) ~7 + 1 = (ikiler tümleyeni) 23 7 = 23 + (-7) = 23 + [~(7) + 1] = = = (16) 10 ~203 = (birler tümleyeni) ~ = (ikiler tümleyeni) 394 = = [~(203) + 1] = = = (191) 10 ~203 = (birler tümleyeni) ~ = (ikiler tümleyeni) 394 = = [~(203) + 1] = = = (191) 10 4

5 75 = ~75 = (birler tümleyeni) ~ = (ikiler tümleyeni) 13 = = [~(75) + 1] + 13 = = = (62) 10 Uyarı Yukarıdaki çıkarma işlemlerine dikkat edersek, çıkarma işlemini yapan işlemcinin çıkan sayının evriğini bulduktan sonra ona 1 ekleyerek ikiler tümleyenini elde ediyor. Eksilen sayıya ikiler tümleyenini ekliyor. Dolayısıyla işlemci hiç çıkarma işlemi yapmıyor. Onun yerine bir evirtim ve iki toplama işlemi yapıyor. Böylece çıkarma işlemi toplama işlemine dönüştürülüyor. İşlemcinin bütünleşik devreleri evirtim ve toplama işlemini yapmak üzere tasarlanmıştır. O nedenle, çıkarma işlemini toplamaya dönüştürerek yapmaktadır. Özet Yukarıdaki işlemlerde, çıkarmayı yaparken çıkan sayının B-bitlik hücreye negatifinin yazılması gerekiyor. Yukarıda yazdığımız (2) eşitliğine tekrar bakalım: [(2 B 1) N] + 1 = [2 B N] (2) Bu sayının B-bitlik hücredeki temsilinin N ile toplamının 0 ettiğini söylemiş; o nedenle (2) sayısına N sayısının negatifinin temsili demiştik. O halde, bir N sayısının negatifinin B-bitlik hücredeki temsili [2 B N] sayısıdır. Buna N sayısının ikiler tümleyeni denilir. en yüksek hane (bit) = = = = = = = = = bitlik hücrede sayıların ikiler tümleyenleri 5

Mikrobilgisayarda Aritmetik

Mikrobilgisayarda Aritmetik 14 Mikrobilgisayarda Aritmetik SAYITLAMA DİZGELERİ Sayıları göstermek (temsil etmek) için tarih boyunca türlü simgeler kullanılmıştır. Konumuz bu tarihi gelişimi incelemek değildir. Kullanılan sayıtlama

Detaylı

Sayıtlama Dizgeleri. (a n a n-1 a n1 a n0. b 1 b 2 b m )r. simgesi şu sayıyı temsil eder.

Sayıtlama Dizgeleri. (a n a n-1 a n1 a n0. b 1 b 2 b m )r. simgesi şu sayıyı temsil eder. 1 Sayıtlama Dizgeleri Hint-Arap Sayıtlama Dizgesi Sayıları göstermek (temsil etmek) için tarih boyunca türlü simgeler kullanılmıştır. Sümerlerin, Mısırlıların, Romalıların ve diğer uygarlıkların kullandıkları

Detaylı

Sayı sistemleri-hesaplamalar. Sakarya Üniversitesi

Sayı sistemleri-hesaplamalar. Sakarya Üniversitesi Sayı sistemleri-hesaplamalar Sakarya Üniversitesi Sayı Sistemleri - Hesaplamalar Tüm sayı sistemlerinde sayılarda işaret kullanılabilir. Yani pozitif ve negatif sayılarla hesaplama yapılabilir. Bu gerçek

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir.

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir. İşaretli Tamsayı Gösterimi 1. İşaretli Büyüklük Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir. Örnek

Detaylı

SAYISAL ELEKTRONİK. Ege Ü. Ege MYO Mekatronik Programı

SAYISAL ELEKTRONİK. Ege Ü. Ege MYO Mekatronik Programı SAYISAL ELEKTRONİK Ege Ü. Ege MYO Mekatronik Programı BÖLÜM 2 Sayı Sistemleri İkilik, Onaltılık ve İKO Sayılar İkilik Sayı Sistemi 3 Çoğu dijital sistemler 8, 16, 32, ve 64 bit gibi, 2 nin çift kuvvetleri

Detaylı

Sayılar Teorisi SAYILAR TEORİSİ VE SAYILAR

Sayılar Teorisi SAYILAR TEORİSİ VE SAYILAR Sayılar Teorisi SAYILAR TEORİSİ VE SAYILAR Sayılar; insanların ilk çağlardan beri ihtiyaç duyduğu bir gereksinim olmuştur; sayılar teorisi de matematiğin en eski alanlarından birisidir. Sayılar teorisi,

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE TASARIMI EEM122 Ref. Morris MANO & Michael D. CILETTI SAYISAL TASARIM 4. Baskı Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE NEDİR? Mühendisler, elektronik

Detaylı

Giriş MİKROİŞLEMCİ SİSTEMLERİ. Elektronik Öncesi Kuşak. Bilgisayar Tarihi. Elektronik Kuşak. Elektronik Kuşak. Bilgisayar teknolojisindeki gelişme

Giriş MİKROİŞLEMCİ SİSTEMLERİ. Elektronik Öncesi Kuşak. Bilgisayar Tarihi. Elektronik Kuşak. Elektronik Kuşak. Bilgisayar teknolojisindeki gelişme Giriş MİKROİŞLEMCİ SİSTEMLERİ Bilgisayar teknolojisindeki gelişme Elektronik öncesi kuşak Elektronik kuşak Mikroişlemci kuşağı Yrd. Doç. Dr. Şule Gündüz Öğüdücü 1 Bilgisayar Tarihi Elektronik Öncesi Kuşak

Detaylı

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem 3.3. İki Tabanlı Sayı Sisteminde Dört İşlem A + B = 2 0 2 1 (Elde) A * B = Sonuç A B = 2 0 2 1 (Borç) A / B = Sonuç 0 + 0 = 0 0 0 * 0 = 0 0 0 = 0 0 0 / 0 = 0 0 + 1 = 1 0 0 * 1 = 0 0 1 = 1 1 0 / 1 = 0 1

Detaylı

2. SAYI SİSTEMLERİ. M.İLKUÇAR - imuammer@yahoo.com

2. SAYI SİSTEMLERİ. M.İLKUÇAR - imuammer@yahoo.com Sayı Sistemleri İşlemci elektrik sinyalleri ile çalışır, bu elektrik sinyallerini 1/0 şeklinde yorumlayarak işlemcide olup bitenler anlaşılabilir hale getirilir. Böylece gerçek hayattaki bilgileri 1/0

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

İKİLİ SAYILAR VE ARİTMETİK İŞLEMLER

İKİLİ SAYILAR VE ARİTMETİK İŞLEMLER İKİLİ SAYILAR VE ARİTMETİK İŞLEMLER DENEY 3 GİRİŞ Bu deneyde kurulacak devreler ile işaretsiz ve işaretli ikili sayılar üzerinde aritmetik işlemler yapılacak; işaret, elde, borç, taşma kavramları incelenecektir.

Detaylı

Sayı sistemleri iki ana gruba ayrılır. 1. Sabit Noktalı Sayı Sistemleri. 2. Kayan Noktalı Sayı Sistemleri

Sayı sistemleri iki ana gruba ayrılır. 1. Sabit Noktalı Sayı Sistemleri. 2. Kayan Noktalı Sayı Sistemleri 2. SAYI SİSTEMLERİ VE KODLAR Sayı sistemleri iki ana gruba ayrılır. 1. Sabit Noktalı Sayı Sistemleri 2. Kayan Noktalı Sayı Sistemleri 2.1. Sabit Noktalı Sayı Sistemleri 2.1.1. Ondalık Sayı Sistemi Günlük

Detaylı

Microsoft Excel Uygulaması 2

Microsoft Excel Uygulaması 2 Microsoft Excel Uygulaması 2 Dört Temel İşlem: MS Excel hücrelerinde doğrudan değerlere ya da hücre başvurularına bağlı olarak hesaplamalar yapmak mümkündür. Temel aritmetik işlemlerin gerçekleştirilmesi

Detaylı

Toplama işlemi için bir ikili operatör olan artı işareti aynı zamanda tekli operatör olarak da kullanılabilir.

Toplama işlemi için bir ikili operatör olan artı işareti aynı zamanda tekli operatör olarak da kullanılabilir. www.csharpturk.net Türkiye nin C# Okulu Yazar Yunus Özen Eposta yunus@yunus.gen.tr Tarih 08.04.2006 Web http://www.yunusgen.tr ARİTMETİK OPERATÖRLER VE KULLANIM ŞEKİLLERİ Bilgisayarlar yapıları gereği,

Detaylı

MODÜLER ARİTMETİK. Örnek:

MODÜLER ARİTMETİK. Örnek: MODÜLER ARİTMETİK Bir doğal sayının ile bölünmesinden elde edilen kalanlar kümesi { 0,, } dir. ile bölünmesinden elde edilen kalanlar kümesi { 0,,, } tür. Tam sayılar kümesi üzerinde tanımlanan {( x, y)

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

BILGISAYAR ARITMETIGI

BILGISAYAR ARITMETIGI 1 BILGISAYAR ARITMETIGI Sayısal bilgisayarlarda hesaplama problemlerinin sonuçlandırılması için verileri işleyen aritmetik buyruklar vardır. Bu buyruklar aritmetik hesaplamaları yaparlar ve bilgisayar

Detaylı

TBİL-405 Mikroişlemci Sistemleri Bölüm 2 1- % %01010 işleminin sonucu hangisidir? % %11000 %10001 %10101 %00011

TBİL-405 Mikroişlemci Sistemleri Bölüm 2 1- % %01010 işleminin sonucu hangisidir? % %11000 %10001 %10101 %00011 TBİL-405 Mikroişlemci Sistemleri Bölüm 2 1- %11010 - %01010 işleminin sonucu hangisidir? % 10000 %11000 %10001 %10101 %00011 2- %0101 1100 sayısının 1 e tümleyeni hangisidir? % 1010 0111 %11010 0011 %1010

Detaylı

Konular MİKROİŞLEMCİ SİSTEMLERİ. Giriş. Bilgisayar Tarihi. Elektronik Kuşak. Elektronik Öncesi Kuşak

Konular MİKROİŞLEMCİ SİSTEMLERİ. Giriş. Bilgisayar Tarihi. Elektronik Kuşak. Elektronik Öncesi Kuşak Konular MİKROİŞLEMCİ SİSTEMLERİ Giriş: Bilgisayar Tarihi Mikroişlemci Temelli Sistemler Sayı Sistemleri Doç. Dr. Şule Gündüz Öğüdücü http://ninova.itu.edu.tr/tr/dersler/bilgisayar-bilisim-fakultesi/30/blg-212/

Detaylı

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK Amaç: 1 den n ye kadar olan tamsayı ağırlıkları, toplamları n olan en az sayıda ağırlığı kullanarak tartmak. Giriş: Bu araştırmanın temelini Ulusal Bilgisayar

Detaylı

KASIRGA 4. GELİŞME RAPORU

KASIRGA 4. GELİŞME RAPORU KASIRGA 4. GELİŞME RAPORU 14.07.2008 Ankara İçindekiler İçindekiler... 2 Giriş... 3 Kasırga Birimleri... 3 Program Sayacı Birimi... 3 Bellek Birimi... 3 Yönlendirme Birimi... 4 Denetim Birimi... 4 İşlem

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

DENEY 4: TOPLAYICILAR, ÇIKARICILAR VE KARŞILAŞTIRICILAR

DENEY 4: TOPLAYICILAR, ÇIKARICILAR VE KARŞILAŞTIRICILAR DENEY 4: TOPLAYICILAR, ÇIKARICILAR VE KARŞILAŞTIRICILAR 1 Amaç Toplayıcı ve çıkarıcı devreleri kurmak ve denemek. Büyüklük karşılaştırıcı devreleri kurmak ve denemek. 2 Kullanılan Malzemeler 7404 Altılı

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ LOJİK DEVRELERİ LABORATUVARI DENEY RAPORU

İSTANBUL TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ LOJİK DEVRELERİ LABORATUVARI DENEY RAPORU İSTANBUL TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ LOJİK DEVRELERİ LABORATUVARI DENEY RAPORU DENEYİN ADI : BELLEKLE TASARIM Seri Aritmetik Lojik Birim II (9.2) RAPORU HAZIRLAYAN : BEYCAN KAHRAMAN

Detaylı

BÖLÜM 3 OPERAT A ÖRLER - 19 -

BÖLÜM 3 OPERAT A ÖRLER - 19 - BÖLÜM 3 OPERATÖRLER - 19 - 3.1 Operatörler Hakkında Yukarıdaki örnekleri birlikte yaptıysak = işaretini bol bol kullandık ve böylece PHP'nin birçok operatöründen biriyle tanıştık. Buna PHP dilinde "atama

Detaylı

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur.

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur. FAKTÖRİYEL TANIM Pozitif ilk n tam sayının çarpımı 1.2.3 n = n! biçiminde gösterilir. n Faktöriyel okunur. 1!=1 2!=1.2=2 3!=1.2.3=6 4!=1.2.3.4=24 5!=1.2.3.4.5=120 gibi. Özel olarak; 0! = 1 olarak tanımlanmıştır.

Detaylı

DENEY 3a- Yarım Toplayıcı ve Tam Toplayıcı Devresi

DENEY 3a- Yarım Toplayıcı ve Tam Toplayıcı Devresi DENEY 3a- Yarım Toplayıcı ve Tam Toplayıcı Devresi DENEYİN AMACI 1. Aritmetik birimdeki yarım ve tam toplayıcıların karakteristiklerini anlamak. GENEL BİLGİLER Toplama devreleri, Yarım Toplayıcı (YT) ve

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

Quiz:8086 Mikroişlemcisi Mimarisi ve Emirleri

Quiz:8086 Mikroişlemcisi Mimarisi ve Emirleri Öğrenci No Ad-Soyad Puan Quiz:8086 Mikroişlemcisi Mimarisi ve Emirleri S1) 8086 mikroişlemcisi bitlik adres yoluna ve.. bitlik veri yoluna sahip bir işlemcidir. S2) 8086 Mikroişlemci mimarisinde paralel

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

2. Sayı Sistemleri. En küçük bellek birimi sadece 0 ve 1 değerlerini alabilen ikili sayı sisteminde bir basamağa denk gelen Bit tir.

2. Sayı Sistemleri. En küçük bellek birimi sadece 0 ve 1 değerlerini alabilen ikili sayı sisteminde bir basamağa denk gelen Bit tir. 2. Sayı Sistemleri Bilgisayar elektronik bir cihaz olduğu için elektrik akımının geçirilmesi (1) yada geçirilmemesi (0) durumlarını işleyebilir. Bu nedenle ikili sayı sistemini temel alarak veri işler

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız.

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız. BÖLÜM. Büyüklüklerin genel özellikleri nelerdir? 2. Analog büyüklük, analog işaret, analog sistem ve analog gösterge terimlerini açıklayınız. 3. Analog sisteme etrafınızdaki veya günlük hayatta kullandığınız

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

n. basamak... 4. basamak 3. basamak 2. basamak 1. basamak Üstel değer 10 n-1... 10 3 10 2 10 1 10 0 Ağırlık 10 n-1...

n. basamak... 4. basamak 3. basamak 2. basamak 1. basamak Üstel değer 10 n-1... 10 3 10 2 10 1 10 0 Ağırlık 10 n-1... KAYNAK : http://osmanemrekandemir.wordpress.com/ SAYI SISTEMLERI Decimal(Onlu) Sayı sistemi günlük hayatta kullandığım ız 0,1,2,3,4,5,6,7,8,9 rakamlarından oluşur. Decimal(Onlu) Sayı sisteminde her sayı

Detaylı

SAYISAL DEVRELER. İTÜ Bilgisayar Mühendisliği Bölümündeki donanım derslerinin bağlantıları

SAYISAL DEVRELER. İTÜ Bilgisayar Mühendisliği Bölümündeki donanım derslerinin bağlantıları SAYISAL DEVRELER Doç.Dr. Feza BUZLUCA İstanbul Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü Sayısal Devreler Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Detaylı

Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar;

Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar; I. SAYI SİSTEMLERİ Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar; i) İkili(Binary) Sayı Sistemi ii) Onlu(Decimal) Sayı Sistemi iii) Onaltılı(Heksadecimal) Sayı Sistemi iv) Sekizli(Oktal)

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

SAYILAR VE SAYMA TEKRAR TESTİ

SAYILAR VE SAYMA TEKRAR TESTİ İŞLEM KAVRAMI SAYILAR VE SAYMA TEKRAR TESTİ SAYILAR VE SAYMA KONU ÖZETİ SAYI KAVRAMI VE SAYMA Sayı ve sayma kavramı öncesinde öğrenilmiş olması gereken alt düzey temel beceriler: Karşılaştırma Sınıflandırma

Detaylı

Soru Konu Doğru Yanlış Boş

Soru Konu Doğru Yanlış Boş YGS - MATEMATİK DENEME- A Soru Konu Doğru Yanlış Boş Okek Bölünebilme % % Okek Denklemi % % % % % % % % Aralarında Asal Sayıların Obebi % % Bölen Sayısı % % % % % % % % % % % % % % % Reel Sayılar % % %

Detaylı

Saklayıcı (veya Yazmaç) (Register)

Saklayıcı (veya Yazmaç) (Register) Saklayıcı (veya Yazmaç) (Register) Genel bir ardışıl devre: Saklayıcılar Ardışıl devre analiz ve sentezi için iyi bir örnektir. Ayrıca daha büyük çaplı ardışıl devrelerin tasarımında kullanılabilirler.

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

Usta Aritmetik Bayi Kontrol Programı Kullanım Kılavuzu (V.1.3.0)

Usta Aritmetik Bayi Kontrol Programı Kullanım Kılavuzu (V.1.3.0) Usta Aritmetik Bayi Kontrol Programı Kullanım Kılavuzu (V.1.3.0) A. Öğretmen Girişi a b c d B. Ana Menü a. Kullanıcı bilgisi : Bu alana yazılacak bilgiyi size Usta Aritmetik firması sağlamaktadır. b. Şifre

Detaylı

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c 138. a ve b gerçel sayılardır. a < a, 6a b 5= 0 b ne olabilir? (11) 4 5 8 11 1 139. < 0 olmak üzere, 4 3. =? ( 3 ) a 1 140. < a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9,4,7 3,

Detaylı

7.SINIF. Tam Sayılarda Çarpma ve Bölme Islemleri. Tam Sayılarla Çarpma İşlemi

7.SINIF. Tam Sayılarda Çarpma ve Bölme Islemleri. Tam Sayılarla Çarpma İşlemi Tam Sayılarda Çarpma ve Bölme Islemleri Tamsayılarla çarpma ve bölme islemlerini yapar. 2 Tam Sayılarla Çarpma İşlemi Yanda verilmiş sayma pullarını 2 şerli gruplandırdığımızda 6 tane grup oluşur. Bir

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

İKİ TABANLI SİSTEM TOPLAYICILARI (BINARY ADDERS)

İKİ TABANLI SİSTEM TOPLAYICILARI (BINARY ADDERS) Adı Soyadı: No: Grup: DENEY 4 Bu deneye gelmeden önce devre çizimleri yapılacak ve ilgili konular çalışılacaktır. Deney esnasında çizimlerinize göre bağlantı yapacağınız için çimilerin kesinlikle yapılması

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

Yazarlar hakkında Editör hakkında Teşekkür

Yazarlar hakkında Editör hakkında Teşekkür İÇİNDEKİLER Yazarlar hakkında Editör hakkında Teşekkür XIII XIV XV Giriş 1 Kitabın amaçları 1 Öğretmen katkısı 2 Araştırma katkısı 2 Yansıma için bir ara 3 Sınıf etkinlikleri 3 Terminoloji üzerine bir

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

Bir devrede bellek elemanı olarak kullanılmak üzere tutucuları inceledik.

Bir devrede bellek elemanı olarak kullanılmak üzere tutucuları inceledik. Flip-Flop Bir devrede bellek elemanı olarak kullanılmak üzere tutucuları inceledik. Tutucular bazı problemlere sahiptir: Tutucuyu ne zaman enable yapacağımızı bilmeliyiz. Tutucuyu çabucak devredışı bırakabilmeliyiz

Detaylı

KASIRGA -4 Buyruk Tasarımı Belgesi. 30.04.2008 Ankara

KASIRGA -4 Buyruk Tasarımı Belgesi. 30.04.2008 Ankara KASIRGA -4 Buyruk Tasarımı Belgesi 30.04.2008 Ankara 1 İŞLEMLER 00000000 SYSCALL 00000001 HLT 00000010 DEBUG 00000011 CONTINUE S-TİPİ 00000100 NOP 00000101 IN 00000110 OUT 00000111 BRET 00001000 ADD 00001001

Detaylı

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2 PROGRAMLAMA Bir problemin çözümü için belirli kurallar ve adımlar çerçevesinde bilgisayar ortamında hazırlanan komutlar dizisine programlama denir. Programlama Dili: Bir programın yazılabilmesi için kendine

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-2 22.02.2016 Binary Numbers The Computer Number System İkili sayı Sistemi Bilgisayar Sayı Sistemi Sayı sistemleri nesneleri

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

Degişken Tanımlama Ve Operatörler

Degişken Tanımlama Ve Operatörler Degişken Tanımlama Ve Operatörler Degişken tanımlama,operatörler vb... Değişken tanımlamaları JavaScript'te değişkenleri bildirmek için iki farklı yol kullanılabilir : 1)Sadece değer ataması yaparak. Örneğin,

Detaylı

Sayı Sistemleri. Mikroişlemciler ve Mikrobilgisayarlar

Sayı Sistemleri. Mikroişlemciler ve Mikrobilgisayarlar Sayı Sistemleri 1 Desimal Sistem Günlük hayatımızda desimal sistemi kullanmaktayız Tabanı 10 dur Örn: 365 = 3.10 2 +6.10 1 +5.10 0 4827 = 4.10 3 +8.10 2 +2.10 1 +7.10 0 2 İkili Sayı Sistemi (Binary System)

Detaylı

ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi ÜNTE: RASYONEL SAYILAR ONU: Rasyonel Sayılar ümesinde Çıkarma şlemi ÖRNE SORULAR VE ÇÖZÜMLER. işleminin sonucu B) D) ki rasyonel sayının farkını bulmak için çıkan terimin toplama işlemine göre tersi alınarak

Detaylı

MENTAL ARİTMETİK EĞİTİM KİTABI ABAKÜS+MATİK ÖĞRENCİ ÖĞRETMEN VE VELİLER İÇİN ALTIN NOKTA YAYINEVİ İZMİR BAKİ YERLİ

MENTAL ARİTMETİK EĞİTİM KİTABI ABAKÜS+MATİK ÖĞRENCİ ÖĞRETMEN VE VELİLER İÇİN ALTIN NOKTA YAYINEVİ İZMİR BAKİ YERLİ MENTAL ARİTMETİK EĞİTİM KİTABI ABAKÜS+MATİK ÖĞRENCİ ÖĞRETMEN VE VELİLER İÇİN ALTIN NOKTA YAYINEVİ İZMİR - 2013 BAKİ YERLİ İÇİNDEKİLER 1.Temel Kavramlar Abaküs Nedir... 7 Abaküsün Tarihçesi... 9 Abaküsün

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devrelerin Tasarlanması (Design) Bir ardışıl devrenin tasarlanması, çözülecek olan problemin sözle anlatımıyla (senaryo) başlar. Bundan sonra aşağıda açıklanan aşamalardan geçilerek

Detaylı

Programlama Dilleri. C Dili. Programlama Dilleri-ders02/ 1

Programlama Dilleri. C Dili. Programlama Dilleri-ders02/ 1 Programlama Dilleri C Dili Programlama Dilleri-ders02/ 1 Değişkenler, Sabitler ve Operatörler Değişkenler (variables) bellekte bilginin saklandığı gözlere verilen simgesel isimlerdir. Sabitler (constants)

Detaylı

4- ALGORİTMA (ALGORITHM)

4- ALGORİTMA (ALGORITHM) (ALGORITHM) Algoritma: Bir Problemin çözümünün, günlük konuşma diliyle adım adım yazılmasıdır. Algoritma sözcüğü Ebu Abdullah Muhammed İbn Musa el Harezmi adındaki Türkistan'lı alimden kaynaklanır. Bu

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

MİKROİŞLEMCİ MİMARİLERİ

MİKROİŞLEMCİ MİMARİLERİ MİKROİŞLEMCİ MİMARİLERİ Mikroişlemcilerin yapısı tipik olarak 2 alt sınıfta incelenebilir: Mikroişlemci mimarisi (Komut seti mimarisi), Mikroişlemci organizasyonu (İşlemci mikromimarisi). CISC 1980 lerden

Detaylı

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir.

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Bağımlı Örneklerde Ki-Kare testi -- Mc Nemar Testi Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Örnek: Sigara içmeyle ilgili bir çalışmada, kişilere sigarayı

Detaylı

Grup 2 12091601 Selin Bozkurtlar Ödev 5 02.04.2014 BİLİŞİM TEKNOLOJİLERİ EĞİTİM PLANI

Grup 2 12091601 Selin Bozkurtlar Ödev 5 02.04.2014 BİLİŞİM TEKNOLOJİLERİ EĞİTİM PLANI Grup 2 12091601 Selin Bozkurtlar Ödev 5 02.04.2014 PROJE TABANLI ÖĞRENME A. Biçimsel Bölüm Dersin Adı Sınıf Konunun Adı Süre Öğrenme-Öğretme Strateji ve Yöntemi Kaynak Araç Gereçler Kazanım B. Giriş Bölümü

Detaylı

ÜSLÜ SAYILAR SİBEL BAŞ AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF

ÜSLÜ SAYILAR SİBEL BAŞ AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF ÜSLÜ SAYILAR SİBEL BAŞ 20120907010 AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF 1 ANLATIMI ÜSLÜ SAYILAR KONU Üslü sayılar konu anlatımı içeriği; Üslü sayıların gösterimi, Negatif üslü

Detaylı

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve nin her g L 2 (S için tek çözümünüm olması için gerekli ve yeterli koşulun her j için λ λ j olacak biçimde λ j ifadesini sağlayan R \ {} de bir λ j dizisinin olduğunu gösteriniz. (13) Her λ j için (19.43)

Detaylı

2. SAYI SİSTEMLERİ 2. SAYI SİSTEMLERİ

2. SAYI SİSTEMLERİ 2. SAYI SİSTEMLERİ Decimal ( Onlu 0,,,3,4,5,6,7,8,9 On adet digit). D ile gösterilir. Binary ( İkili 0, iki adet digit ). B ile gösterilir. Oktal ( Sekizli 0,,,3,4,5,6,7 sekiz adet digit ). O ile gösterilir. Hexadecimal

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

DENEY 2-5 Karşılaştırıcı Devre

DENEY 2-5 Karşılaştırıcı Devre DENEY 2-5 Karşılaştırıcı Devre DENEYİN AMACI 1. Dijital karşılaştırıcıların çalışma prensiplerini ve yapısını anlamak. GENEL BİLGİLER Bir karşılaştırma yapabilmek için en az iki sayı gereklidir. En basit

Detaylı

FORMÜLLER VE FONKSİYONLAR

FORMÜLLER VE FONKSİYONLAR C FORMÜLLER VE FONKSİYONLAR Konuya Hazırlık 1. Excel de formül kullanmanın faydalarını açıklayınız. Formüller, bir sayfadaki verileri kullanarak işlem yapan denklemlerdir. Bir formülde, aynı sayfadaki

Detaylı

Mantıksal Operatörlerin Semantiği (Anlambilimi)

Mantıksal Operatörlerin Semantiği (Anlambilimi) Mantıksal Operatörlerin Semantiği (Anlambilimi) Şimdi bu beş mantıksal operatörün nasıl yorumlanması gerektiğine (semantiğine) ilişkin kesin ve net kuralları belirleyeceğiz. Bir deyimin semantiği (anlambilimi),

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Operatörler 5 Bibliography 19 Index 23 1 Operatörler İşlemler 1.1 Operatör Nedir? İlkokulden

Detaylı

Programlama Nedir? Bir bilgisayar bilimcisi gibi düşünmek ve programlama ne demektir?

Programlama Nedir? Bir bilgisayar bilimcisi gibi düşünmek ve programlama ne demektir? 2.1.1. PROGRAMLAMA NEDIR? Programlama Nedir? Bir bilgisayar bilimcisi gibi düşünmek ve programlama ne demektir? Bu düşünme şekli matematiğin, mühendisliğin ve doğa bilimlerinin bazı özelliklerini birleştirmektedir.

Detaylı

Görüntü Bağdaştırıcıları

Görüntü Bağdaştırıcıları Görüntü Bağdaştırıcıları Görüntü Bağdaştırıcıları (Ekran Kartları) Ekrandaki Görüntü Nasıl Oluşur? Monitörünüze yeteri kadar yakından bakarsanız görüntünün çok küçük noktalardan oluştuğunu görürsünüz.

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

DSP DONANIMI. Pek çok DSP için temel elemanlar aşağıdaki gibidir.

DSP DONANIMI. Pek çok DSP için temel elemanlar aşağıdaki gibidir. DSP DONANIMI Pek çok DSP için temel elemanlar aşağıdaki gibidir. Çarpıcı yada çarpıcı- toplayıcı (MPY/MAC) Aritmetik lojik birim (ALU) Öteleyici (SHIFTER) Adres üreteci (AG) Komut yada program sıralayıcı

Detaylı

Hatalar ve Bilgisayar Aritmetiği

Hatalar ve Bilgisayar Aritmetiği Hatalar ve Bilgisayar Aritmetiği Analitik yollardan çözemediğimiz birçok matematiksel problemi sayısal yöntemlerle bilgisayarlar aracılığı ile çözmeye çalışırız. Bu şekilde Sayısal yöntemler kullanarak

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü HAZIRLIK ÇALIŞMALARI İŞLEMSEL YÜKSELTEÇLER VE UYGULAMALARI 1. 741 İşlemsel yükselteçlerin özellikleri ve yapısı hakkında bilgi veriniz. 2. İşlemsel yükselteçlerle gerçekleştirilen eviren yükselteç, türev

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

18. FLİP FLOP LAR (FLIP FLOPS)

18. FLİP FLOP LAR (FLIP FLOPS) 18. FLİP FLOP LAR (FLIP FLOPS) Flip Flop lar iki kararlı elektriksel duruma sahip olan elektronik devrelerdir. Devrenin girişlerine uygulanan işarete göre çıkış bir kararlı durumdan diğer (ikinci) kararlı

Detaylı

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar Algoritma ve Programlamaya Giriş mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar İçerik Algoritma Akış Diyagramları Programlamada İşlemler o o o Matematiksel Karşılaştırma Mantıksal Programlama

Detaylı

MİKROBİLGİSAYAR LABORATUVARI DENEY RAPORU

MİKROBİLGİSAYAR LABORATUVARI DENEY RAPORU İ.T.Ü. Elektrik-Elektronik Fakültesi Bilgisayar Mühendisliği Bölümü MİKROBİLGİSAYAR LABORATUVARI DENEY RAPORU Deney No: 2 Deney Adı: Örnek Programlar Deney Tarihi: 17/10/2003 Grup: C5 Deneyi Yapanlar:

Detaylı

DERS 4 MİKROİŞLEMCİ PROGRAMLAMA İÇERİK

DERS 4 MİKROİŞLEMCİ PROGRAMLAMA İÇERİK DERS 4 İÇERİK Yüksek seviyeli programlama dilleri Düşük sevyeli programlama dilleri Assembler Derleyici Program algoritmalarında yapılan işlemleri Ders 4, Slayt 2 1 GİRİŞ Mikroişlemciler dersinde giriş

Detaylı

10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-2

10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-2 . SINIF MTEMTİK FONKSİYONLRD İŞLEMLER- ÇKEY NDOLU LİSESİ MTEMTİK ÖLÜMÜ . ÜNİTE.. FONKSİYONLRD DÖRT İŞLEM Neler öğreneceksiniz? Fonksiyonlarda dört işlem yani toplama çıkarma, çarpma ve bölmeyi öğreneceksiniz.

Detaylı

5. LOJİK KAPILAR (LOGIC GATES)

5. LOJİK KAPILAR (LOGIC GATES) 5. LOJİK KPILR (LOGIC GTES) Dijital (Sayısal) devrelerin tasarımında kullanılan temel devre elemanlarına Lojik kapılar adı verilmektedir. Her lojik kapının bir çıkışı, bir veya birden fazla girişi vardır.

Detaylı

TEMEL KAVRAMLAR A: SAYI Sayıları ifade etmeye yarayan sembollere rakam denir. Ör: 0,1,2,3,4,5,6 Rakamların çokluk belirtecek şekilde bir araya getirilmesiyle oluşturulan ifadeler ifadesine sayı denir.

Detaylı

İşletim Sistemlerine Giriş

İşletim Sistemlerine Giriş İşletim Sistemlerine Giriş İşletim Sistemleri ve Donanım İşletim Sistemlerine Giriş/ Ders01 1 İşletim Sistemi? Yazılım olmadan bir bilgisayar METAL yığınıdır. Yazılım bilgiyi saklayabilir, işleyebilir

Detaylı

DERS 3 MİKROİŞLEMCİ SİSTEM MİMARİSİ. İçerik

DERS 3 MİKROİŞLEMCİ SİSTEM MİMARİSİ. İçerik DERS 3 MİKROİŞLEMCİ SİSTEM MİMARİSİ İçerik Mikroişlemci Sistem Mimarisi Mikroişlemcinin yürüttüğü işlemler Mikroişlemci Yol (Bus) Yapısı Mikroişlemci İç Veri İşlemleri Çevresel Cihazlarca Yürütülen İşlemler

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

25 sayısını 6 ya böldüğümüzde bölüm 4 ve kalan 1 olur. Şekli inceleyin.

25 sayısını 6 ya böldüğümüzde bölüm 4 ve kalan 1 olur. Şekli inceleyin. BÖLME VE BÖLÜNEBİLME 25 sayısını 6 ya böldüğümüzde bölüm 4 ve kalan 1 olur. Şekli inceleyin. 25 = 6 x 4 + 1 Bölünen = Bölen x Bölüm + Kalan 12312312 sayısını 123 e bölelim. 123 te 123 bir kere var. Sonra

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS YILLAR 6 7 8 ÖSS-YGS - - / /LYS ONDALIK SAYILAR Paydası ve un pozitif kuvveti şeklinde olan veya u şekle dönüştürüleilen kesirlere ondalık kesir(ondalık sayı) denir 7,,,,,7 6 (,6)gii 8 8 NOT: ondalık sayıların

Detaylı